Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-5883-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5883-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr
André Bahr
CORRESPONDING AUTHOR
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer
Feld 234, 69120 Heidelberg, Germany
Monika Doubrawa
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer
Feld 234, 69120 Heidelberg, Germany
Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e,
3001 Leuven, Belgium
Jürgen Titschack
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Leobener Str. 8, 28359 Bremen, Germany
Senckenberg am Meer, Marine Research Department, 26382 Wilhelmshaven,
Germany
Gregor Austermann
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer
Feld 234, 69120 Heidelberg, Germany
Andreas Koutsodendris
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer
Feld 234, 69120 Heidelberg, Germany
Dirk Nürnberg
GEOMAR Helmholtz Centre for Ocean Research, Wischhofstraße 1–3,
24148 Kiel, Germany
Ana Luiza Albuquerque
Departamento de Geoquímica, Universidade Federal Fluminense,
Outeiro São João Baptista s/n. – Centro, Niterói, RJ, Brazil
Oliver Friedrich
Institute of Earth Sciences, Heidelberg University, Im Neuenheimer
Feld 234, 69120 Heidelberg, Germany
Jacek Raddatz
Institute of Geosciences, Goethe University, Frankfurt,
Altenhöferallee 1, 60438 Frankfurt am Main, Germany
Related authors
No articles found.
Mustafa Yücel Kaya, Henk Brinkhuis, Chiara Fioroni, Serdar Görkem Atasoy, Alexis Licht, Dirk Nürnberg, and Taylan Vural
Clim. Past, 21, 1405–1429, https://doi.org/10.5194/cp-21-1405-2025, https://doi.org/10.5194/cp-21-1405-2025, 2025
Short summary
Short summary
The Eocene–Oligocene Transition (EOT) marked global cooling and Antarctic glaciation, but its impact on marginal seas is less known. This study analyzes the Karaburun section in the eastern Paratethys, using biostratigraphy and geochemistry to reveal boreal water ingress due to Arctic–Atlantic gateway closure. Findings highlight the interplay of global and regional climate dynamics in shaping marginal marine environments.
Luis Greiffenhagen, Jürgen Titschack, Claudia Wienberg, Haozhuang Wang, and Dierk Hebbeln
Biogeosciences, 22, 2201–2223, https://doi.org/10.5194/bg-22-2201-2025, https://doi.org/10.5194/bg-22-2201-2025, 2025
Short summary
Short summary
Cold-water coral mounds are large structures on the seabed that are built by corals over thousands of years. They are regarded as carbonate sinks, with a potentially important role in the marine carbon cycle, but more quantitative studies are needed. Using sediment cores, we calculate the amount of carbon that has been stored in two mounds over the last 400 000 years. We provide the first numbers and show that up to 19 times more carbon is accumulated in mounds than on the common seafloor.
Anjaly Govindankutty Menon, Aaron L. Bieler, Hanna Firrincieli, Rachel Alcorn, Niko Lahajnar, Catherine V. Davis, Ralf Schiebel, Dirk Nürnberg, Gerhard Schmiedl, and Nicolaas Glock
EGUsphere, https://doi.org/10.5194/egusphere-2025-1182, https://doi.org/10.5194/egusphere-2025-1182, 2025
Short summary
Short summary
The pore density (number of pores per unit area) of unicellular eukaryotes is used to reconstruct past bottom-water nitrate at the Sea of Okhotsk, the Gulf of California, the Mexican Margin and the Gulf of Guayaquil. The reconstructed bottom-water nitrate at the Sea of Okhotsk, the Gulf of California and the Gulf of Guayaquil are influenced by the intermediate water masses, while the nitrate at the Mexican Margin is related to the deglacial NO3− variability in the Pacific Deep Water.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Dirk Nürnberg, Akintunde Kayode, Karl J. F. Meier, and Cyrus Karas
Clim. Past, 18, 2483–2507, https://doi.org/10.5194/cp-18-2483-2022, https://doi.org/10.5194/cp-18-2483-2022, 2022
Short summary
Short summary
The Leeuwin Current to the west of Australia steers the heat exchange between the tropical and the subantarctic ocean areas. Its prominent variability during the last glacial effectively shaped the Australian ecosystem and was closely related to the dynamics of the Antarctic Circumpolar Current. At ~ 43 ka BP, the rapidly weakening Leeuwin Current, the ecological response in Australia, and human interference likely caused the extinction of the exotic Australian megafauna.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Nicolai Schleinkofer, David Evans, Max Wisshak, Janina Vanessa Büscher, Jens Fiebig, André Freiwald, Sven Härter, Horst R. Marschall, Silke Voigt, and Jacek Raddatz
Biogeosciences, 18, 4733–4753, https://doi.org/10.5194/bg-18-4733-2021, https://doi.org/10.5194/bg-18-4733-2021, 2021
Short summary
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
Cited articles
Addamo, A. M., Vertino, A., Stolarski, J., García-Jiménez, R.,
Taviani, M., and Machordom, A.: Merging scleractinian genera: the
overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia, BMC Evol. Biol., 16, 108, https://doi.org/10.1186/s12862-016-0654-8, 2016.
