Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-5939-2020
https://doi.org/10.5194/bg-17-5939-2020
Research article
 | 
02 Dec 2020
Research article |  | 02 Dec 2020

Robust processing of airborne laser scans to plant area density profiles

Johan Arnqvist, Julia Freier, and Ebba Dellwik

Related authors

Classification and properties of non-idealized coastal wind profiles – an observational study
Christoffer Hallgren, Johan Arnqvist, Erik Nilsson, Stefan Ivanell, Metodija Shapkalijevski, August Thomasson, Heidi Pettersson, and Erik Sahlée
Wind Energ. Sci., 7, 1183–1207, https://doi.org/10.5194/wes-7-1183-2022,https://doi.org/10.5194/wes-7-1183-2022, 2022
Short summary
From lidar scans to roughness maps for wind resource modelling in forested areas
Rogier Floors, Peter Enevoldsen, Neil Davis, Johan Arnqvist, and Ebba Dellwik
Wind Energ. Sci., 3, 353–370, https://doi.org/10.5194/wes-3-353-2018,https://doi.org/10.5194/wes-3-353-2018, 2018
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Evaluation of long-term carbon dynamics in a drained forested peatland using the ForSAFE-Peat model
Daniel Escobar, Stefano Manzoni, Jeimar Tapasco, Patrik Vestin, and Salim Belyazid
Biogeosciences, 22, 2023–2047, https://doi.org/10.5194/bg-22-2023-2025,https://doi.org/10.5194/bg-22-2023-2025, 2025
Short summary
Technical note: A modified formulation of dynamic energy budget theory for faster computation of biological growth
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025,https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Estimates of critical loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016 average annual sulfur and nitrogen atmospheric deposition
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
Biogeosciences, 22, 535–554, https://doi.org/10.5194/bg-22-535-2025,https://doi.org/10.5194/bg-22-535-2025, 2025
Short summary
Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025,https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024,https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary

Cited articles

Almeida, D. R. A. d., Stark, S. C., Shao, G., Schietti, J., Nelson, B. W., Silva, C. A., Gorgens, E. B., Valbuena, R., Papa, D. d. A., and Brancalion, P. H. S.: Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling, Remote Sensing, 11, 92, https://doi.org/10.3390/rs11010092, 2019. a, b, c, d, e, f, g, h, i, j
Arnqvist, J.: ALS2PAD software, GitHub repository, available at: https://github.com/johanarnqvist/ALS2PAD, last access: 27 November 2020. a
ASPRS: LAS SPECIFICATION Version 1.4 – R13, Tech. rep., American Society for Photogrammetry & Remote Sensing, available at: https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf (last access: 27 November 2020), 2013. a
Blair, J. B. and Hofton, M. A.: Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data, Geophys. Res. Lett., 26, 2509–2512, https://doi.org/10.1029/1999GL010484, 1999. a
Boudreault, L. É., Bechmann, A., Tarvainen, L., Klemedtsson, L., Shendryk, I., and Dellwik, E.: A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests, Agr. Forest Meteorol., 201, 86–97, https://doi.org/10.1016/j.agrformet.2014.10.014, 2015. a, b, c, d, e, f, g, h, i, j
Download
Short summary
Data generated by airborne laser scans enable the characterization of surface vegetation for any application that might need it, such as forest management, modeling for numerical weather prediction, or wind energy estimation. In this work we present a new algorithm for calculating the vegetation density using data from airborne laser scans. The new routine is more robust than earlier methods, and an implementation in popular programming languages accompanies the article to support new users.
Share
Altmetrics
Final-revised paper
Preprint