Articles | Volume 18, issue 14
https://doi.org/10.5194/bg-18-4369-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4369-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon sources of benthic fauna in temperate lakes across multiple trophic states
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Eva Anthamatten
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Longhui Deng
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Xingguo Han
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Lorenzo Lagostina
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Anja Michel
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Rong Zhu
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Nathalie Dubois
Department Surface Waters – Research and Management, Eawag, Swiss Federal
Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600
Dübendorf, Switzerland
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092
Zurich, Switzerland
Carsten J. Schubert
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Department of Surface Waters – Research and Management, Swiss
Federal Institute of Aquatic Science and Technology (EAWAG), Seestrasse 79,
6047 Kastanienbaum, Switzerland
Stefano M. Bernasconi
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092
Zurich, Switzerland
Mark A. Lever
CORRESPONDING AUTHOR
Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH
Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
Related authors
No articles found.
Guangyi Su, Julie Tolu, Clemens Glombitza, Jakob Zopfi, Moritz F. Lehmann, Mark A. Lever, and Carsten J. Schubert
Biogeosciences, 22, 4449–4466, https://doi.org/10.5194/bg-22-4449-2025, https://doi.org/10.5194/bg-22-4449-2025, 2025
Short summary
Short summary
In Lake Geneva, we studied how different types of organic matter affect methane production. Despite varying sources, like algae and land-based materials, both deep and delta areas are significant methane sources, and methane was mainly produced through CO2 reduction. Surprisingly, the origin of organic matter did not strongly influence methane production rates or pathways. Our findings highlight the need to better understand microbial processes to predict methane emissions from lakes.
Benedict V. A. Mittelbach, Margot E. White, Timo M. Y. Rhyner, Negar Haghipour, Marie-Elodie Perga, Nathalie Dubois, and Timothy I. Eglinton
EGUsphere, https://doi.org/10.5194/egusphere-2025-2891, https://doi.org/10.5194/egusphere-2025-2891, 2025
Short summary
Short summary
Lakes can emit carbon dioxide but also store carbon in their sediments. In hardwater lakes like Lake Geneva, calcite precipitates in the water column, releasing CO2 to the atmosphere, but upon sinking these particles also transport carbon to the sediment. Using sediment traps and radiocarbon isotopes, we show that much of the precipitated calcite is buried, highlighting an overlooked carbon sink that partly offsets the CO2 outgassing and should be included in lake carbon budgets.
Sigrid van Grinsven, Natsumi Maeda, Clemens Glombitza, Mark A. Lever, and Carsten J. Schubert
EGUsphere, https://doi.org/10.5194/egusphere-2024-3979, https://doi.org/10.5194/egusphere-2024-3979, 2025
Preprint archived
Short summary
Short summary
Algal blooms in lakes can cause large amounts of organic material to sink to the bottom, leading to low oxygen conditions and increased methane emissions. This study shows that adding oxygen to the bottom waters reduces methane emissions by 50 %, even after oxygen levels drop again. The effect was consistent across lakes with different nutrient levels. These findings suggest that oxygenation could be an effective strategy to reduce methane emissions in lakes.
Fatemeh Ajallooeian, Nathalie Dubois, Sarah Nemiah Ladd, Mark Alexander Lever, Carsten Johnny Schubert, and Cindy De Jonge
EGUsphere, https://doi.org/10.5194/egusphere-2024-3052, https://doi.org/10.5194/egusphere-2024-3052, 2024
Preprint archived
Short summary
Short summary
We studied how temperature, pH, and oxygen levels affect bacterial lipids (brGDGTs) in lake water and sediment samples from Rotsee, a shallow freshwater lake. These lipids are used to reconstruct past climate conditions. Our findings show that stratification impacts brGDGT distribution in the lake surface, while chemistry influences distribution at the bottom, complicating their use as temperature indicators. This research provides new insights to improve climate reconstructions in lakes.
Alexander J. Clark, Ismael Torres-Romero, Madalina Jaggi, Stefano M. Bernasconi, and Heather M. Stoll
Clim. Past, 20, 2081–2101, https://doi.org/10.5194/cp-20-2081-2024, https://doi.org/10.5194/cp-20-2081-2024, 2024
Short summary
Short summary
Coccoliths are abundant in sediments across the world’s oceans, yet it is difficult to apply traditional carbon or oxygen isotope methodologies for temperature reconstructions. We show that our coccolith clumped isotope temperature calibration with well-constrained temperatures systematically differs from inorganic carbonate calibrations. We suggest the use of our well-constrained calibration for future coccolith carbonate temperature reconstructions.
