Articles | Volume 18, issue 22
https://doi.org/10.5194/bg-18-5929-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5929-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
Adam Tomašových
CORRESPONDING AUTHOR
Earth Science Institute, Slovak Academy of Sciences, Bratislava,
84005, Slovakia
Michaela Berensmeier
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Ivo Gallmetzer
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Alexandra Haselmair
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Martin Zuschin
Department of Palaeontology, University of Vienna, Althanstrasse 14,
1090 Vienna, Austria
Related authors
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Jelena Vidović, Rafał Nawrot, Ivo Gallmetzer, Alexandra Haselmair, Adam Tomašových, Michael Stachowitsch, Vlasta Ćosović, and Martin Zuschin
Biogeosciences, 13, 5965–5981, https://doi.org/10.5194/bg-13-5965-2016, https://doi.org/10.5194/bg-13-5965-2016, 2016
Short summary
Short summary
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only activity here was ore mining, releasing high amounts of mercury into its northern part, Panzano Bay. Mercury did not cause changes to microorganisms, as it is not bioavailable. In the 20th century, agriculture caused nutrient enrichment in the bay and increased diversity of microorganisms. Industrial activities increased the concentrations of pollutants, causing only minor changes to microorganisms.
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
D. Langlet, C. Baal, E. Geslin, E. Metzger, M. Zuschin, B. Riedel, N. Risgaard-Petersen, M. Stachowitsch, and F. J. Jorissen
Biogeosciences, 11, 1775–1797, https://doi.org/10.5194/bg-11-1775-2014, https://doi.org/10.5194/bg-11-1775-2014, 2014
B. Riedel, T. Pados, K. Pretterebner, L. Schiemer, A. Steckbauer, A. Haselmair, M. Zuschin, and M. Stachowitsch
Biogeosciences, 11, 1491–1518, https://doi.org/10.5194/bg-11-1491-2014, https://doi.org/10.5194/bg-11-1491-2014, 2014
M. Blasnig, B. Riedel, L. Schiemer, M. Zuschin, and M. Stachowitsch
Biogeosciences, 10, 7647–7659, https://doi.org/10.5194/bg-10-7647-2013, https://doi.org/10.5194/bg-10-7647-2013, 2013
D. Langlet, E. Geslin, C. Baal, E. Metzger, F. Lejzerowicz, B. Riedel, M. Zuschin, J. Pawlowski, M. Stachowitsch, and F. J. Jorissen
Biogeosciences, 10, 7463–7480, https://doi.org/10.5194/bg-10-7463-2013, https://doi.org/10.5194/bg-10-7463-2013, 2013
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
Phytoplankton community disruption caused by latest Cretaceous global warming
The colonization of the oceans by calcifying pelagic algae
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Lena River delta formation during the Holocene
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Northern peatland carbon stocks and dynamics: a review
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Perran L. M. Cook, Miles Jennings, Daryl P. Holland, John Beardall, Christy Briles, Atun Zawadzki, Phuong Doan, Keely Mills, and Peter Gell
Biogeosciences, 13, 3677–3686, https://doi.org/10.5194/bg-13-3677-2016, https://doi.org/10.5194/bg-13-3677-2016, 2016
Short summary
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
K. Michaelian and A. Simeonov
Biogeosciences, 12, 4913–4937, https://doi.org/10.5194/bg-12-4913-2015, https://doi.org/10.5194/bg-12-4913-2015, 2015
Short summary
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Z. C. Yu
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, https://doi.org/10.5194/bg-9-4071-2012, 2012
Cited articles
Ahmerkamp, S., Winter, C., Krämer, K., Beer, D. D., Janssen, F.,
Friedrich, J., Kuypers, M. M., and Holtappels, M.: Regulation of benthic
oxygen fluxes in permeable sediments of the coastal ocean, Limnol.
Oceanogr., 62, 1935–1954, 2017.
Algeo, T. J., Luo, G. M., Song, H. Y., Lyons, T. W., and Canfield, D. E.: Reconstruction of secular variation in seawater sulfate concentrations, Biogeosciences, 12, 2131–2151, https://doi.org/10.5194/bg-12-2131-2015, 2015.
Allen, R. E.: Role of diffusion–precipitation reactions in authigenic
pyritization, Chem. Geol., 182, 461–472, 2002.