Aguiar, A. L., Cirano, M., Pereira, J., and Marta-Almeida, M.: Upwelling
processes along a western boundary current in the Abrolhos–Campos region of
Brazil, Cont. Shelf Res., 85, 42–59,
https://doi.org/10.1016/j.csr.2014.04.013, 2014.
Albuquerque, A. L., Meyers, P., Belem, A. L., Turcq, B., Siffedine, A.,
Mendoza, U., and Capilla, R.: Mineral and elemental indicators of
post-glacial changes in sediment delivery and deposition under a western
boundary upwelling system (Cabo Frio, southeastern Brazil), Palaeogeogr. Palaeocl., 445, 72–82,
https://doi.org/10.1016/j.palaeo.2016.01.006, 2016.
Albuquerque, A. L. S., Belem, A. L., Zuluaga, F. J., Cordeiro, L. G.,
Mendoza, U., Knoppers, B. A., Gurgel, M. H., Meyers, P. A., and Capilla, R.:
Particle fluxes and bulk geochemical characterization of the Cabo Frio
upwelling system in Southeastern Brazil: Sediment trap experiments between
Spring 2010 and Summer 2012, An. Acad. Bras. Cienc., 86, 601–620, 2014.
Auscavitch, S. R., Deere, M. C., Keller, A. G., Rotjan, R. D., Shank, T. M.,
Cordes, E. E.: Oceanographic drivers of deep-sea coral species distribution
and community assembly on seamounts, islands, atolls, and reefs within the
Phoenix Islands Protected Area, Front. Mar. Sci., 7, 42, doi:10.3389/fmars.2020.00042, 2020.
Bahr, A., Jiménez-Espejo, F. J., Kolasinac, N., Grunert, P.,
Hernández-Molina, F. J., Röhl, U., Voelker, A. H., Escutia, C.,
Stow, D. A., and Hodell, D.: Deciphering bottom current velocity and
paleoclimate signals from contourite deposits in the Gulf of Cádiz
during the last 140 kyr: An inorganic geochemical approach, Geochem.
Geophys. Geosys., 15, 3145–3160, doi:10.1002/ggge.20106, 2014.
Bahr, A., Spadano Albuquerque, A., Ardenghi, N., Batenburg, S., Bayer, M.,
Catunda, M., Conforti, A., Dias, B., Dias Ramos, R., and Egger, L.: South
American Hydrological Balance and Paleoceanography during the Late
Pleistocene and Holocene (SAMBA)–Cruise No. M125, March 21–April 15,
2016-Rio de Janeiro (Brazil)–Fortaleza (Brazil), DFG-Senatskommission für Ozeanographie, Bremen, 2016.
Behling, H., Arz, H. W., Pätzold, J., and Wefer, G.: Late Quaternary
vegetational and climate dynamics in southeastern Brazil, inferences from
marine cores GeoB 3229-2 and GeoB 3202-1, Palaeogeogr. Palaeocl., 179, 227–243, 2002.
Bianchi, G. G., Vautravers, M. J., and Shackleton, N. J.: Deep flow
variability under apparently stable North Atlantic Deep Water production
during the last interglacial of the subtropical NW Atlantic,
Paleoceanography, 16, 306–316, 2001.
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B.,
Fohlmeister, J., Frank, N., Andersen, M. B., and Deininger, M.: Strong and
deep Atlantic meridional overturning circulation during the last glacial
cycle, Nature, 517, 73–76, doi:10.1038/nature14059, 2015.
Bostock, H. C., Tracey, D. M., Currie, K. I., Dunbar, G. B., Handler, M. R.,
Fletcher, S. E. M., Smith, A. M., and Williams, M. J.: The carbonate
mineralogy and distribution of habitat-forming deep-sea corals in the
southwest pacific region, Deep Sea Res. Pt. I, 100, 88–104, 2015.
Büscher, J. V., Form, A. U., and Riebesell, U.: Interactive effects of
ocean acidification and warming on growth, fitness and survival of the
cold-water coral Lophelia pertusa under different food availabilities, Front. Mar. Sci., 4, 101, https://doi.org/10.3389/fmars.2017.00101, 2017.
Campos, M. C., Chiessi, C. M., Prange, M., Mulitza, S., Kuhnert, H., Paul,
A., Venancio, I. M., Albuquerque, A. L. S., Cruz, F. W., and Bahr, A.: A new
mechanism for millennial scale positive precipitation anomalies over
tropical South America, Quaternary Sci. Rev., 225, 105990,
https://doi.org/10.1016/j.quascirev.2019.105990, 2019.
Carvalho, C., Salomão, M., Molisani, M., Rezende, C., and Lacerda, L.:
Contribution of a medium-sized tropical river to the particulate heavy-metal
load for the South Atlantic Ocean, Sci. Total Environ., 284,
85–93, 2002.