Sigrid van Grinsven and Carsten Schubert
Biogeosciences, 20, 4213–4220, https://doi.org/10.5194/bg-20-4213-2023, https://doi.org/10.5194/bg-20-4213-2023, 2023
Short summary
Short summary
Agriculture relies heavily on plastic mulch films, which may be transported to aquatic environments. We investigated the breakdown of soil-biodegradable agricultural mulch films in lake sediments. After 40 weeks, films were intact, and no significant CO2 or CH4 was produced from the biodegradable mulch films. We conclude that the mulch films we used have a low biodegradability in lake sediments. The sediment lacks the microbes needed to break down the biodegradable plastics that were used here.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Thomas J. Leutert, Sevasti Modestou, Stefano M. Bernasconi, and A. Nele Meckler
Clim. Past, 17, 2255–2271, https://doi.org/10.5194/cp-17-2255-2021, https://doi.org/10.5194/cp-17-2255-2021, 2021
Short summary
Short summary
The Miocene climatic optimum associated with high atmospheric CO2 levels (~17–14 Ma) was followed by a period of dramatic climate change. We present a clumped isotope-based bottom-water temperature record from the Southern Ocean covering this key climate transition. Our record reveals warm conditions and a substantial cooling preceding the main ice volume increase, possibly caused by thresholds involved in ice growth and/or regional effects at our study site.
Andre Baldermann, Oliver Wasser, Elshan Abdullayev, Stefano Bernasconi, Stefan Löhr, Klaus Wemmer, Werner E. Piller, Maxim Rudmin, and Sylvain Richoz
Clim. Past, 17, 1955–1972, https://doi.org/10.5194/cp-17-1955-2021, https://doi.org/10.5194/cp-17-1955-2021, 2021
Short summary
Short summary
We identified the provenance, (post)depositional history, weathering conditions and hydroclimate that formed the detrital and authigenic silicates and soil carbonates of the Valley of Lakes sediments in Central Asia during the Cenozoic (~34 to 21 Ma). Aridification pulses in continental Central Asia coincide with marine glaciation events and are caused by Cenozoic climate forcing and the exhumation of the Tian Shan, Hangay and Altai mountains, which reduced the moisture influx by westerly winds.
Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert
Biogeosciences, 18, 3087–3101, https://doi.org/10.5194/bg-18-3087-2021, https://doi.org/10.5194/bg-18-3087-2021, 2021
Short summary
Short summary
Lake Lovojärvi is a nutrient-rich lake with high amounts of methane at the bottom, but little near the top. Methane comes from the sediment and rises up through the water but is consumed by microorganisms along the way. They use oxygen if available, but in deeper water layers, no oxygen was present. There, nitrite, iron and humic substances were used, besides a collaboration between photosynthetic organisms and methane consumers, in which the first produced oxygen for the latter.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Cited articles
Anderson, N. J., Dietz, R. D., and Engstrom, D. R.: Land-use change, not climate, controls organic carbon burial in lakes, P. Roy. Soc. B-Biol. Sci., 280, ARTN 20131278 https://doi.org/10.1098/rspb.2013.1278, 2013.
Anderson, N. J., Bennion, H., and Lotter, A. F.: Lake eutrophication and its implications for organic carbon sequestration in Europe, Global Change Biol., 20, 2741–2751, https://doi.org/10.1111/gcb.12584, 2014.
Andersson, G., Graneli, W., and Stenson, J.: The Influence of Animals on Phosphorus Cycling in Lake Ecosystems, Hydrobiologia, 170, 267–284, https://doi.org/10.1007/Bf00024909, 1988.
Armitage, P. D., Pardo, I., and Brown, A.: Temporal Constancy of Faunal Assemblages in Mesohabitats – Application to Management, Arch. Hydrobiol., 133, 367–387, 1995.
Aston, R.: Tubificids and water quality: a review, Environ. Pollut., 5, 1–10, 1973.
Baranov, V., Lewandowski, J., Romeijn, P., Singer, G., and Krause, S.: Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration, Sci. Rep.-UK, 6, ARTN 27329 https://doi.org/10.1038/srep27329, 2016.
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cy., 18, Artn Gb4009 https://doi.org/10.1029/2004gb002238, 2004.