Allen, A. P., Kosnik, M. A., and Kaufman, D. S., 2013. Characterizing the
dynamics of amino acid racemization using time-dependent reaction kinetics:
a Bayesian approach to fitting age-calibration models, Quat.
Geochronol., 18, 63–77, 2013.
Aller, R. C.: Carbonate dissolution in nearshore terrigenous muds: the role
of physical and biological reworking, J. Geol., 90, 79–95, 1982.
Aller, R. C.: Bioturbation and remineralization of sedimentary organic
matter: effects of redox oscillation, Chem. Geol., 114, 331–345, 1994.
Aller, R. C. and Cochran, J. K.: The critical role of bioturbation for
particle dynamics, priming potential, and organic C remineralization in
marine sediments: local and basin scales, Front. Earth Sci., 7, 157, https://doi.org/10.3389/feart.2019.00157, 2019.
Aller, R. C., Mackin, J. E., and Cox Jr, R. T.: Diagenesis of Fe and S in
Amazon inner shelf muds: apparent dominance of Fe reduction and implications
for the genesis of ironstones, Cont. Shelf Res., 6, 263–289, 1986.
Allison, P. A.: The role of anoxia in the decay and mineralization of
proteinaceous macro-fossils, Paleobiology, 14, 139–154, 1988.
Alvisi, F.: A simplified approach to evaluate sedimentary organic matter
fluxes and accumulation on the NW Adriatic Shelf (Italy), Chem. Ecol., 25,
119–134, 2009.
Alvisi, F. and Cozzi, S.: Seasonal dynamics and long-term trend of
hypoxia in the coastal zone of Emilia Romagna (NW Adriatic Sea, Italy), Sci.
Total Environ., 541, 1448–1462, 2016.
Alvisi, F., Frignani, M., Brunetti, M., Maugeri, M., Nanni, T., Albertazzi,
S., and Ravaioli, M.: Climate vs. anthropogenic changes in North Adriatic
shelf sediments influenced by freshwater runoff, Clim. Res., 31, 167–179,
2006.
Ambrogi, R., Bedulli, D., and Zurijni, G.: Spatial and temporal patterns in
structure of macrobenthic assemblages. A three-year study in the northern
Adriatic Sea in front of the Po River Delta, Mar. Ecol., 11, 25–41, 1990
Amorosi, A., Centineo, M. C., Dinelli, E., Lucchini, F., and Tateo, F.:
Geochemical and mineralogical variations as indicators of provenance changes
in Late Quaternary deposits of SE Po Plain, Sediment. Geol., 151, 273–292,
2002.
Anderson, E. P., Schiffbauer, J. D., and Xiao, S.: Taphonomic study of
Ediacaran organic-walled fossils confirms the importance of clay minerals
and pyrite in Burgess Shale – type preservation, Geology, 39, 643–646,
2011.
Andersson, J. H., Middelburg, J. J., and Soetaert, K.: Identifiability and
uncertainty analysis of bio-irrigation rates, J. Mar. Res., 64, 407–429,
2006.
Arcon, I., Ogrinc, N., Kodre, A., and Faganeli, J.: EXAFS and XANES
characterization of sedimentary iron in the Gulf of Trieste (N.
Adriatic), J. Synchrotron Radiat., 6, 659–660, 1999.
Barbanti, A., Bergamini, M. C., Frascari, F., Miserocchi, S., Ratta, M., and
Rosso, G.: Diagenetic processes and nutrient fluxes at the sediment-water
interface, Northern Adriatic Sea, Italy, Mar. Freshwater Res., 46, 55–67,
1999.
Barmawidjaja, D. M., Van der Zwaan, G. J., Jorissen, F. J., and Puskaric, S.: 150 years of
eutrophication in the northern Adriatic Sea: evidence from a benthic foraminiferal record, Mar.
Geol., 122, 367–384, 1995.
Baucon, A., Bednarz, M., Dufour, S., Felletti, F., Malgesini, G., de
Carvalho, C. N., Niklas, K. J., Wehrmann, A., Batstone, R., Bernardini, F.,
and Briguglio, A.: Ethology of the trace fossil Chondrites: form, function and
environment, Earth-Sci. Rev., 202, 102989, https://doi.org/10.1016/j.earscirev.2019.102989, 2020.