Carvalho, L. M., Jones, C., and Liebmann, B.: The South Atlantic convergence
zone: Intensity, form, persistence, and relationships with intraseasonal to
interannual activity and extreme rainfall, J. Clim., 17, 88–108,
2004.
Castelao, R. M. and Barth, J. A.: The relative importance of wind strength
and along-shelf bathymetric variations on the separation of a coastal
upwelling jet, J. Phys. Oceanogr., 36, 412–425, 2006.
Castelao, R. M.: Sea surface temperature and wind stress curl variability
near a cape, J. Phys. Oceanogr., 42, 2073–2087, 2012.
Cathalot, C., Van Oevelen, D., Cox, T. J., Kutti, T., Lavaleye, M.,
Duineveld, G., and Meysman, F. J.: Cold-water coral reefs and adjacent
sponge grounds: Hotspots of benthic respiration and organic carbon cycling
in the deep sea, Front. Mar. Sci., 2, 37, https://doi.org/10.3389/fmars.2015.00037, 2015.
Coleman, N., LeRoux, F., and Cady, J. G.: Biotite-hydrobiotite-vermiculite
in soils, Nature, 198, 409–410, 1963.
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the
distribution of δ13C of ΣCO2 in the western
Atlantic Ocean, Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021, 2005.
Davies, A. J., Duineveld, G. C., Lavaleye, M. S., Bergman, M. J., van Haren,
H., and Roberts, J. M.: Downwelling and deep-water bottom currents as food
supply mechanisms to the cold-water coralLophelia pertusa (Scleractinia) at the Mingulay
Reef Complex, Limnol. Oceanogr., 54, 620–629, 2009.
Diepenbroek, M., Grobe, H., Reinke, M., Schindler, U., Schlitzer, R., Sieger, R., and Wefer, G.: PANGAEA – an information system for environmental sciences, available at: https://www.pangaea.de/ (last access: 16 November 2020), Comput. Geosci., 28, 1201–1210, 2002.
Dorschel, B., Hebbeln, D., Foubert, A., White, M., and Wheeler, A.:
Hydrodynamics and cold-water coral facies distribution related to recent
sedimentary processes at Galway Mound west of Ireland, Mar. Geol., 244,
184–195, 2007.
Duineveld, G. C., Lavaleye, M. S., Bergman, M. J., De Stigter, H., and
Mienis, F.: Trophic structure of a cold-water coral mound community (Rockall
Bank, NE Atlantic) in relation to the near-bottom particle supply and
current regime, Bull. Mar. Sci., 81, 449–467, 2007.
Dullo, W.-C., Flögel, S., and Rüggeberg, A.: Cold-water coral growth
in relation to the hydrography of the Celtic and Nordic European continental
margin, Mar. Ecol. Prog. Ser., 371, 165–176, 2008.
Fallon, S., Thresher, R., and Adkins, J.: Age and growth of the cold-water
scleractinian Solenosmilia variabilis and its reef on SW Pacific seamounts, Coral Reefs, 33, 31–38, 2014.
Fentimen, R., Feenstra, E., Rüggeberg, A., Vennemann, T., Hajdas, I.,
Adatte, van Rooij, D., and Foubert, A.: Cold-water coral mound archive provides
unique insights into intermediate water mass dynamics in the Alboran Sea
during the Last Deglaciation, Front. Mar. Sci., 7, 354, https://doi.org/10.3389/fmars.2020.00354, 2020.
Flögel, S., Dullo, W.-C., Pfannkuche, O., Kiriakoulakis, K., and
Rüggeberg, A.: Geochemical and physical constraints for the occurrence
of living cold-water corals, Deep Sea Res. Pt. II, 99, 19–26, 2014.
Form, A. U. and Riebesell, U.: Acclimation to ocean acidification during
long-term CO2 exposure in the cold-water coral Lophelia pertusa, Global Change Biol.,
18, 843–853, 2012.
Frank, N., Freiwald, A., Correa, M. L., Wienberg, C., Eisele, M., Hebbeln,
D., Van Rooij, D., Henriet, J.-P., Colin, C., and van Weering, T.:
Northeastern Atlantic cold-water coral reefs and climate, Geology, 39,
743–746, 2011.
Frederiksen, R., Jensen, A., and Westerberg, H.: The distribution of the
scleractinian coral Lophelia pertusa around the Faroe Islands and the relation to internal
tidal mixing, Sarsia, 77, 157–171, 1992.
Furian, S., Barbiero, L., Boulet, R., Curmi, P., Grimaldi, M., and Grimaldi,
C.: Distribution and dynamics of gibbsite and kaolinite in an oxisol of
Serra do Mar, southeastern Brazil, Geoderma, 106, 83–100, 2002.
Gammon, M. J., Tracey, D. M., Marriott, P. M., Cummings, V. J., and Davy, S.