Brinkhurst, R. O. and Chua, K. E.: Preliminary investigation of the exploitation of some potential nutritional resources by three sympatric tubificid oligochaetes, J. Fis. Res. Board Can, 26, 2659–2668, 1969.
Brinkhurst, R. O.: Evolution in the Annelida, Can. J. Zool., 60, 1043–1059, https://doi.org/10.1139/z82-145, 1982.
Brinkhurst, R. O.: On the role of tubificid oligochaetes in relation to fish disease with special reference to the Myxozoa, Annual Review of Fish Diseases, 6, 29–40, 1996.
Brodersen, K. P., Pedersen, O., Walker, I. R., and Jensen, M. T.: Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicator, Freshwater Biol., 53, 593–602, 2008.
Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., Wilkins, M. J., Wrighton, K. C., Williams, K. H., and Banfield, J. F.: Unusual biology across a group comprising more than 15 % of domain Bacteria, Nature, 523, 208–211, 2015.
Brune, A., Frenzel, P., and Cypionka, H.: Life at the oxic–anoxic interface: microbial activities and adaptations, Fems Microbiol. Rev., 24, 691–710, 2000.
Bürgi, H. and Stadelmann, P.: Change of phytoplankton composition and biodiversity in Lake Sempach before and during restoration, Hydrobiologia, 469, 33–48, 2002.
Bussmann, I.: Methane release through resuspension of littoral sediment, Biogeochemistry, 74, 283–302, 2005.
Chapman, P. M., Farrell, M. A., and Brinkhurst, R. O.: Relative Tolerances of Selected Aquatic Oligochaetes to Individual Pollutants and Environmental-Factors, Aquat. Toxicol., 2, 47–67, https://doi.org/10.1016/0166-445x(82)90005-4, 1982.
Claesson, M. J., O'Sullivan, O., Wang, Q., Nikkila, J., Marchesi, J. R., Smidt, H., de Vos, W. M., Ross, R. P., and O'Toole, P. W.: Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine, PloS ONE, 4, e6669, https://doi.org/10.1371/journal.pone.0006669, 2009.
Correa, C. C. and Ballard, J.: Wolbachia associations with insects: winning or losing against a master manipulator, Front. Ecol. Evol., 3, 153, https://doi.org/10.3389/fevo.2015.00153, 2016.
Davis, R. B.: Tubificids alter profiles of redox potential and pH in profundal lake sediment 1, Limnol. Oceanogr., 19, 342–346, 1974.
de Valk, S., Khadem, A. F., Foreman, C. M., van Lier, J. B., and de Kreuk, M. K.: Physical and biochemical changes in sludge upon Tubifex tubifex predation, Environ. Technol., 38, 1524–1538, 2017.
Dean, W. E. and Gorham, E.: Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands, Geology, 26, 535–538, 1998.
Deines, P. and Grey, J.: Site-specific methane production and subsequent midge mediation within Esthwaite Water, UK, Arch. Hydrobiol., 167, 317–334, https://doi.org/10.1127/0003-9136/2006/0167-0317, 2006.
Deines, P., Bodelier, P. L. E., and Eller, G.: Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems, Environ. Microbiol., 9, 1126–1134, https://doi.org/10.1111/j.1462-2920.2006.01235.x, 2007a.
Deines, P., Grey, J., Richnow, H. H., and Eller, G.: Linking larval chironomids to methane: seasonal variation of the microbial methane cycle and chironomid delta C-13, Aquat. Microb. Ecol., 46, 273–282, https://doi.org/10.3354/ame046273, 2007b.
DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A., and Prairie, Y. T.: Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity, Limnol Oceanogr, 61, S62-S77, https://doi.org/10.1002/lno.10335, 2016.
Edgar, R. C. J. B.: UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing, bioRxiv, https://doi.org/10.1101/081257, 2016.
Einsele, G., Yan, J. P., and Hinderer, M.: Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget, Global Planet. Change, 30, 167–195, https://doi.org/10.1016/S0921-8181(01)00105-9, 2001.
Eller, G., Deines, P., Grey, J., Richnow, H. H., and Kruger, M.: Methane
cycling in lake sediments and its influence on chironomid larval partial
derivative C-13, Fems Microbiol. Ecol., 54, 339–350,
https://doi.org/10.1016/j.femsec.2005.04.006, 2005.