Beam, J. P., Scott, J. J., McAllister, S. M., Chan, C. S., McManus, J.,
Meysman, F. J., and Emerson, D.: Biological rejuvenation of iron
oxides in bioturbated marine sediments, ISME J., 12, 1389–1394, 2018.
Bentley, S. J. and Nittrouer, C. A.: Physical and biological influences on
the formation of sedimentary fabric in an oxygen-restricted depositional
environment; Eckernforde Bay, southwestern Baltic Sea, Palaios, 14, 585–600,
1999.
Berner, R. A.: Migration of iron and sulfur within anaerobic sediments
during early diagenesis, Am. J. Sci., 267, 19–42, 1969.
Berner, R. A.: Sedimentary pyrite formation: an update, Geochim. Cosmochim.
Ac., 48, 605–615, 1984.
Berner, R. A. and Raiswell, R.: Burial of organic carbon and pyrite sulfur
in sediments over Phanerozoic time: a new theory, Geochim. Cosmochim.
Ac., 47, 855–862, 1983.
Berner, R. A. and Westrich, J. T.: Bioturbation and the early diagenesis of
carbon and sulfur, Am. J. Sci., 285, 193–206, 1985.
Bertics, V. J. and Ziebis, W.: Bioturbation and the role of microniches for
sulfate reduction in coastal marine sediments, Environ. Microbiol., 12,
3022–3034, 2010.
Best, M. M. and Kidwell, S. M.: Bivalve taphonomy in tropical mixed
siliciclastic-carbonate settings, I. Environmental variation in shell
condition, Paleobiology, 26, 80–102, 2000.
Best, M. M., Ku, T. C., Kidwell, S. M., and Walter, L. M.: Carbonate
preservation in shallow marine environments: unexpected role of tropical
siliciclastics, J. Geol., 115, 437–456, 2007.
Bhattacharya, J. P., Howell, C. D., MacEachern, J. A., and Walsh, J. P.:
Bioturbation, sedimentation rates, and preservation of flood events in
deltas, Palaeogeogr. Palaeocl., 560, 110049, https://doi.org/10.1016/j.palaeo.2020.110049, 2020.
Bjerreskov, M.: Pyrite in Silurian graptolites from Bornholm,
Denmark, Lethaia, 24, 351–361, 1991.
Boekschoten, G. J.: Shell borings of sessile epibiontic organisms as
palaeoecological guides (with examples from the Dutch coast), Palaeogeogr.
Palaeocl., 2, 333–379, 1966.
Bond, D. P. and Wignall, P. B.: Pyrite framboid study of marine
Permian–Triassic boundary sections: a complex anoxic event and its
relationship to contemporaneous mass extinction, Geol. Soc. Am. Bull., 122,
1265–1279, 2010.
Boyle, R. A., Dahl, T. W., Dale, A. W., Shields-Zhou, G. A., Zhu, M. Y.,
Brasier, M. D., Canfield, D. E., and Lenton, T. M.: Stabilization of the
coupled oxygen and phosphorus cycles by the evolution of bioturbation, Nat.
Geosci., 7, 671–676, 2014.
Borja, A., Franco, J., and Perez, V.: A marine biotic index to establish the
ecological quality of soft-bottom benthos within European estuarine and
coastal environments, Mar. Pollut. Bull., 40, 1100–1114, 2000.
Borja, Á., Dauer, D. M., Elliott, M., and Simenstad, C. A.: Medium-and
long-term recovery of estuarine and coastal ecosystems: patterns, rates and
restoration effectiveness, Estuar. Coast., 33, 1249–1260, 2010.
Boldrin, A., Carniel, S., Giani, M., Marini, M., Aubry, F. B., Campanelli,
A., Grilli, F., and Russo, A.: Effects of bora wind on physical and
biogeochemical properties of stratified waters in the northern Adriatic, J.
Geophys. Res.-Ocean., 114, C08S92, https://doi.org/10.1029/2008JC004837, 2009.
Borkow, P. S. and Babcock, L. E.: Turning pyrite concretions outside-in:
role of biofilms in pyritization of fossils, Sedim. Record, 1, 4–7, 2003.
