Articles | Volume 18, issue 10
https://doi.org/10.5194/bg-18-3189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins
Anna Katavouta
CORRESPONDING AUTHOR
Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
National Oceanography Centre, Liverpool, UK
Richard G. Williams
Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
Related authors
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Jeff Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O'Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmiéri, Gennadi Lessin, Claudia Gabriela Mayorga-Adame, Valérie Le Guennec, Alex Arnold, and Clément Rousset
Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023, https://doi.org/10.5194/gmd-16-1481-2023, 2023
Short summary
Short summary
The aim is to increase the capacity of the modelling community to respond to societally important questions that require ocean modelling. The concept of reproducibility for regional ocean modelling is developed: advocating methods for reproducible workflows and standardised methods of assessment. Then, targeting the NEMO framework, we give practical advice and worked examples, highlighting key considerations that will the expedite development cycle and upskill the user community.
Ciara Pimm, Andrew J. S. Meijers, Dani C. Jones, and Richard G. Williams
Ocean Sci., 21, 1237–1253, https://doi.org/10.5194/os-21-1237-2025, https://doi.org/10.5194/os-21-1237-2025, 2025
Short summary
Short summary
Subantarctic mode water in the South Pacific Ocean is important due to its role in the uptake and transport of anthropogenic heat and carbon. The Subantarctic mode water region can be split into two pools using mixed-layer-depth properties. Sensitivity experiments are used to understand the effects of heating and wind on each pool. It is found that the optimal conditions to form large amounts of Subantarctic mode water in the South Pacific are local cooling and upstream warming combined.
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800, https://doi.org/10.5194/egusphere-2025-800, 2025
Short summary
Short summary
How the climate system responds when carbon emissions cease is an open question: some climate models reveal a slight warming, whereas most models reveal a slight cooling. Their climate response is affected by how the planet takes up heat and radiates heat back to space, and how the land and ocean sequester carbon from the atmosphere. A framework is developed to connect the temperature response of the climate models to competing and opposing-signed thermal and carbon contributions.
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024, https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Short summary
The ocean absorbs carbon dioxide from the atmosphere, mitigating climate change, but estimates of the uptake do not always agree. There is a need to reconcile these differing estimates and to improve our understanding of ocean carbon uptake. We present a new method for estimating ocean carbon uptake and test it with model data. The method effectively diagnoses the ocean carbon uptake from limited data and therefore shows promise for reconciling different observational estimates.
Philip Goodwin, Richard Williams, Paulo Ceppi, and B. B. Cael
EGUsphere, https://doi.org/10.5194/egusphere-2023-2307, https://doi.org/10.5194/egusphere-2023-2307, 2023
Preprint archived
Short summary
Short summary
Climate feedbacks are normally evaluated by considering the change over time for Earth's energy balance and surface temperatures in the climate system. However, we only have around 1 degree Celsius of temperature change to utilise. Here, climate feedbacks are instead evaluated from the change in latitude of Earth's energy balance and surface temperatures, where we have around 70 degrees Celsius of temperature change to utilise.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Jeff Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O'Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmiéri, Gennadi Lessin, Claudia Gabriela Mayorga-Adame, Valérie Le Guennec, Alex Arnold, and Clément Rousset
Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023, https://doi.org/10.5194/gmd-16-1481-2023, 2023
Short summary
Short summary
