Articles | Volume 18, issue 11
Biogeosciences, 18, 3285–3308, 2021

Special issue: Microwave remote sensing for improved understanding of vegetation–water...

Biogeosciences, 18, 3285–3308, 2021
Research article
04 Jun 2021
Research article | 04 Jun 2021

Impact of temperature and water availability on microwave-derived gross primary production

Irene E. Teubner et al.

Related authors

VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing
Benjamin Wild, Irene Teubner, Leander Moesinger, Ruxandra-Maria Zotta, Matthias Forkel, Robin van der Schalie, Stephen Sitch, and Wouter Dorigo
Earth Syst. Sci. Data, 14, 1063–1085,,, 2022
Short summary
The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)
Leander Moesinger, Wouter Dorigo, Richard de Jeu, Robin van der Schalie, Tracy Scanlon, Irene Teubner, and Matthias Forkel
Earth Syst. Sci. Data, 12, 177–196,,, 2020
Short summary
A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)
Matthias Forkel, Wouter Dorigo, Gitta Lasslop, Irene Teubner, Emilio Chuvieco, and Kirsten Thonicke
Geosci. Model Dev., 10, 4443–4476,,, 2017
Short summary

Cited articles

Atkin, O. K. and Tjoelker, M. G.: Thermal acclimation and the dynamic response of plant respiration to temperature, Trends Plant Sci., 8, 343–351, 2003. a, b
Atkin, O. K., Atkinson, L. J., Fisher, R. A., Campbell, C. D., ZARAGOZA-CASTELLS, J., Pitchford, J. W., Woodward, F. I., and Hurry, V.: Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model, Glob. Change Biol., 14, 2709–2726, 2008. a
Beguería, S., Latorre, B., Reig, F., and Vicente-Serrano, S.: sbegueria/SPEIbase: Version 2.5. 1, Glob. SPEI Database, available at: (last access: 15 November 2019), 2017. a
Short summary
Vegetation optical depth (VOD), which contains information on vegetation water content and biomass, has been previously shown to be related to gross primary production (GPP). In this study, we analyzed the impact of adding temperature as model input and investigated if this can reduce the previously observed overestimation of VOD-derived GPP. In addition, we could show that the relationship between VOD and GPP largely holds true along a gradient of dry or wet conditions.
Final-revised paper