Articles | Volume 17, issue 13
https://doi.org/10.5194/bg-17-3545-2020
https://doi.org/10.5194/bg-17-3545-2020
Research article
 | 
09 Jul 2020
Research article |  | 09 Jul 2020

Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts

Gerard J. M. Versteegh, Alexander J. P. Houben, and Karin A. F. Zonneveld

Related authors

Performance of temperature and productivity proxies based on long-chain alkane-1, mid-chain diols at test: a 5-year sediment trap record from the Mauritanian upwelling
Gerard J. M. Versteegh, Karin A. F. Zonneveld, Jens Hefter, Oscar E. Romero, Gerhard Fischer, and Gesine Mollenhauer
Biogeosciences, 19, 1587–1610, https://doi.org/10.5194/bg-19-1587-2022,https://doi.org/10.5194/bg-19-1587-2022, 2022
Short summary
Geochemical consequences of oxygen diffusion from the oceanic crust into overlying sediments and its significance for biogeochemical cycles based on sediments of the northeast Pacific
Gerard J. M. Versteegh, Andrea Koschinsky, Thomas Kuhn, Inken Preuss, and Sabine Kasten
Biogeosciences, 18, 4965–4984, https://doi.org/10.5194/bg-18-4965-2021,https://doi.org/10.5194/bg-18-4965-2021, 2021
Short summary

Related subject area

Biogeochemistry: Organic Biogeochemistry
Recently fixed carbon fuels microbial activity several meters below the soil surface
Andrea Scheibe, Carlos A. Sierra, and Marie Spohn
Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023,https://doi.org/10.5194/bg-20-827-2023, 2023
Short summary
Distributions of bacteriohopanepolyols in lakes and coastal lagoons of the Azores Archipelago
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-29,https://doi.org/10.5194/bg-2023-29, 2023
Revised manuscript accepted for BG
Short summary
Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: insights from a time series
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022,https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale
Lisa Noll, Shasha Zhang, Qing Zheng, Yuntao Hu, Florian Hofhansl, and Wolfgang Wanek
Biogeosciences, 19, 5419–5433, https://doi.org/10.5194/bg-19-5419-2022,https://doi.org/10.5194/bg-19-5419-2022, 2022
Short summary
Potential bioavailability of pyrogenic organic matter resembles natural dissolved organic matter pools
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa Garayburu-Caruso, James Stegen, Kevin D. Bladon, and Allison Myers-Pigg
EGUsphere, https://doi.org/10.5194/egusphere-2022-194,https://doi.org/10.5194/egusphere-2022-194, 2022
Short summary

Cited articles

Allard, B. and Templier, J.: Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence, Phytochem., 54, 369–380, https://doi.org/10.1016/S0031-9422(00)00135-7, 2000. 
Allard, B. and Templier, J.: High molecular weight lipids from the trilaminar outer wall (TLS)-containing microalgae Chlorella emersonii, Scenedesmus communis and Tetraedron minimum, Phytochem., 57, 459–467, https://doi.org/10.1016/S0031-9422(01)00071-1, 2001. 
Aller, R. C.: Transport and reactions in the bioirrigated zone, in: The Benthic Boundary Layer, edited by: Boudreau, B. P. and Jørgensen, B. B., Oxford University Press, Oxford, 269–301, 2001. 
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, R.: Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth-Sci. Rev. 123, 53–86, https://doi.org/10.1016/j.earscirev.2013.02.008, 2013. 
Bianchi, T. S., Schreiner, K. M., Smith, R. W., Burdige, D. J., Woodart, S., and Conley, D. J.: Redox Effects on Organic Matter Storage in Coastal Sediments During the Holocene: A Biomarker/Proxy Perspective, Ann. Rev. Earth Planet. Sci., 44, 295–319, https://doi.org/10.1146/annurev-earth-060614-105417, 2016. 
Download
Short summary
Anoxic sediments mostly contain much more organic matter than oxic ones, and therefore organic matter in anoxic settings is often considered to be preserved better than in oxic settings. However, through the analysis of the same fossil dinoflagellate cyst species from both oxic and anoxic settings, we show that at a molecular level the preservation in the oxic sediments may be better since in the anoxic setting the cyst macromolecule has been altered by postdepositional modification.
Altmetrics
Final-revised paper
Preprint