Articles | Volume 17, issue 13
https://doi.org/10.5194/bg-17-3545-2020
https://doi.org/10.5194/bg-17-3545-2020
Research article
 | 
09 Jul 2020
Research article |  | 09 Jul 2020

Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts

Gerard J. M. Versteegh, Alexander J. P. Houben, and Karin A. F. Zonneveld

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (11 May 2020) by Silvio Pantoja
AR by Gerard J.M. Versteegh on behalf of the Authors (12 May 2020)  Author's response    Manuscript
ED: Publish subject to technical corrections (04 Jun 2020) by Silvio Pantoja
AR by Gerard J.M. Versteegh on behalf of the Authors (05 Jun 2020)  Author's response    Manuscript
Download
Short summary
Anoxic sediments mostly contain much more organic matter than oxic ones, and therefore organic matter in anoxic settings is often considered to be preserved better than in oxic settings. However, through the analysis of the same fossil dinoflagellate cyst species from both oxic and anoxic settings, we show that at a molecular level the preservation in the oxic sediments may be better since in the anoxic setting the cyst macromolecule has been altered by postdepositional modification.
Altmetrics
Final-revised paper
Preprint