K.: The physiological response of the deep-sea coral Solenosmilia variabilis to ocean
acidification, Peerj, 6, e5236, https://doi.org/10.7717/peerj.5236, 2018.
Gori, A., Grover, R., Orejas, C., Sikorski, S., and Ferrier-Pagès, C.:
Uptake of dissolved free amino acids by four cold-water coral species from
the Mediterranean Sea, Deep Sea Res. Pt. II, 99, 42–50, 2014.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza,
S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in
Atlantic surface sediments (36∘ N–49∘ S): Imprint of
terrigenous input and continental weathering, Geochem. Geophys.
Geosys., 13, Q01013, https://doi.org/10.1029/2011GC003785, 2012.
Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde,
M., Ramsey, C. B., Satow, C., and Roberts, A. P.: Rapid coupling between ice
volume and polar temperature over the past 150,000 years, Nature, 491,
744–747, doi:10.1038/nature11593, 2012.
Gu, F., Chiessi, C. M., Zonneveld, K. A. F., and Behling, H.: Late
Quaternary environmental dynamics inferred from marine sediment core
GeoB6211-2 off southern Brazil, Palaeogeogr. Palaeocl., 496, 48–61, https://doi.org/10.1016/j.palaeo.2018.01.015,
2018.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
statistics software package for education and data analysis, Palaeo.
Electronica, 1, 4, 2001.
Hebbeln, D., Wienberg, C., Wintersteller, P., Freiwald, A., Becker, M., Beuck, L., Dullo, C., Eberli, G. P., Glogowski, S., Matos, L., Forster, N., Reyes-Bonilla, H., and Taviani, M.: Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico, Biogeosciences, 11, 1799–1815, https://doi.org/10.5194/bg-11-1799-2014, 2014.
Hebbeln, D., da Costa Portilho-Ramos, R., Wienberg, C. and Titschack, J.: The
fate of cold-water corals in a changing world: a geological perspective,
Front. Mar. Sci., 119, https://doi.org/10.3389/fmars.2019.00119, 2019.
Hennige, S., Wicks, L., Kamenos, N., Perna, G., Findlay, H., and Roberts,
J.: Hidden impacts of ocean acidification to live and dead coral framework,
P. Roy. Soc. B-Biol. Sci., 282, https://doi.org/10.1098/rspb.2015.099020150990,
2015.
Hanz, U., Wienberg, C., Hebbeln, D., Duineveld, G., Lavaleye, M., Juva, K., Dullo, W.-C., Freiwald, A., Tamborrino, L., Reichart, G.-J., Flögel, S., and Mienis, F.: Environmental factors influencing benthic communities in the oxygen minimum zones on the Angolan and Namibian margins, Biogeosciences, 16, 4337–4356, https://doi.org/10.5194/bg-16-4337-2019, 2019.
Hernández-Molina, F. J., Stow, D. A. V., Alvarez-Zarikian, C. A., Acton,
G., Bahr, A., Balestra, B., Ducassou, E., Flood, R., Flores, J.-A., Furota,
S., Grunert, P., Hodell, D., Jimenez-Espejo, F., Kim, J. K., Krissek, L.,
Kuroda, J., Li, B., Llave, E., Lofi, J., Lourens, L., Miller, M., Nanayama,
F., Nishida, N., Richter, C., Roque, C., Pereira, H., Sanchez Goñi, M.
F., Sierro, F. J., Singh, A. D., Sloss, C., Takashimizu, Y., Tzanova, A.,
Voelker, A., Williams, T., and Xuan, C.: Onset of Mediterranean outflow into
the North Atlantic, Science, 344, 1244–1250, doi:10.1126/science.1251306, 2014.
Holtvoeth, J., Wagner, T., and Schubert, C. J.: Organic matter in
river-influenced continental margin sediments: The land-ocean and climate
linkage at the Late Quaternary Congo fan (ODP Site 1075), Geochem.
Geophys. Geosys., 4, 1109, doi:1110.1029/2003GC000590, 2003.
Hughes, J.: Crystallinity of kaolin minerals and their weathering sequence
in some soils from Nigeria, Brazil and Colombia, Geoderma, 24, 317–325,
1980.
Huvenne, V. A. I., Masson D. G., and Wheeler, A. J.: Sediment dynamics of a
sandy contourite: The sedimentary context of the Darwin cold-water coral
mounds, Northern Rockall Trough, Intern. J. Earth Sci.,
98, 865–884, 2009.
Ibrahim, K. and Hall, A.: The authigenic zeolites of the Aritayn
Volcaniclastic Formation, north-east Jordan, Miner. Deposita, 31,
514–522, doi:10.1007/BF00196131, 1996.
Jennerjahn, T., Knoppers, B., Souza, W., Carvalho, C., Mollenhauer, G.,
Hübner, M., and Ittekkot, V.: The tropical Brazilian continental margin,
Carbon and Nutrient Fluxes in Continental Margins, a Global Synthesis,
Berlin, Springer Verlag, Heidelberg, 427–436, 2010.