Eller, G., Deines, P., and Kruger, M.: Possible sources of methane-derived carbon for chironomid larvae, Aquat. Microbiol. Ecol., 46, 283–293, https://doi.org/10.3354/ame046283, 2007.
Falls, E. Q.: A survey of fresh-water oligochaeta and their commensal ciliates from the Richmond, Virginia area, Master's Theses, Paper 343, 1972.
Figueiredo-Barros, M. P., Caliman, A., Leal, J. J., Bozelli, R. L., Farjalla, V. F., and Esteves, F. A.: Benthic bioturbator enhances CH4 fluxes among aquatic compartments and atmosphere in experimental microcosms, Can. J. Fish. Aquat. Sci., 66, 1649–1657, 2009.
Fisher, J., Lick, W., McCall, P., and Robbins, J.: Vertical mixing of lake sediments by tubificid oligochaetes, J. Geophys. Res.-Oceans, 85, 3997–4006, 1980.
Fiskal, A., Deng, L., Michel, A., Eickenbusch, P., Han, X., Lagostina, L., Zhu, R., Sander, M., Schroth, M. H., Bernasconi, S. M., Dubois, N., and Lever, M. A.: Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes, Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019, 2019.
Fry, B. and Sherr, E. B.: δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems, in: Stable isotopes in ecological research, edited by: Rundel, P. W., Ehleringer, J. R., and Nagy K. A., vol 68, Springer, New York, NY, https://doi.org/10.1007/978-1-4612-3498-2_12, 1989.
Gautreau, E., Volatier, L., Nogaro, G., Gouze, E., and Mermillod-Blondin, F.: The influence of bioturbation and water column oxygenation on nutrient recycling in reservoir sediments, Hydrobiologia, 847, 1027–1040, https://doi.org/10.1007/s10750-019-04166-0, 2020.
Gentzel, T., Hershey, A. E., Rublee, P. A., and Whalen, S. C.: Net sediment production of methane, distribution of methanogens and methane-oxidizing bacteria, and utilization of methane-derived carbon in an arctic lake, Inland Waters, 2, 77–88, https://doi.org/10.5268/Iw-2.2.416, 2012.
Grey, J., Kelly, A., Ward, S., Sommerwerk, N., and Jones, R. I.: Seasonal changes in the stable isotope values of lake-dwelling chironomid larvae in relation to feeding and life cycle variability, Freshwater Biol., 49, 681–689, https://doi.org/10.1111/j.1365-2427.2004.01217.x, 2004.
Grimont, F. and Grimont, P.: The genus Serratia, in: Dworkin, M. et al., The Prokaryotes, Vol. 6, Springer Science and Business Media, New York, NY, 2006.
Hamburger, K., Lindegaard, C., Dall, P. C., and Nilson, I.: Strategies of respiration and glycogen metabolism in oligochaetes and chironomids from habitats exposed to different oxygen deficits, SIL Proceedings, 1922–2010, 26, 2070–2075, https://doi.org/10.1080/03680770.1995.11901107, 1998.
Han, X. G., Schubert, C. J., Fiskal, A., Dubois, N., and Lever, M. A.: Eutrophication as a driver of microbial community structure in lake sediments, Environ. Microbiol., 22, 3446–3462, 2020.
Heathcote, A. J. and Downing, J. A.: Impacts of Eutrophication on Carbon Burial in Freshwater Lakes in an Intensively Agricultural Landscape, Ecosystems, 15, 60–70, https://doi.org/10.1007/s10021-011-9488-9, 2012.
Hershey, A. E., Beaty, S., Fortino, K., Kelly, S., Keyse, M., Luecke, C., O'Brien, W. J., and Whalen, S. C.: Stable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic production, Limnol. Oceanogr., 51, 177–188, https://doi.org/10.4319/lo.2006.51.1.0177, 2006.
Hipp, E., Mustafa, T., and Hoffmann, K.: Integumentary uptake of volatile fatty acids by the freshwater oligochaete Tubifex, Naturwissenschaften, 72, 148–149, 1985.
Hipp, E., Bickel, U., Mustafa, T., and Hoffmann, K. H.: Integumentary uptake of acetate and propionate (VFA) by Tubifex sp, a freshwater oligochaete. I I. Role of VFA as nutritional resources and effects of anaerobiosis, J. Exp. Zool., 240, 299–308, 1986.
Holgerson, M. A. and Raymond, P. A.: Large contribution to inland water CO2 and CH4 emissions from very small ponds, Nat. Geosci., 9, 222-U150, https://doi.org/10.1038/Ngeo2654, 2016.