The aim is to increase the capacity of the modelling community to respond to societally important questions that require ocean modelling. The concept of reproducibility for regional ocean modelling is developed: advocating methods for reproducible workflows and standardised methods of assessment. Then, targeting the NEMO framework, we give practical advice and worked examples, highlighting key considerations that will the expedite development cycle and upskill the user community.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Cited articles
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D.,
Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T.,
Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon-Concentration
and Carbon-Climate Feedbacks in CMIP5 Earth System Models,
J. Climate, 26, 5289–5314, https://doi.org/10.1175/JCLI-D-12-00494.1, 2013. a, b
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020. a, b, c, d, e, f, g, h, i, j, k
Boer, G. J. and Arora, V.: Temperature and concentration feedbacks in the
carbon cycle, Geophys. Res. Lett., 36, L02704, https://doi.org/10.1029/2008GL036220, 2009. a
Boer, G. J. and Arora, V.: Geographic Aspects of Temperature and Concentration Feedbacks in the Carbon Budget, J. Climate, 23, 775–784, https://doi.org/10.1175/2009JCLI3161.1, 2010. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas,
N., Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP 1pctCO2,
Version: 20190305, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5049, 2018a. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas,
N., Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP piControl,
Version: 20200326, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5251, 2018b. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Cadule, P., and Ghattas, J.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 C4MIP 1pctCO2-bgc, Version: 20180914, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.5050, 2018c. a
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, Lionel, E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y.,
Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A.,
Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J.,
Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the
IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a
Bronselaer, B. and Zanna, L.: Heat and carbon coupling reveals ocean warming
due to circulation changes, Nature, 584, 227–233,
https://doi.org/10.1038/s41586-020-2573-5, 2020. a
Brovkin, V., Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F.,
Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Claussen, M., Crueger, T., Fast, I., Fiedler,
S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt,
H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for
CMIP6 C4MIP 1pctCO2-bgc, Version: 20190710, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6437, 2019. a
Ceppi, P. and Gregory, J. M.: Relationship of tropospheric stability to climate sensitivity and Earth's observed radiation budget,
P. Natl. Acad. Sci. USA, 114, 13126–13131,
https://doi.org/10.1073/pnas.1714308114, 2017. a
Cheng, W., Chiang, J. C. H., and Zhang, D.: Atlantic Meridional Overturning
Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations,
J. Climate, 26, 7187–7197, https://doi.org/10.1175/JCLI-D-12-00496.1, 2013. a
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L.,
Myneni, R., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical
Cycles, in: Climate Change 2013: The Physical Science Basis,
Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, UK, 2013. a, b
Crueger, T., Roeckner, E., Raddatz, T., Schnur, R., and Wetzel, P.: Ocean dynamics determine the response of oceanic CO2 uptake to climate change, Clim. Dynam., 31, 151–168, https://doi.org/10.1007/s00382-007-0342-x, 2008. a, b, c
Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John,
J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., Shevliakova, E.,
Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C.,
Durachta, J., Dussin, R., Gauthier, P. P. G., Griffies, S. M., Guo, H.,
Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R.,
Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A.,
Rand, K., Reichl, B. G., Robinson, T., Schwarzkopf, D. M., Sentman, L. T.,
Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B.,