Jonkers, L., Prins, M. A., Brummer, G. J., Konert, M., and Lougheed, B. C.:
Experimental insights into laser diffraction particle sizing of fine-grained
sediments for use in palaeoceanography, Sedimentology, 56, 2192–2206, 2009.
Kaboth, S., Boer, B., Bahr, A., Zeeden, C., and Lourens, L. J.:
Mediterranean Outflow Water dynamics during the past ∼ 570
kyr: Regional and global implications, Paleoceanography, 32, 634–647, 2017.
Kano, A., Ferdelman, T. G., Williams, T., Henriet, J.-P., Ishikawa, T.,
Kawagoe, N., Takashima, C., Kakizaki, Y., Abe, K., and Sakai, S.: Age
constraints on the origin and growth history of a deep-water coral mound in
the northeast Atlantic drilled during Integrated Ocean Drilling Program
Expedition 307, Geology, 35, 1051–1054, 2007.
Kiriakoulakis, K., Fisher, E., Wolff, G. A., Freiwald, A., Grehan, A., and
Roberts, J. M.: Lipids and nitrogen isotopes of two deep-water corals from
the North-East Atlantic: initial results and implications for their
nutrition, in: Cold-water Corals and Ecosystems, edited by: Freiwald, A.
and Roberts, J. M., Springer, Erlangen, 715–729, 2005.
Kroopnick, P.: The distribution of 13C of ΣCO2 in the
world oceans, Deep Sea Res. Pt. A., 32, 57–84, 1985.
Lessa, D. V., Santos, T. P., Venancio, I. M., Santarosa, A. C. A., dos
Santos Jr., E. C., Toledo, F. A., Costa, K. B., and Albuquerque, A. L.
S.: Eccentricity-induced expansions of Brazilian coastal upwelling zones,
Global Planet. Change, 179, 33–42, 2019.
Lindberg, B. and Mienert, J.: Postglacial carbonate production by cold-water
corals on the Norwegian shelf and their role in the global carbonate budget,
Geology, 33, 537–540, 2005.
Lippold, J., Pöppelmeier, F., Süfke, F., Gutjahr, M., Goepfert, T.
J., Blaser, P., Friedrich, O., Link, J. M., Wacker, L., Rheinberger, S., and
Jaccard, S. L.: Constraining the variability of the Atlantic Meridional
Overturning Circulation during the Holocene, Geophys. Res. Lett.,
46, 11338–11346, doi:10.1029/2019gl084988, 2019.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic delta O-18 records, Paleoceanography, 20,
PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L., and Cordes,
E. E.: Acute survivorship of the deep-sea coral Lophelia pertusa from the
Gulf of Mexico under acidification, warming, and deoxygenation, Front.
Mar. Sci., 1, 78, https://doi.org/10.3389/fmars.2014.00078, 2014.
Magill, C. R., Ausín, B., Wenk, P., McIntyre, C., Skinner, L.,
Martínez-García, A., Hodell, D. A., Haug, G. H., Kenney, W., and
Eglinton, T. I.: Transient hydrodynamic effects influence organic carbon
signatures in marine sediments, Nat. Commun., 9, 4690, https://doi.org/10.1038/s41467-018-06973-w, 2018.
Maier, C., Watremez, P., Taviani, M., Weinbauer, M., and Gattuso, J.:
Calcification rates and the effect of ocean acidification on Mediterranean
cold-water corals, P. Roy. Soc. B-Biol. Sci.,
279, 1716–1723, 2012.
Mangini, A., Godoy, J., Godoy, M., Kowsmann, R., Santos, G., Ruckelshausen,
M., Schroeder-Ritzrau, A., and Wacker, L.: Deep sea corals off Brazil verify
a poorly ventilated Southern Pacific Ocean during H2, H1 and the Younger
Dryas, Earth Planet. Sci. Lett., 293, 269–276, 2010.
Marchitto, T., Curry, W., Lynch-Stieglitz, J., Bryan, S., Cobb, K., and
Lund, D.: Improved oxygen isotope temperature calibrations for cosmopolitan
benthic foraminifera, Geochim. Cosmochim. Ac., 130, 1–11, 2014.
Marengo, J., Liebmann, B., Grimm, A., Misra, V., Silva Dias, P., Cavalcanti,
I., Carvalho, L., Berbery, E., Ambrizzi, T., and Vera, C.: Recent
developments on the South American monsoon system, Int. J.
Climatol., 32, 1–21, 2012.
McCave, I. N., Manighetti, B., and Robinson, S. G.: Sortable silt and fine
sediment size/composition slicing: parameters for palaeocurrent speed and
palaeoceanography, Paleoceanography, 10, 593–610, 1995.
McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D., and
Brown-Leger, S.: Collapse and rapid resumption of Atlantic meridional
circulation linked to deglacial climate changes, Nature, 428, 834–837,
doi:10.1038/nature02494, 2004.