Holker, F., Vanni, M. J., Kuiper, J. J., Meile, C., Grossart, H. P., Stief, P., Adrian, R., Lorke, A., Dellwig, O., Brand, A., Hupfer, M., Mooij, W. M., Nutzmann, G., and Lewandowski, J.: Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems, Ecol. Monogr., 85, 333–351, https://doi.org/10.1890/14-1160.1, 2015.
Hollander, D. J., Mckenzie, J. A., and Lotenhaven, H.: A 200-Year Sedimentary Record of Progressive Eutrophication in Lake Greifen (Switzerland) – Implications for the Origin of Organic-Carbon-Rich Sediments, Geology, 20, 825–828, https://doi.org/10.1130/0091-7613(1992)020<0825:Aysrop>2.3.Co;2, 1992.
Hupfer, M. and Lewandowski, J.: Oxygen Controls the Phosphorus Release from Lake Sediments – a Long-Lasting Paradigm in Limnology, Int. Rev. Hydrobiol., 93, 415–432, https://doi.org/10.1002/iroh.200711054, 2008.
Hupfer, M., Jordan, S., Herzog, C., Ebeling, C., Ladwig, R., Rothe, M., and Lewandowski, J.: Chironomid larvae enhance phosphorus burial in lake sediments: Insights from long-term and short-term experiments, Sci. Total Environ., 663, 254–264, https://doi.org/10.1016/j.scitotenv.2019.01.274, 2019.
Huys, G.: The Family Aeromonadaceae, The Prokaryotes-Gammaproteobacteria Springer-Verlag, Berlin Heidelberg, 27–57, 2014.
Jeppesen, E., Søndergaard, M., Sortkjær, O., Mortensen, E., and Kristensen, P.: Interactions between phytoplankton, zooplankton and fish in a shallow, hypertrophic lake: a study of phytoplankton collapses in Lake Søbygård, Denmark, in: Trophic Relationships in Inland Waters, Springer, Dordrecht, 149–164, 1990.
Jeppesen, E., Jensen, J. P., Sondergaard, M., Lauridsen, T., Moller, F. P., and Sandby, K.: Changes in nitrogen retention in shallow eutrophic lakes following a decline in density of cyprinids, Arch. Hydrobiol., 142, 129–151, 1998.
Jeppesen, E., Jensen, J. P., Søndergaard, M., and Lauridsen, T.: Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity, in: Shallow lakes' 98, Springer, Dordrecht, 217–231, 1999.
Jones, R. I., Carter, C. E., Kelly, A., Ward, S., Kelly, D. J., and Grey, J.: Widespread Contribution of Methane-Cycle Bacteria to the Diets of Lake Profundal Chironomid Larvae, Ecology, 89, 857–864, https://doi.org/10.1890/06-2010.1, 2008.
Jones, R. I. and Grey, J.: Biogenic methane in freshwater food webs, Freshwater Biol., 56, 213–229, https://doi.org/10.1111/j.1365-2427.2010.02494.x, 2011.
Kajan, R. and Frenzel, P.: The effect of chironomid larvae on production, oxidation and fluxes of methane in a flooded rice soil, Fems Microbiol. Ecology, 28, 121–129, 1999.
Kankaala, P., Taipale, S., Grey, J., Sonninen, E., Arvola, L., and Jones, R. I.: Experimental delta C-13 evidence for a contribution of methane to pelagic food webs in lakes, Limnol. Oceanogr., 51, 2821–2827, https://doi.org/10.4319/lo.2006.51.6.2821, 2006.
Kankaala, P., Taipale, S., Nykanen, H., and Jones, R. I.: Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake, J. Geophys. Res.-Biogeo., 112, Artn G02003 https://doi.org/10.1029/2006jg000336, 2007.
Katsev, S., Tsandev, I., L'Heureux, I., and Rancourt, D. G.: Factors controlling long-term phosphorus efflux from lake sediments: Exploratory reactive-transport modeling, Chem. Geol., 234, 127–147, https://doi.org/10.1016/j.chemgeo.2006.05.001, 2006.
Kelly, A., Jones, R., and Grey, J.: Stable isotope analysis provides fresh insights into dietary separation between Chironomus anthracinus and C. plumosus, J. N. Am. Benthol. Soc., 23, 287–296, 2004.