Brand, U. and Morrison, J. O.: Diagenesis and pyritization of crinoid
ossicles, Can. J. Earth Sci., 24, 2486–2498, 1987.
Brett, C. E., Dick V. B., and Baird, G. C: Comparative taphonomy and
paleoecology of Middle Devonian dark gray and black shale facies from
western New York, edited by: Landing, E. and Brett, C. E., Dynamic stratigraphy and
depositional environments of the Hamilton Group (Middle Devonian) in New
York State, Part II, New York State Museum/Geological Survey, 5–36, 1991.
Brett, C. E., Baird, G. C., and Speyer, S. E.: Fossil lagerstatten:
Stratigraphic record of paleontological and taphonomic events, in:
Paleontological events: Stratigraphic, ecological, and evolutionary
implications, edited by: Brett, C. E. and Baird, G. C., Columbia University
Press, New York, 3–40, 1997.
Brett, C. E., Zambito IV, J. J., Hunda, B. R., and Schindler, E.:
Mid-Paleozoic trilobite Lagerstätten: Models of diagenetically enhanced
obrution deposits, Palaios, 27, 326–345, 2012a.
Brett, C. E., Zambito IV, J. J., Schindler, E., and Becker, R. T.:
Diagenetically-enhanced trilobite obrution deposits in concretionary
limestones: The paradox of “rhythmic events beds”, Palaeogeogr.
Palaeocl., 367, 30–43, 2012b.
Briggs, D. E. G., Bottrell, S. H., and Raiswell, R.: Pyritization of
soft-bodied fossils: Beecher's Trilobite Bed, Upper Ordovician, New York, Geology, 19, 1221–1224, 1991.
Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D., and Bartels,
C.: Controls on the pyritization of exceptionally preserved fossils: an
analysis of the Lower Devonian Hunsrück Slate of Germany, Am. J. Sci.,
296, 633–663, 1996.
Bromley, R. G. and Ekdale, A. A.: Composite ichnofabrics and tiering of
burrows, Geol. Mag., 123, 59–65, 1986.
Brown, P. R.: Pyritization in some molluscan shells, J. Sediment. Res., 36,
1149–1152, 1996.
Brush, M. J., Giani, M., Totti, C., Testa, J. M., Faganeli, J., Ogrinc, N.,
Kemp, W. M., and Umani, S.F.. Eutrophication, Harmful Algae, Oxygen
Depletion, and Acidification. Coastal Ecosystems in Transition: A
Comparative Analysis of the Northern Adriatic and Chesapeake Bay, 75–104,
2021.
Borger, E. D., Tiano, J., Braeckman, U., Ysebaert, T., and Soetaert, K.: Biological and biogeochemical methods for estimating bioirrigation: a case study in the Oosterschelde estuary, Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, 2020.
Buatois, L. A. and Mángano, M. G.: The déjà vu effect:
Recurrent patterns in exploitation of ecospace, establishment of the mixed
layer, and distribution of matgrounds, Geology, 39, 1163–1166, 2011.
Buatois, L. A., Mángano, M. G., Minter, N. J., Zhou, K., Wisshak, M.,
Wilson, M. A., and Olea, R. A.: Quantifying ecospace utilization and
ecosystem engineering during the early Phanerozoic – The role of
bioturbation and bioerosion, Sci. Adv., 6, eabb0618, https://doi.org/10.1126/sciadv.abb0618, 2020.
Cai, W. J., Chen, F., Powell, E. N., Walker, S. E., Parsons-Hubbard, K. M.,
Staff, G. M., Wang, Y., Ashton-Alcox, K. A., Callender, W. R., and Brett, C.
E.: Preferential dissolution of carbonate shells driven by petroleum seep
activity in the Gulf of Mexico, Earth Planet. Sc. Lett., 248, 227–243, 2006.
Cai, Y., Schiffbauer, J. D., Hua, H., and, Xiao, S.: Preservational modes in
the Ediacaran Gaojiashan Lagerstätte: pyritization,
aluminosilicification, and carbonaceous compression, Palaeogeogr.
Palaeocl., 326–328, 109–117, 2012.
Canfield, D. E. and Farquhar, J.: Animal evolution, bioturbation, and the
sulfate concentration of the oceans, P. Natl. Acad. Sci. USA, 106,
8123–8127, 2009.