Mémery, L., Arhan, M., Álvarez-Salgado, X. A., Messias, M.-J.,
Mercier, H., Castro, C. G., and Ríos, A. F.: The water masses along the
western boundary of the south and equatorial Atlantic, Prog. Oceanogr., 47, 69–98, 2000.
Meunier, A. and Velde, B.: Biotite Weathering in Granites of Western
France, in: Developments in Sedimentology, edited by: Mortland, M. M. and
Farmer, V. C., Elsevier, Amsterdam, Oxford, New York, 405–413, 1979.
Meyers, S.: Astrochron: An R package for astrochronology, available at: https://CRAN.R-project.org/package=astrochron (last access: 16 November 2020), 2014.
Mienis, F., De Stigter, H., White, M., Duineveld, G., De Haas, H., and Van
Weering, T.: Hydrodynamic controls on cold-water coral growth and
carbonate-mound development at the SW and SE Rockall Trough Margin, NE
Atlantic Ocean, Deep Sea Res. Pt. I, 54,
1655–1674, 2007.
Mienis, F., Bouma, T., Witbaard, R., Van Oevelen, D., and Duineveld, G.:
Experimental assessment of the effects of coldwater coral patches on water
flow, Mar. Ecol. Prog. Ser., 609, 101–117, 2019.
Miramontes, E., Penven, P., Fierens, R., Droz, L., Toucanne, S., Jorry, S.
J., Jouet, G., Pastor, L., Silva Jacinto, R., Gaillot, A., Giraudeau, J.,
and Raisson, F.: The influence of bottom currents on the Zambezi Valley
morphology (Mozambique Channel, SW Indian Ocean): In situ current
observations and hydrodynamic modelling, Mar. Geol., 410, 42–55,
https://doi.org/10.1016/j.margeo.2019.01.002, 2019.
Mueller, C. E., Larsson, A. I., Veuger, B., Middelburg, J. J., and van Oevelen, D.: Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa, Biogeosciences, 11, 123–133, https://doi.org/10.5194/bg-11-123-2014, 2014.
Muñoz, A., Cristobo, J., Rios, P., Druet, M., Polonio, V., Uchupi, E.,
Acosta, J., and Group, A.: Sediment drifts and cold-water coral reefs in the
Patagonian upper and middle continental slope, Mar. Petrol. Geol.,
36, 70–82, 2012.
Pahnke, K. and Zahn, R.: Southern hemisphere water mass conversion linked
with North Atlantic climate variability, Science, 307, 1741–1746, 2005.
Pahnke, K., Goldstein, S. L., and Hemming, S. R.: Abrupt changes in
Antarctic Intermediate Water circulation over the past 25,000 years, Nat.
Geosci., 1, 870–874, 2008.
Poggemann, D.-W., Hathorne, E. C., Nürnberg, D., Frank, M., Bruhn, I.,
Reißig, S., and Bahr, A.: Rapid deglacial injection of nutrients into
the tropical Atlantic via Antarctic Intermediate Water, Earth Planet.
Sci. Lett., 463, 118–126, 2017.
Raddatz, J. and Rüggeberg, A.: Constraining past environmental changes
of cold-water coral mounds with geochemical proxies in corals and
foraminifera, The Depositional Record, 1–23, https://doi.org/10.1002/dep2.98, 2019.
Raddatz, J., Rüggeberg, A., Margreth, S., Dullo, W.-C., and Expedition,
I.: Paleoenvironmental reconstruction of Challenger Mound initiation in the
Porcupine Seabight, NE Atlantic, Mar. Geol., 282, 79–90, 2011.
Raddatz, J., Rüggeberg, A., Liebetrau, V., Foubert, A., Hathorne, E. C.,
Fietzke, J., Eisenhauer, A., and Dullo, W.-C.: Environmental boundary
conditions of cold-water coral mound growth over the last 3 million years in
the Porcupine Seabight, Northeast Atlantic, Deep Sea Res. Pt. II, 99, 227–236, 2014.
Raddatz, J., Liebetrau, V., Trotter, J., Rüggeberg, A., Flögel, S.,
Dullo, W. C., Eisenhauer, A., Voigt, S., and McCulloch, M.: Environmental
constraints on Holocene cold-water coral reef growth off Norway: Insights
from a multiproxy approach, Paleoceanography, 31, 1350–1367, 2016.
Raddatz, J., Titschack, J., Frank, N., Freiwald, A., Conforti, A., Osborne,
A., Skornitzke, S., Stiller, W., Rüggeberg, A., Voigt, S., Albuquerque,
A., Vertino, A., Schröder-Ritzrau, A., and Bahr, A.: Solenosmilia variabilis-bearing cold-water
mounds off Brazil, Coral Reefs, 39, 69–83, doi:10.1007/s00338-019-01882-w, 2020.