Kiyashko, S. I., Narita, T., and Wada, E.: Contribution of methanotrophs to freshwater macroinvertebrates: evidence from stable isotope ratios, Aquat. Microb. Ecol., 24, 203–207, https://doi.org/10.3354/ame024203, 2001.
Krezoski, J. R., Mozley, S. C., and Rohhins, J. A.: Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron 1, Limnol. Oceanogr., 23, 1011–1016, 1978.
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C. O., and Banta, G. T.: What is bioturbation? The need for a precise definition for fauna in aquatic sciences, Mar. Ecol. Prog. Ser., 446, 285–302, 2012.
Kruger, M., Eller, G., Conrad, R., and Frenzel, P.: Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors, Global Change Biol., 8, 265–280, https://doi.org/10.1046/j.1365-2486.2002.00476.x, 2002.
Lagauzère, S., Pischedda, L., Cuny, P., Gilbert, F., Stora, G., and Bonzom, J.-M.: Influence of Chironomus riparius (Diptera, Chironomidae) and Tubifex tubifex (Annelida, Oligochaeta) on oxygen uptake by sediments. Consequences of uranium contamination, Environ. Pollut., 157, 1234–1242, 2009.
Lang, C.: Eutrophication of Lake Geneva indicated by the oligochaete communities of the profundal, Hydrobiologia, 126, 237–243, 1985.
Lang, C.: Quantitative relationships between oligochaete communities and phosphorus concentrations in lakes, Freshwater Biol., 24, 327–334, 1990.
Lang, S. Q., Bernasconi, S. M., and Früh-Green, G. L.: Stable isotope analysis of organic carbon in small (µg C) samples and dissolved organic matter using a GasBench preparation device, Rapid Commun. Mass. Sp., 26, 9–16, 2012.
Lever, M. A., Torti, A., Eickenbusch, P., Michaud, A. B., Santl-Temkiv, T., and Jorgensen, B. B.: A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types, Front. Microbiol., 6, UNSP 476 https://doi.org/10.3389/fmicb.2015.00476, 2015.
Lewandowski, J., Laskov, C., and Hupfer, M.: The relationship between Chironomus plumosus burrows and the spatial distribution of pore-water phosphate, iron and ammonium in lake sediments, Freshwater Biol., 52, 331–343, https://doi.org/10.1111/j.1365-2427.2006.01702.x, 2007.
Maerki, M., Muller, B., Dinkel, C., and Wehrli, B.: Mineralization pathways in lake sediments with different oxygen and organic carbon supply, Limnol. Oceanogr., 54, 428–438, https://doi.org/10.4319/lo.2009.54.2.0428, 2009.
Magoč, T. and Salzberg, S. L. J. B.: FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 27, 2957–2963, 2011.
Martin, P., Martinez-Ansemil, E., Pinder, A., Timm, T., and Wetzel, M. J.: Global diversity of oligochaetous clitellates (”Oligochaeta”; Clitellata) in freshwater, Hydrobiologia, 595, 117–127, https://doi.org/10.1007/s10750-007-9009-1, 2008.
Matisoff, G., Wang, X. S., and McCall, P. L.: Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex, J. Great Lakes Res., 25, 205–219, https://doi.org/10.1016/S0380-1330(99)70729-X, 1999.
McCall, P. L. and Tevesz, M. J. S.: The Effects of Benthos on Physical Properties of Freshwater Sediments, in: Animal-Sediment Relations: The Biogenic Alteration of Sediments, edited by: McCall, P. L. and Tevesz, M. J. S., Topics in Geobiology, Springer US, Boston, MA, 105–176, 1982.
Mendonça, R., Müller, R. A., Clow, D., Verpoorter, C., Raymond, P., Tranvik, L. J., and Sobek, S.: Organic carbon burial in global lakes and reservoirs, Nat. Commun., 8, 1–7, 2017.
Mermillod-Blondin, F., Nogaro, G., Datry, T., Malard, F., and Gibert, J.: Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments?, Environ. Pollut., 134, 57–69, https://doi.org/10.1016/j.envpol.2004.07.024, 2005.
Meysman, F. J. R., Middelburg, J. J., and Heip, C. H. R.: Bioturbation: a fresh look at Darwin's last idea, Trends Ecol. Evol., 21, 688–695, https://doi.org/10.1016/j.tree.2006.08.002, 2006.
Milbrink, G.: An improved environmental index based on the relative abundance of oligochaete species, Hydrobiologia, 102, 89–97, 1983.