Canfield, D. E., Thamdrup, B., and Hansen, J. W.: The anaerobic degradation
of organic matter in Danish coastal sediments: iron reduction, manganese
reduction, and sulfate reduction, Geochim. Cosmochim. Ac., 57, 3867–3883,
1993.
Carstensen, J., Conley, D.J., Bonsdorff, E., Gustafsson, B. G., Hietanen,
S., Janas, U., Jilbert, T., Maximov, A., Norkko, A., Norkko, J., and Reed,
D. C.: Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and
management, AMBIO, 43, 26–36, 2014.
Cermelj, B., Ogrinc, N., and Faganeli, J.: Anoxic mineralization of biogenic
debris in near-shore marine sediments (Gulf of Trieste, northern
Adriatic), Sci. Total. Environ., 266, 143–152, 2001.
Chiantore, M., Bedulli, D., Cattaneo-Vietti, R., Schiaparelli, S., and
Albertelli, G: Long-term changes in the Mollusc–Echinoderm assemblages in
the north and coastal middle Adriatic Sea, Atti Assoc. It. Oceanol. Limnol.,
14, 63–75, 2001.
Christensen, A. M.: Feeding biology of the sea star Astropecten irregularis Pennant, Ophelia, 8,
1–134, 1970.
Christensen, B., Vedel, A., and Kristensen, E.: Carbon and nitrogen
fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and
non-suspension-feeding (N. virens) polychaetes, Mar. Ecol. Prog. Ser., 192, 203–217, 2000.
Cozzi, S., Ivančić, I., Catalano, G., Djakovac, T., and Degobbis,
D.: Dynamics of the oceanographic properties during mucilage appearance in
the Northern Adriatic Sea: analysis of the 1997 event in comparison to
earlier events, J. Marine Syst., 50, 223–241, 2004.
Davies, D. J., Powell, E. N., and Stanton Jr, R. J.: Relative rates of shell
dissolution and net sediment accumulation-a commentary: can shell beds form
by the gradual accumulation of biogenic debris on the sea
floor?, Lethaia, 22, 207–212, 1989.
Degobbis, D., Precali, R., Ivancic, I., Smodlaka, N., Fuks, D., and Kveder,
S.: Long-term changes in the northern Adriatic ecosystem related to
anthropogenic eutrophication, Int. J. Environ. Pollut., 13, 495–533, 2000.
Dhakar, S. P. and Burdige, D. J.: A coupled, non-linear, steady state
model for early diagenetic processes in pelagic sediments, Am. J. Sci., 296,
296–330, 1996.
Djakovac, T., Degobbis, D., Supić, N., and Precali, R.: Marked reduction
of eutrophication pressure in the northeastern Adriatic in the period
2000–2009, Estuar, Coast. Shelf Sci., 115, 25–32, 2012.
Djakovac, T., Supić, N., Aubry, F. B., Degobbis, D., and Giani, M.:
Mechanisms of hypoxia frequency changes in the northern Adriatic Sea during
the period 1972–2012, J. Marine Syst., 141, 179–189, 2015.
Dolenec, T., Faganeli, J., and Pirc, S.: Major, minor and trace elements in
surficial sediments from the open Adriatic Sea: a regional geochemical
study, Geol. Croat., 51, 59–73, 1998.
Droser, M. L. and Bottjer, D. J.: Trends in depth and extent of
bioturbation in Cambrian carbonate marine environments, western United
States, Geology, 16, 233–236, 1988.
Droser, M. L., Jensen, S., and Gehling, J. G.: Trace fossils and substrates
of the terminal Proterozoic–Cambrian transition: implications for the
record of early bilaterians and sediment mixing, P. Natl. Acad. Sci.
USA, 99, 12572–12576, 2002.
Duarte, C. M., Borja, A., Carstensen, J., Elliott, M., Krause-Jensen, D.,
and Marbà, N.: Paradigms in the recovery of estuarine and coastal
ecosystems, Estuar. Coast., 38, 1202–1212, 2015.
Elliott, M., Burdon, D., Hemingway, K. L., and Apitz, S. E.: Estuarine,
coastal and marine ecosystem restoration: confusing management and
science – a revision of concepts, Estuar. Coast. Shelf S., 74, 349–366, 2007.