Rathburn, A. E., Corliss, B. H., Tappa, K. D., and Lohmann, K. C.: Comparisons of
the ecology and stable isotopic compositions of living (stained) benthic
foraminifera from the Sulu and South China Seas, Deep Sea Res. Pt. I, 43,
1617–1646, 1996.
Rebesco, M., Hernández-Molina, F. J., Van Rooij, D., and Wåhlin, A.:
Contourites and associated sediments controlled by deep-water circulation
processes: State-of-the-art and future considerations, Mar. Geol., 352,
111–154, https://doi.org/10.1016/j.margeo.2014.03.011, 2014.
Roberts, J. M. and Cairns, S. D.: Cold-water corals in a changing ocean,
Curr. Opin. Env. Sust., 7, 118–126,
https://doi.org/10.1016/j.cosust.2014.01.004, 2014.
Rohling, E., Foster, G. L., Grant, K., Marino, G., Roberts, A., Tamisiea, M.
E., and Williams, F.: Sea-level and deep-sea-temperature variability over
the past 5.3 million years, Nature, 508, 477–482, 2014.
Roughan, M. and Middleton, J. H.: A comparison of observed upwelling
mechanisms off the east coast of Australia, Cont. Shelf Res., 22,
2551–2572, 2002.
Ruckelshausen, M.: Cold-water corals: A paleoceanographic archive; Tracing
past ocean circulation changes in the mid-depth subtropical western South
Atlantic off Brazil for the last 40 ka BP, PhD thesis, Heidelberg University, 215 pp., 2013.
Rüggeberg, A., Dorschel, B., Dullo, W.-C., and Hebbeln, D.: Sedimentary
patterns in the vicinity of a carbonate mound in the Hovland Mound Province,
northern Porcupine Seabight, in: Cold-water corals and ecosystems, edited by: Freiwald, A. and Roberts, J. M., Springer, Berlin, Heidelberg,
87–112, 2005.
Rüggeberg, A., Flögel, S., Dullo, W. C., Raddatz, J., and Liebetrau,
V.: Paleoseawater density reconstruction and its implication for cold-water
coral carbonate mounds in the northeast Atlantic through time,
Paleoceanography, 31, 365–379, 2016.
Skornitzke, S., Raddatz, J., Bahr, A., Pahn, G., Kauczor, H.-U., and
Stiller, W.: Experimental application of an automated alignment correction
algorithm for geological CT imaging: phantom study and application to
sediment cores from cold-water coral mounds, Eur. Radiol.
Exp., 3, 12, https://doi.org/10.1186/s41747-019-0091-8, 2019.
Soetaert, K., Mohn, C., Rengstorf, A., Grehan, A., and Van Oevelen, D.:
Ecosystem engineering creates a direct nutritional link between 600-m deep
cold-water coral mounds and surface productivity, Sci. Rep., 6, 35057, https://doi.org/10.1038/srep35057,
2016.
Stalling, D., Westerhoff, M., and Hege, H.-C.: Amira: A highly interactive system for visual data analysis, The Visualization Handbook, 38, 749–767, 2005.
Stramma, L. and England, M.: On the water masses and mean circulation of
the South Atlantic Ocean, J. Geophys. Res.-Oceans, 104, 20863–20883, 1999.
Stríkis, N. M., Chiessi, C. M., Cruz, F. W., Vuille, M., Cheng, H.,
Souza Barreto, E. A., Mollenhauer, G., Kasten, S., Karmann, I., and Edwards,
R. L.: Timing and structure of Mega-SACZ events during Heinrich Stadial 1,
Geophys. Res. Lett., 42, 5477–5484, 2015.
Stuut, J.-B. W., Prins, M. A., Schneider, R. R., Weltje, G. J., Jansen, J.
F., and Postma, G.: A 300-kyr record of aridity and wind strength in
southwestern Africa: inferences from grain-size distributions of sediments
on Walvis Ridge, SE Atlantic, Mar. Geol., 180, 221–233, 2002.
Sumida, P. Y. G., Yoshinaga, M. Y., Madureira, L. A. S.-P., and Hovland, M.:
Seabed pockmarks associated with deepwater corals off SE Brazilian
continental slope, Santos Basin, Mar. Geol., 207, 159–167, 2004.
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H.: The Oceans: Their
physics, chemistry, and general biology, Prentice-Hall, New York, 1942.
Thiem, Ø., Ravagnan, E., Fosså, J. H., and Berntsen, J.: Food supply
mechanisms for cold-water corals along a continental shelf edge, J.
Marine Syst., 60, 207–219, 2006.
Theodor, M., Schmiedl, G., and Mackensen, A.: Stable isotope composition of
deep-sea benthic foraminifera under contrasting trophic conditions in the
western Mediterranean Sea, Mar. Micropaleontology, 124, 16–28, 2016.
Thresher, R. E., Tilbrook, B., Fallon, S., Wilson, N. C., and Adkins, J.:
Effects of chronic low carbonate saturation levels on the distribution,
growth and skeletal chemistry of deep-sea corals and other seamount
megabenthos, Mar. Ecol. Prog. Ser., 442, 87–99, 2011.