Mousavi, S. K.: Boreal chironomid communities and their relations to environmental factors – the impact of lake depth, size and acidity, Boreal Environ. Res., 7, 63–75, 2002.
Nelson, W. C. and Stegen, J. C.: The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle, Front. Microbiol., 6, 713, https://doi.org/10.3389/fmicb.2015.00713, 2015.
Nicacio, G. and Juen, L.: Chironomids as indicators in freshwater ecosystems: an assessment of the literature, Insect Conserv. Diver., 8, 393–403, 2015.
Olsen, I.: The Family Fusobacteriaceae, in: The Prokaryotes: Firmicutes and Tenericutes, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Springer, Berlin, Heidelberg, 109–132, 2014.
Panis, L. I., Goddeeris, B., and Verheyen, R.: On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera), Hydrobiologia, 318, 61–67, 1996.
Pelegri, S. P., Nielsen, L. P., and Blackburn, T. H.: Denitrification in Estuarine Sediment Stimulated by the Irrigation Activity of the Amphipod Corophium-Volutator, Mar. Ecol. Prog. Ser., 105, 285–290, https://doi.org/10.3354/meps105285, 1994.
Pinder, L.: The habitats of chironomid larvae, in: The Chironomidae, edited by: Armitage, P. D., Cranston, P. S., and Pinder, L. C. V., Springer, Dordrecht, 107–135, https://doi.org/10.1007/978-94-011-0715-0_6, 1995.
Plante, C. J., Jumars, P. A., and Baross, J. A.: Rapid bacterial growth in the hindgut of a marine deposit feeder, Microb. Ecol., 18, 29–44, 1989.
Premke, K., Karlsson, J., Steger, K., Gudasz, C., von Wachenfeldt, E., and Tranvik, L. J.: Stable isotope analysis of benthic fauna and their food sources in boreal lakes, J. N. Am. Benthol. Soc., 29, 1339–1348, https://doi.org/10.1899/10-002.1, 2010.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Durr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013.
Reuss, N. S., Hamerlik, L., Velle, G., Michelsen, A., Pedersen, O., and Brodersen, K. P.: Stable isotopes reveal that chironomids occupy several trophic levels within West Greenland lakes: Implications for food web studies, Limnol. Oceanogr., 58, 1023–1034, https://doi.org/10.4319/lo.2013.58.3.1023, 2013.
Robbins, J. A., Krezoski, J. R., and Mozley, S.: Radioactivity in sediments of the Great Lakes: post-depositional redistribution by deposit-feeding organisms, Earth Planet. Sc. Lett., 36, 325–333, 1977.
Roskosch, A., Hette, N., Hupfer, M., and Lewandowski, J.: Alteration of Chironomus plumosus ventilation activity and bioirrigation-mediated benthic fluxes by changes in temperature, oxygen concentration, and seasonal variations, Freshw. Sci., 31, 269–281, https://doi.org/10.1899/11-043.1, 2012.
Sabri, A., Leroy, P., Haubruge, E., Hance, T., Frere, I., Destain, J., and Thonart, P.: Isolation, pure culture and characterization of Serratia symbiotica sp. nov., the R-type of secondary endosymbiont of the black bean aphid Aphis fabae, Int. J. Syst. Evol. Micr., 61, 2081–2088, 2011.
Saether, O. A.: Chironomid communities as water quality indicators, Ecography, 2, 65–74, 1979.
Saether, O. A.: The influence of eutrophication on deep lake benthic invertebrate communities, Prog. Water Technol., 12, 161–180,
https://doi.org/10.1016/B978-0-08-026024-2.50014-6, 1980.
Santos, H. A. and Massard, C. L.: The Family Holosporaceae, The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, Springer, Berlin, Heidelberg, 237–246, 2014.
Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., and Jeppesen, E.: Alternative Equilibria in Shallow Lakes, Trends Ecol. Evol., 8, 275–279, https://doi.org/10.1016/0169-5347(93)90254-M, 1993.
Schmieder, R. and Edwards, R. J. B.: Quality control and preprocessing of metagenomic datasets, Bioinformatics, 27, 863–864, 2011.
Sedlmeier, U. A. and Hoffmann, K. H.: Integumentary uptake of short-chain carboxylic acids by two freshwater oligochaetes, Tubifex tubifex and Lumbriculus variegatus: Specificity of uptake and characterization of transport carrier, J. Exp. Zool., 250, 128–134, 1989.