Zeng, Y., and Zhao, M.: The GFDL Earth System Model Version 4.1 (GFDL-ESM
4.1): Overall Coupled Model Description and Simulation Characteristics,
J. Adv. Model. Earth Sy., 12, e2019MS002015, https://doi.org/10.1029/2019MS002015, 2020. a
Follows, M. J., Ito, T., and Dutkiewicz, S.: On the solution of the carbonate
chemistry system in ocean biogeochemistry models, Ocean Model., 12,
290–301, https://doi.org/10.1016/j.ocemod.2005.05.004, 2006. a, b
Friedlingstein, P., Dufrense, J.-L., Cox, P. M., and Rayner, P.: How positive
is the feedback between climate change and the carbon cycle?, Tellus B, 55,
692–700, https://doi.org/10.1034/j.1600-0889.2003.01461.x, 2003. a, b
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V.,
Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C.,
Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D.,
Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur,
R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model
Intercomparison, J. Climate, 19, 3337–3353,
https://doi.org/10.1175/JCLI3800.1, 2006. a, b, c
Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting, J. P., and Winton, M.: Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models, J. Climate, 28, 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1, 2015. a, b, c
Gnanadesikan, A.: A simple predictive model of the structure of the oceanic
pycnocline, Science, 283, 2077–2081, https://doi.org/10.1126/science.283.5410.2077,
1999. a
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004. a
Gregory, J. M., Jones, C. D., Cadule, P., and Friedlingstein, P.: Quantifying
Carbon Cycle Feedbacks, J. Climate, 22, 5232–5250,
https://doi.org/10.1175/2009JCLI2949.1, 2009. a, b
Gruber, N., Sarmiento, J., and Stocker, T.: An improved method for detecting
anthropogenic CO2 in the oceans, Global Biogeochem. Cy., 10, 809–837, https://doi.org/10.1029/96GB01608, 1996. a
Hajima, T., Abe, M., Arakawa, O., Suzuki, T., Komuro, Y., Ogura, T., Ogochi, K.,Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A.,
Ohgaito, R., Ito, A., Yamazaki, D., Ito, A., Takata, K.,Watanabe, S., Kawamiya, M., and Tachiiri, K.: MIROC MIROC-ES2L model output
prepared for CMIP6 CMIP 1pctCO2, Version: 20200731, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5370,
2019a. a
Hajima, T., Abe, M., Arakawa, O., Suzuki, T., Komuro, Y., Ogura, T., Ogochi, K.,Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A.,
Ohgaito, R., Ito, A., Yamazaki, D., Ito, A., Takata, K.,Watanabe, S., Kawamiya, M., and Tachiiri, K.: MIROC MIROC-ES2L model output
prepared for CMIP6 CMIP piControl, Version: 20200731, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5710,
2019b. a
Hajima, T., Kawamiya, M., Tachiiri, K., Abe, M., Arakawa, O., Suzuki, T., Komuro, Y., Ogochi, K.,Watanabe, M., Yamamoto, A., Tatebe, H.,
Noguchi, M. A., Ohgaito, R., Ito, A., Yamazaki, D., Ito, A., Takata, K., and Watanabe, S.: MIROC MIROC-ES2L model output prepared
for CMIP6 C4MIP 1pctCO2-bgc, Version: 20200731, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5376, 2019c. a
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020. a
Ito, T. and Follows, M. J.: Preformed phosphate, soft tissue pump and
atmospheric CO2, J. Mar. Res., 63, 813–839,
https://doi.org/10.1357/0022240054663231, 2005. a, b
Ito, T. and Follows, M. J.: Air-sea disequilibrium of carbon dioxide enhances
the biological carbon sequestration in the Southern Ocean, Global Biogeochem. Cy., 27, 1129–1138, https://doi.org/10.1002/2013GB004682, 2013. a
Ito, T., Bracco, A., Deutsch, C., Frenzel, H., Long, M., and Takano, Y.:
Sustained growth of the Southern Ocean carbon storage in a warming climate,
Geophys. Res. Lett., 42, 4516–4522, https://doi.org/10.1002/2015GL064320, 2015. a
Iudicone, D., Rodgers, K. B., Plancherel, Y., Aumont, O., Ito, T., Key, R. M., Madec, G., and Ishii, M.: The formation of the ocean's anthropogenic carbon reservoir, Sci. Rep.-UK, 6, 35473, https://doi.org/10.1038/srep35473, 2016. a
Johnson, H. L., Marshall, D. P., and Sproson, D. A. J.: Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline
forcing and multiple equilibria, Clim. Dynam., 29, 821–836,
https://doi.org/10.1007/s00382-007-0262-9, 2007. a
Jones, C.: MOHC UKESM1.0-LL model output prepared for CMIP6 C4MIP 1pctCO2-bgc, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5796, 2019. a
Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T., and Zaehle, S.: C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6, Geosci. Model Dev., 9, 2853–2880, https://doi.org/10.5194/gmd-9-2853-2016, 2016. a, b
Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O., and Schmittner, A.:
Global Warming and Marine Carbon Cycle Feedbacks on Future Atmospheric CO2,
Science, 284, 464–467, https://doi.org/10.1126/science.284.5413.464, 1999. a, b, c
Katavouta, A., Williams, R. G., Goodwin, P., and Roussenov, V.: Reconciling
Atmospheric and Oceanic Views of the Transient Climate Response to
Emissions, Geophys. Res. Lett., 45, 6205–6214,
https://doi.org/10.1029/2018GL077849, 2018. a
Katavouta, A., Williams, R. G., and Goodwin, P.: The Effect of Ocean
Ventilation on the Transient Climate Response to Emissions, J. Climate, 32, 5085–5105, https://doi.org/10.1175/JCLI-D-18-0829.1, 2019. a, b
Krasting, J. P., Blanton, C., McHugh, C., Radhakrishnan, A., John, J. G., Rand, K., Nikonov, S., Vahlenkamp, H., Zadeh, N. T., Dunne,
J. P., Shevliakova, E., Horowitz, L. W., Stock, C., Malyshev, S., Ploshay, J., Gauthier, P. P., Naik, V., Winton, M., and Zeng, Y.:
NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 C4MIP 1pctCO2-bgc, Version: 20180701, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.8475, 2018a. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A., Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R.,
Harrison, M., Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J.,
Silvers, L., Wyman, B., Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I. M., Horowitz, L. W., Lin, P., Milly, P.,
Shevliakova, E., Stock, C., Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4 model output prepared for
CMIP6 CMIP 1pctCO2, Version: 20180701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8473, 2018b. a
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A., Gauthier, P. P., Ginoux, P., Griffies, S. M., Hallberg, R.,
Harrison, M., Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Reichl, B. G., Schwarzkopf, D. M., Seman, C. J.,
Silvers, L., Wyman, B., Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I. M., Horowitz, L. W., Lin, P., Milly, P.,
Shevliakova, E., Stock, C., Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4 model output prepared for
CMIP6 CMIP piControl, Version: 20180701, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8669, 2018c. a
Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of
anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349, https://doi.org/10.1038/nature08526, 2009. a, b
Lauderdale, J. M., Naveira-Garabato, A. C., Oliver, K. I. C., Follows, M. J.,
and Williams, R. G.: Wind-driven changes in Southern Ocean residual
circulation, ocean carbon reservoirs and atmospheric CO2, Clim. Dynam., 41, 2145–2164, https://doi.org/10.1007/s00382-012-1650-3, 2013. a, b, c
Marshall, D. P. and Zanna, L.: A Conceptual Model of Ocean Heat Uptake under
Climate Change, J. Climate, 27, 8444–8465,
https://doi.org/10.1175/JCLI-D-13-00344.1, 2014. a
Marshall, J. and Speer, K.: Closure of the meridional overturning circulation
through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
https://doi.org/10.1038/ngeo1391, 2012. a
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann,
S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S.,
Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner,
K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K.,
Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S.,
Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H.,
Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens,
B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H.,
Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M
Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing
CO2, J. Adv. Model. Earth Sy., 11, 998–1038,
https://doi.org/10.1029/2018MS001400, 2019. a
Meijers, A. J. S.: The Southern Ocean in the Coupled Model Intercomparison
Project phase 5, Philos. T. Roy. Soc. A, 372, 20130296,
https://doi.org/10.1098/rsta.2013.0296, 2014. a
Mikaloff-Fletcher, S. E., Gruber, N., Jacobson, A. R., Doney, S. C.,
Dutkiewicz, S., Gerber, M., Follows, M., Joos, F., Lindsay, K., Menemenlis,
D., Mouchet, A., Müller, S. A., and Sarmiento, J. L.: Inverse estimates of