Titschack, J., Thierens, M., Dorschel, B., Schulbert, C., Freiwald, A.,
Kano, A., Takashima, C., Kawagoe, N., Li, X., and Expedition, I.: Carbonate
budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307), Mar.
Geol., 259, 36–46, 2009.
Titschack, J., Baum, D., De Pol-Holz, R., López Correa, M., Forster, N.,
Flögel, S., Hebbeln, D., and Freiwald, A.: Aggradation and carbonate
accumulation of Holocene Norwegian cold-water coral reefs, Sedimentology,
62, 1873–1898, doi:10.1111/sed.12206, 2015.
Titschack, J., Fink, H. G., Baum, D., Wienberg, C., Hebbeln, D., and
Freiwald, A.: Mediterranean cold-water corals–an important regional
carbonate factory?, The Depositional Record, 2, 74–96, 2016.
Turnewitsch, R., Reyss, J.-L., Chapman, D. C., Thomson, J., and Lampitt, R.
S.: Evidence for a sedimentary fingerprint of an asymmetric flow field
surrounding a short seamount, Earth Planet. Sci. Lett., 222,
1023–1036, https://doi.org/10.1016/j.epsl.2004.03.042, 2004.
van Oevelen, D., Mueller, C. E., Lundälv, T., and Middelburg, J. J.: Food selectivity and processing by the cold-water coral Lophelia pertusa, Biogeosciences, 13, 5789–5798, https://doi.org/10.5194/bg-13-5789-2016, 2016.
Viana, A. and Faugères, J.-C.: Upper slope sand deposits: the example
of Campos Basin, a latest Pleistocene-Holocene record of the interaction
between alongslope and downslope currents, Geological Society, London,
Special Publications, 129, 287–316, 1998.
Viana, A., Faugères, J., Kowsmann, R., Lima, J., Caddah, L., and Rizzo,
J.: Hydrology, morphology and sedimentology of the Campos continental
margin, offshore Brazil, Sediment. Geol., 115, 133–157, 1998.
Viana, A. R.: Seismic expression of shallow-to deep-water contourites along
the south-eastern Brazilian margin, Mar. Geophys. Res., 22,
509–521, 2001.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305, 2002.
Waelbroeck, C., Pichat, S., Böhm, E., Lougheed, B. C., Faranda, D., Vrac, M., Missiaen, L., Vazquez Riveiros, N., Burckel, P., Lippold, J., Arz, H. W., Dokken, T., Thil, F., and Dapoigny, A.: Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 kyr, Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, 2018.
Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Cristalli, P. S., Smart,
P. L., Richards, D. A., and Shen, C.-C.: Wet periods in northeastern Brazil
over the past 210 kyr linked to distant climate anomalies, Nature, 432,
740–743, doi:10.1038/nature03067, 2004.
Weaver, R.: Quartz presence in relationship to gibbsite stability in some
highly weathered soils of Brazil, Clay. Clay Miner., 23, 431–436,
1975.
White, M., Wolff, G. A., Lundälv, T., Guihen, D., Kiriakoulakis, K.,
Lavaleye, M., and Duineveld, G.: Cold-water coral ecosystem (Tisler Reef,
Norwegian Shelf) may be a hotspot for carbon cycling, Mar. Ecol.
Prog. Ser., 465, 11–23, 2012.
Wienberg, C., Frank, N., Mertens, K. N., Stuut, J.-B., Marchant, M., Fietzke,
J., Mienis, F., and Hebbeln, D.: Glacial cold-water coral growth in the Gulf of Cádiz: Implications of increased palaeo-productivity, Earth
Planet. Sci. Lett., 298, 405–426, 2010.
Wienberg, C. and Titschack, J.: Framework-forming scleractinian cold-water
corals through space and time: a late Quaternary North Atlantic perspective,
in: Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots,
edited by: Rossi, S., Bramanti, L., Gori, A., and Orejas Saco del Valle, C., Springer International
Publishing, Cham, 699–732, 2017.
Wienberg, C., Titschack, J., Freiwald, A., Frank, N., Lundälv, T.,
Taviani, M., Beuck, L., Schröder-Ritzrau, A., Krengel, T., and Hebbeln,
D.: The giant Mauritanian cold-water coral mound province: Oxygen control on
coral mound formation, Quaternary Sci. Rev., 185, 135–152, 2018.
Wilson, M.: A study of weathering in a soil derived from a
biotite-hornblende rock: I. Weathering of biotite, Clay Miner., 8,
291–303, 1970.
Zahn, R., Winn, K., and Sarnthein, J. M.: Benthic foraminiferal δ13C
and accumulation rates of organic carbon: Uvigernina peregrina group and Cibicidoides wuellerstorfi, Paleoceanography, 1,
27–42, 1986.
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a...
Altmetrics
Final-revised paper
Preprint