Emery, K. O. and Rittenberg, S. C.: Early diagenesis of California basin
sediments in relation to origin of oil, AAPG Bull., 36, 735–806, 1952.
Epping, E. H. and Helder, W.: Oxygen budgets calculated fromin situ oxygen
microprofiles for Northern Adriatic sediments, Cont. Shelf Res., 17,
1737–1764, 1997.
Faganeli, J. and Ogrinc, N.: Oxic–anoxic transition of benthic fluxes from
the coastal marine environment (Gulf of Trieste, northern Adriatic
Sea), Mar. Freshwater Res., 60, 700–711, 2009.
Faganeli, J., Avčin, A., Fanuko, N., Malej, A., Turk, V., Tušnik,
P., Vrišer, B., and Vukovič, A.: Bottom layer anoxia in the central
part of the Gulf of Trieste in the late summer of 1983, Mar. Pollut.
Bull., 16, 75–78, 1985.
Faganeli, J., Planinc, R., Smodiš, B., Stegnar, P., and Ogorelec, B.:
Marine geology of the Gulf of Trieste (northern Adriatic): geochemical
aspects, Mar. Geol., 99, 93–108, 1991.
Faganeli, J., Pezdic, J., Ogorelec, B., Misic, M., and Najdek, M.: The
origin of sedimentary organic matter in the Adriatic, Cont. Shelf Res., 14,
365–384, 1994.
Faresi, L., Bettoso, N., and Aleffi, I. F.: Vertical distribution of soft
bottom macrozoobenthos in the Gulf of Trieste (Northern Adriatic Sea), Ann.
Ser. Hist. Natur., 22, 123–132, 2012.
Farrell, Ú. C., Martin, M. J., Hagadorn, J. W., Whiteley, T., and
Briggs, D. E.: Beyond Beecher's Trilobite Bed: Widespread pyritization of
soft tissues in the Late Ordovician Taconic foreland basin, Geology, 37,
907–910, 2009.
Fedra, K., Ölscher, E. M., Scherübel, C., Stachowitsch, M., and
Wurzian, R. S.: On the ecology of a North Adriatic benthic community:
distribution, standing crop and composition of the macrobenthos, Mar.
Biol., 38, 129–145, 1976.
Fernández-López, S. R., Duarte, L. V., and Henriques, M. H. P.:
Ammonites from lumpy limestones (Lower Pliensbachian, Portugal). Taphonomic
analysis and palaeoenvironmental implications, Rev. Soc. Geol.
España, 13, 3–15, 2000.
Fisher, I. S. J.: Pyrite replacement of mollusc shells from the Lower Oxford
Clay (Jurassic) of England, Sedimentology, 33, 575–585, 1986.
Fisher, I. S. J. and Hudson, J. D.: Pyrite formation in Jurassic shales of
contrasting biofacies, Geol. Soc. Spec. Publ., 26, 69–78, 1987.
Frignani, M. and Langone, L.: Accumulation rates and 137Cs
distribution in sediments off the Po River delta and the Emilia-Romagna
coast (northwestern Adriatic Sea, Italy), Cont. Shelf Res., 11, 525–542,
1991.
Frignani, M., Langone, L., Ravaioli, M., Sorgente, D., Alvisi, F., and
Albertazzi, S.: Fine-sediment mass balance in the western Adriatic
continental shelf over a century time scale, Mar. Geol., 222, 113–133,
2005.
Gabbott, S. E., Xian-Guang, H., Norry, M. J., and Siveter, D. J.:
Preservation of Early Cambrian animals of the Chengjiang biota, Geology, 32,
901–904, 2004.
Gaines, R. R., Briggs, D. E., and Yuanlong, Z.: Cambrian Burgess Shale–type
deposits share a common mode of fossilization, Geology, 36, 755–758, 2008.
Gallmetzer, I., Haselmair, A., Stachowitsch, M., and Zuschin, M.: An
innovative piston corer for large-volume sediment samples, Limnol. Oceanogr.
Method., 14, 698–717, 2016.
Gallmetzer, I., Haselmair, A., Tomašových, A., Stachowitsch, M., and
Zuschin, M.: Responses of molluscan communities to centuries of human impact
in the northern Adriatic Sea, PLoS One, 12, e0180820, https://doi.org/10.1371/journal.pone.0180820, 2017.