Senderovich, Y., Gershtein, Y., Halewa, E., and Halpern, M.: Vibrio cholerae and Aeromonas: do they share a mutual host?, ISME J., 2, 276–283, 2008.
Seuß, J., Hipp, E., and Hoffmann, K.: Oxygen consumption, glycogen content and the accumulation of metabolites in Tubifex during aerobic-anaerobic shift and under progressing anoxia, Comp. Biochem. Phys. A, 75, 557–562, 1983.
South, A.: Rworldmap: A New R package for Mapping Global Data, R J, 3, 35–43, 2011.
Stackebrandt, E., Lang, E., Cousin, S., Päuker, O., Brambilla, E., Kroppenstedt, R., and Lünsdorf, H.: Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria, Int. J. Syst. Evol. Micr., 57, 639–645, 2007.
Steinsberger, T., Schmid, M., Wüest, A., Schwefel, R., Wehrli, B., and Müller, B.: Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes, Biogeosciences, 14, 3275–3285, https://doi.org/10.5194/bg-14-3275-2017, 2017.
Stief, P., Nazarova, L., and de Beer, D.: Chimney construction by Chironomus riparius larvae in response to hypoxia: microbial implications for freshwater sediments, J. N. Am. Benthol. Soc., 24, 858–871, 2005.
Stief, P., Poulsen, M., Nielsen, L. P., Brix, H., and Schramm, A.: Nitrous oxide emission by aquatic macrofauna, P. Natl. Acad. Sci. USA, 106, 4296–4300, https://doi.org/10.1073/pnas.0808228106, 2009.
Stief, P.: Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications, Biogeosciences, 10, 7829–7846, https://doi.org/10.5194/bg-10-7829-2013, 2013.
Svensson, J. M., Enrich-Prast, A., and Leonardson, L.: Nitrification and denitrification in a eutrophic lake sediment bioturbated by oligochaetes, Aquat. Microb. Ecol., 23, 177–186, 2001.
Tanner, A. and Paster, B. J.: The genus Wolinella, in: The Prokaryotes, Springer, New York, NY, 3512–3523, 1992.
Team, R. C.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012, http://www.R-project.org (last access: 20 February 2018), 2018.
Teixeira, L. and Merquior, V.: The family Moraxellaceae, in: The prokaryotes: Gammaproteobacteria, Springer, Berlin Heidelberg, 443–476, 2014.
Templeton, A. S., Chu, K. H., Alvarez-Cohen, L., and Conrad, M. E.: Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria, Geochim. Cosmochim. Ac., 70, 1739–1752, https://doi.org/10.1016/j.gca.2005.12.002, 2006.
Timm, T.: Tubifex tubifex (Müller, 1774)(Oligochaeta, Tubificidae) in the profundal of Estonian lakes, Int. Rev. Ges. Hydrobio., 81, 589–596, 1996.
Verdonschot, P. F.: Macrofaunal community types in ponds and small lakes (Overijssel, the Netherlands), Hydrobiologia, 232, 111–132, 1992.
Vollenweider, R. and Kerekes, J.: Eutrophication of Waters: Monitoring, Assessment and Control. OECD, Paris, 154, ISBN 92-64-12298-2, 1982.
Wang, Y. and Qian, P.-Y.: Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies, PLoS ONE, 4, e7401, https://doi.org/10.1371/journal.pone.0007401, 2009.
Wexler, H.: The genus Bacteroides, in: The Prokaryotes, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-38954-2_129, 2014.
White, D. S. and Miller, M. F.: Benthic invertebrate activity in lakes: linking present and historical bioturbation patterns, Aquat. Biol., 2, 269–277, https://doi.org/10.3354/ab00056, 2008.
Wrighton, K. C., Thomas, B. C., Sharon, I., Miller, C. S., Castelle, C. J., VerBerkmoes, N. C., Wilkins, M. J., Hettich, R. L., Lipton, M. S., and Williams, K. H.: Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla, Science, 337, 1661–1665, 2012.
Yasuno, N., Shikano, S., Shimada, T., Shindo, K., and Kikuchi, E.: Comparison of the exploitation of methane-derived carbon by tubicolous and non-tubicoloUs chironomid larvae in a temperate eutrophic lake, Limnology, 14, 239–246, 2013.
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely...
Altmetrics
Final-revised paper
Preprint