anthropogenic CO2 uptake, transport, and storage by the ocean, Global Biogeochem. Cy., 20, GB2002, https://doi.org/10.1029/2005GB002530, 2006. a
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of
radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett., 25, 2715–2718, https://doi.org/10.1029/98GL01908, 1998. a
Rodgers, K. B., Ishii, M., Frölicher, T. L., Schlunegger, S., Aumont, O.,
Toyama, K., and Slater, R. D.: Coupling of Surface Ocean Heat and Carbon
Perturbations over the Subtropical Cells under Twenty-First Century Climate
Change, J. Climate, 33, 10321–10338, https://doi.org/10.1175/JCLI-D-19-1022.1, 2020. a, b
Roy, T., Bopp, L., Gehlen, M., Schneider, B., Cadule, P., Frölicher, T. L., Segschneider, J., Tjiputra, J., Heinze, C., and Joos, F.: Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis, J. Climate, 24, 2300–2318, https://doi.org/10.1175/2010JCLI3787.1, 2011. a, b, c, d, e, f, g, h, i, j
Roy, T., Sallée, J. B., Bopp, L., and Metzl, N.: Diagnosing human-induced
feedbacks between the Southern Ocean carbon cycle and the climate system: A
multiple Earth System Model analysis, J. Climate, in review, 2021. a
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic Sink for
Anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004. a, b, c
Sallée, J.-B., Matear, R., and Rintoul, S.: Localized subduction of
anthropogenic carbon dioxide in the Southern Hemisphere oceans, Nat. Geosci., 5, 579–584, https://doi.org/10.1038/ngeo1523, 2012. a
Sallée, J.-B., Shuckburgh, E., Bruneau, N., Meijers, A. J. S., Bracegirdle, T. J., Wang, Z., and Roy, T.: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and
forcing response, J. Geophys. Res.-Oceans, 118, 1830–1844,
https://doi.org/10.1002/jgrc.20135, 2013. a, b
Sarmiento, J. L. and Le Quéré, C.: Oceanic Carbon Dioxide Uptake in a
Model of Century-Scale Global Warming, Science, 274, 1346–1350,
https://doi.org/10.1126/science.274.5291.1346, 1996. a, b, c
Sarmiento, J. L., Hughes, T., Stouffer, R., and Manabe, S.: Simulated response of the ocean carbon cycle to anthropogenic climate warming, Nature, 393, 245–249, https://doi.org/10.1038/30455, 1998. a, b, c, d
Schwinger, J. and Tjiputra, J.: Ocean Carbon Cycle Feedbacks Under Negative
Emissions, Geophys. Res. Lett., 45, 5062–5070,
https://doi.org/10.1029/2018GL077790, 2018. a
Schwinger, J., Tjiputra, J. F., Heinze, C., Bopp, L., Christian, J., Gehlen,
M., Ilyina, T., Jones, C., Salas-Mélia, D., Segschneider, J.,
Séférian, R., and Totterdell, I.: Nonlinearity of Ocean Carbon Cycle
Feedbacks in CMIP5 Earth System Models, J. Climate, 27, 3869–3888,
https://doi.org/10.1175/JCLI-D-13-00452.1, 2014. a, b, c, d, e, f, g, h, i, j
Schwinger, J., Tjiputra, J., Seland, y., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B.,
Gupta, A. K., He, Y., Kirkevåg, A., Aas, K. S., Bethke, I., Fan, Y., Gao, S., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset,
I. H. H., Liakka, J., Moseid, K. O., Nummelin, A., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC NorESM2-LM model output prepared for CMIP6 C4MIP 1pctCO2-bgc, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.13724, 2020. a
Seferian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 C4MIP 1pctCO2-bgc, Version: 20181109, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.3717, 2018a. a
Seferian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP for experiment 1pctCO2, Version: 20181018, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.3714, 2018b. a
Seferian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP piControl, Version: 20181115, Earth System Grid
Federation, https://doi.org/10.22033/ESGF/CMIP6.4165, 2018c. a
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A.,
Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M.,
Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E.,
Geoffroy, O., Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A.,
Rocher, M., Roehrig, R., Salas-y-Mélia, D., Sanchez, E., Terray, L.,
Valcke, S., Waldman, R., Aumont, O., Bopp, L., Deshayes, J., Éthé,
C., and Madec, G.: Evaluation of CNRM Earth System Model, CNRM-ESM2-1:
Role of Earth System Processes in Present-Day and Future Climate, J. Adv. Model. Earth Sy., 11, 4182–4227, https://doi.org/10.1029/2019MS001791, 2019. a
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L.,
Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., Gehlen,
M., Ilyina, T., John, J., Li, H., Long, M., Luo, J., Nakano, H., Romanou, A.,
Schwinger, J., Stock, C., Santana-Falcón, Y., Takano, Y., Tjiputra, J.,
Tsujino, H., Watanabe, M., Wu, T., Wu, F., and Yamamoto, A.: Tracking
improvement in simulated marine biogeochemistry between CMIP5 and CMIP6,
Current Climate Change Reports, 17, 95–119,
https://doi.org/10.1007/s40641-020-00160-0, 2020. a, b, c
Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,
A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,
O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC
NorESM2-LM model output prepared for CMIP6 CMIP 1pctCO2, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.7802, 2019a. a
Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevåg,
A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,
O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC
NorESM2-LM model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.8217, 2019b. a
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020. a
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.: UKESM1: Description and Evaluation of the U.K. Earth System Model, J. Adv. Model. Earth Sy., 11, 4513–4558, https://doi.org/10.1029/2019MS001739, 2019. a
Sherwood, S. C., Bony, S., Boucher, O., Bretherton, C., Forster, P. M.,
Gregory, J. M., and Stevens, B.: Adjustments in the Forcing-Feedback
Framework for Understanding Climate Change, B. Am. Meteorol. Soc., 96, 217–228, https://doi.org/10.1175/BAMS-D-13-00167.1, 2015. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond,
M.: CCCma CanESM5 model output prepared for CMIP6 C4MIP 1pctCO2-bgc, Version: 20190429, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.3153, 2019a. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond,
M.: CCCma CanESM5 model output prepared for CMIP6 CMIP 1pctCO2, Version: 20190429, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.3151, 2019b. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond,
M.: CCCma CanESM5 model output prepared for CMIP6 CMIP piControl, Version: 20190429, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.3673, 2019c. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.:
CCCma CanESM5-CanOE model output prepared for CMIP6 C4MIP 1pctCO2-bgc, Version: 20190429, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.10222, 2019d. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond,
M.: CCCma CanESM5-CanOE model output prepared for CMIP6 CMIP 1pctCO2, Version: 20190429, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.10221, 2019e. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee,
W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond,
M.: CCCma CanESM5-CanOE model output prepared for CMIP6 CMIP piControl, Version: 20190429, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.10266, 2019f. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019g. a, b
Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A., Walton, J., and Jones, C.: MOHC UKESM1.0-LL
model output prepared for CMIP6 CMIP 1pctCO2, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.5792, 2019a. a
Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A., Walton, J., and Jones, C.: MOHC UKESM1.0-LL
model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.6298, 2019b. a
Tanhua, T., Jones, E. P., Jeansson, E., Jutterström, S., Smethie Jr., W. M.,
Wallace, D. W. R., and Anderson, L. G.: Ventilation of the Arctic Ocean:
Mean ages and inventories of anthropogenic CO2 and CFC-11, J. Geophys. Res.-Oceans, 114, C01002, https://doi.org/10.1029/2008JC004868, 2009. a
Tjiputra, J. F., Assmann, K., Bentsen, M., Bethke, I., Otterå, O. H., Sturm, C., and Heinze, C.: Bergen Earth system model (BCM-C): model description and regional climate-carbon cycle feedbacks assessment, Geosci. Model Dev., 3, 123–141, https://doi.org/10.5194/gmd-3-123-2010, 2010. a, b, c, d
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V.,
Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler,
S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt,
H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for
CMIP6 CMIP 1pctCO2, Version: 20190710, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6435, 2019a. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V.,
Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler,
S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt,
H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for
CMIP6 CMIP piControl, Version: 20190710, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6675, 2019b. a
Williams, R., Katavouta, A., and Goodwin, P.: Carbon-Cycle Feedbacks Operating in the Climate System, Current Climate Change Report, 5, 282–295,
https://doi.org/10.1007/s40641-019-00144-9, 2019. a, b, c, d
Williams, R., Katavouta, A., and Roussenov, V.: Regional asymmetries in ocean
heat and carbon storage due to dynamic redistribution in climate model
projections, J. Climate, 34, 3907–3925,
https://doi.org/10.1175/JCLI-D-20-0519.1, 2021. a
Winton, M., Griffies, S. M., Samuels, B. L., Sarmiento, J. L., and
Frölicher, T. L.: Connecting Changing Ocean Circulation with Changing
Climate, J. Climate, 26, 2268–2278, https://doi.org/10.1175/JCLI-D-12-00296.1,
2013. a, b, c
World Climate Research Programme: WCRP CMIP6, available at:
https://esgf-node.llnl.gov/search/cmip6, last access: 19 February 2021. a
Yoshikawa, C., Kawamiya, M., Kato, T., Yamanaka, Y., and Matsuno, T.:
Geographical distribution of the feedback between future climate change and
the carbon cycle, J. Geophys. Res.-Biogeo., 113, G03002, https://doi.org/10.1029/2007JG000570, 2008. a, b, c
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H.,
Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 C4MIP 1pctCO2-bgc,
Version: 20200303, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5357, 2019a. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura,
H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP 1pctCO2,
Version: 20200303, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5356, 2019b. a
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura,
H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP piControl,
Version: 20200222, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6900, 2019c. a
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model Version 2.0,
MRI-ESM2.0: Description and Basic Evaluation of the Physical Component,
J. Meteorol. Soc. Jpn., 97, 931–965, https://doi.org/10.2151/jmsj.2019-051, 2019d.
a
Zickfeld, K., Eby, M., and Weaver, A. J.: Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric
CO2, Global Biogeochem. Cy., 22, GB3024, https://doi.org/10.1029/2007GB003118, 2008. a
Zickfeld, K., Eby, M., Matthews, H. D., Schmittner, A., and Weaver, A. J.:
Nonlinearity of Carbon Cycle Feedbacks, J. Climate, 24, 4255–4275,
https://doi.org/10.1175/2011JCLI3898.1, 2011. a
Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Mackallah, C., Druken, K., and Ridzwan, S. M.: CSIRO
ACCESS-ESM1.5 model output prepared for CMIP6 C4MIP 1pctCO2-bgc, Version: 20191118, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.4232, 2019a. a
Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens, L., Vohralik, P.,
Mackallah, C., Sullivan, A., O'Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP 1pctCO2,
Version: 20191115, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4231, 2019b. a
Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens, L., Vohralik, P.,
Mackallah, C., Sullivan, A., O'Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP piControl,
Version: 20191112, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4312, 2019c. a
Ziehn, T., Chamberlain, M., Law, R., Lenton, A., Bodman, R., Dix, M., Stevens, L., Wang, Y.-P., and Jhan, J. S.: The Australian Earth System Model:
ACCESS-ESM1.5, Journal of Southern Hemisphere Earth Systems Science, 70, 193–214,
https://doi.org/10.1071/ES19035, 2020. a
Short summary
Diagnostics of the latest-generation Earth system models reveal the ocean will continue to absorb a large fraction of the anthropogenic carbon released to the atmosphere in the next century, with the Atlantic Ocean storing a large amount of this carbon relative to its size. The ability of the ocean to absorb carbon will reduce in the future as the ocean warms and acidifies. This reduction is larger in the Atlantic Ocean due to a weakening of the meridional overturning with changes in climate.
Diagnostics of the latest-generation Earth system models reveal the ocean will continue to...
Altmetrics
Final-revised paper
Preprint