Gehling, J. G.: Microbial mats in terminal Proterozoic siliciclastics;
Ediacaran death masks, Palaios, 14, 40–57, 1999.
Germano, J. D., Valente, R. M., Carey, D. A., and Solan, M.: The use of
Sediment Profile Imaging (SPI) for environmental impact assessments and
monitoring studies: lessons learned from the past four decades, Oceanogr. Mar. Biol. An Ann. Rev., 49, 235–298, 2011.
Gerwing, T. G., Cox, K., Gerwing, A. M. A., Carr-Harris, C. N., Dudas, S.
E., and Juanes, F.: Depth to the apparent redox potential discontinuity
(aRPD) as a parameter of interest in marine benthic habitat quality
models, Int. J. Sediment. Res., 33, 149–156, 2018.
Giani, M., Savelli, F., Berto, D., Zangrando, V., Ćosović, B., and
Vojvodić, V.: Temporal dynamics of dissolved and particulate organic
carbon in the northern Adriatic Sea in relation to the mucilage events, Sci.
Total. Environ., 353, 126–138, 2005.
Gibson, B. M., Schiffbauer, J. D., and Darroch, S. A.: Ediacaran-style decay
experiments using mollusks and sea anemones, Palaios, 33, 185–203, 2018.
Gingras, M. K., Pemberton, S. G., Dashtgard, S., and Dafoe, L.: How fast do
marine invertebrates burrow?, Palaeogeogr. Palaeocl., 270,
280–286, 2008.
Gingras, M. K., Zonneveld, J. P., and Konhauser, K. O.: Using X-ray
radiography to observe Fe distributions in bioturbated sediment,
in: Experimental Approaches to Understanding Fossil Organisms, edited by:
Hembree, D. I., Platt, B. F., and Smith, J. J., Springer, Dordrecht,
195–206, 2014.
Giordani, P., Hammond, D. E., Berelson, W. M., Montanari, G., Poletti, R.,
Milandri, A., Frignani, M., Langone, L., Ravaioli, M., Rovatti, G., and
Rabbi, E.: Benthic fluxes and nutrient budgets for sediments in the Northern
Adriatic Sea: burial and recycling efficiencies, in: Marine Coastal
Eutrophication, edited by: Vollenweider, R. A., Marchetti, R., and Viviani,
R., Elsevier, 251–275, 1992.
Giordani, P., Helder, W., Koning, E., Miserocchi, S., Danovaro, R., and
Malaguti, A.: Gradients of benthic–pelagic coupling and carbon budgets in
the Adriatic and Northern Ionian Sea, J. Marine Syst., 33, 365–387, 2002.
Goldhaber, M. B., Aller, R. C., Cochran, J. K., Rosenfeld, J. K., Martens,
C. S., and Berner, R. A.: Sulfate reduction, diffusion, and bioturbation in
Long Island Sound sediments; report of the FOAM Group, Am. J. Sci., 277,
193–237, 1977.
Gougeon, R. C., Mángano, M. G., Buatois, L. A., Narbonne, G. M., and
Laing, B. A.: Early Cambrian origin of the shelf sediment mixed layer, Nat.
Commun., 9, 1–7, 2018.
Hansen, K., King, G. M., and Kristensen, E.: Impact of the soft-shell clam
Mya arenaria on sulfate reduction in an intertidal sediment, Aquat. Microb. Ecol., 10,
181–194, 1996.
Harazim, D., McIlroy, D., Edwards, N. P., Wogelius, R. A., Manning, P. L.,
Poduska, K. M., Layne, G. D., Sokaras, D., Alonso-Mori, R., and Bergmann,
U.: Bioturbating animals control the mobility of redox-sensitive trace
elements in organic-rich mudstone, Geology, 43, 1007–1010, 2015.
Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. H.: Influence of
oxygen exposure time on organic carbon preservation in continental margin
sediments, Nature, 391, 572–575, 1998.
Haselmair, A., Gallmetzer, I., Tomašových, A., Wieser, A. M.,
Übelhör, A., and Zuschin, M.: Basin-wide infaunalisation of benthic
soft-bottom communities driven by anthropogenic habitat degradation in the
northern Adriatic Sea, Mar. Ecol. Prog. Ser., 671, 45–65, 2021.
Hammond, D. E., Giordani, P., Berelson, W. M., and Poletti, R.: Diagenesis
of carbon and nutrients and benthic exchange in sediments of the Northern
Adriatic Sea, Mar. Chem., 66, 53–79, 1999.
Herndl, G. J., Faganeli, J., Fanuko, N., Peduzzi, P., and Turk, V.: Role of
bacteria in the carbon and nitrogen flow between water-column and sediment
in a shallow marine bay (Bay of Piran, Northern Adriatic Sea), Mar.
Ecol., 8, 221–236, 1987.
Herndl, G. J., Peduzzi, P., and Fanuko, N.: Benthic community metabolism and
microbial dynamics in the Gulf of Trieste (Northern Adriatic Sea), Mar.
Ecol. Prog. Ser., 53, 169–178, 1989.
Hines, M. E., Faganeli, J., and Planinc, R.: Sedimentary anaerobic microbial
biogeochemistry in the Gulf of Trieste, northern Adriatic Sea: influences of
bottom water oxygen depletion, Biogeochemistry, 39, 65–86, 1997.
Holmes, S. P. and Miller, N.: Aspects of the ecology and population genetics
of the bivalve Corbula gibba, Mar. Ecol. Prog. Ser., 315, 129–140, 2006.
Hrs-Brenko, M.: The role of bivalve Corbula gibba (Olivi, 1792) (Corbulidae, Mollusca
Bivalvia) in the recruitment of benthic communities in the Northern
Adriatic, Pomorski zbornik, 41, 195–208, 2003.
Hrs-Brenko M.: The basket shell, Corbula gibba Olivi, 1792 (Bivalve Mollusks) as a
species resistant to environmental disturbances: A review, Acta Adriat., 47,
49–64, 2006.
Hu, X., Cai, W. J., Wang, Y., Guo, X., and Luo, S.: Geochemical environments
of continental shelf-upper slope sediments in the northern Gulf of
Mexico, Palaeogeogr. Palaeocl., 312, 265–277, 2011.
Hudson, J. D.: Pyrite in ammonite-bearing shales from the Jurassic of
England and Germany, Sedimentology, 29, 639–667, 1982.
Hunda, B. R., Hughes, N. C., and Flessa, K. W.: Trilobite taphonomy and
temporal resolution in the Mt. Orab shale bed (Upper Ordovician, Ohio,
USA), Palaios, 21, 26–45, 2006.
Jerolmack, D. J. and Sadler, P.: Transience and persistence in the
depositional record of continental margins, J. Geophys. Res.-Earth, 112, JF000555, https://doi.org/10.1029/2006JF000555,
2007.
Jin, J., Zhan, R., Copper, P., and Caldwell, W. G. E.: Epipunctae and
phosphatized setae in Late Ordovician plaesiomyid brachiopods from Anticosti
Island, eastern Canada, J. Paleontol., 81, 666–683, 2007.
Johannessen, S. C. and Macdonald, R. W.: There is no 1954 in that core!
Interpreting sedimentation rates and contaminant trends in marine sediment
cores, Mar. Pollut. Bull., 64, 675–678, 2012.
Jokinen, S. A., Virtasalo, J. J., Jilbert, T., Kaiser, J., Dellwig, O., Arz, H. W., Hänninen, J., Arppe, L., Collander, M., and Saarinen, T.: A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century, Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, 2018.
Jørgensen, B. B.: Bacterial sulfate reduction within reduced microniches
of oxidized marine sediments, Mar. Biol., 41, 7–17, 1977.
Justić, D.: Hypoxic conditions in the northern Adriatic Sea: historical
development and ecological significance, Geol. Soc. Spec. Publ., 58, 95–105,
1991.
Kardon, G.: Evidence from the fossil record of an antipredatory exaptation:
conchiolin layers in corbulid bivalves, Evolution, 52, 68–79, 1998.
Karlson, K., Bonsdorff, E., and Rosenberg, R.: The impact of benthic
macrofauna for nutrient fluxes from Baltic Sea sediments, AMBIO, 36,
161–167, 2007.
Kaufman, D. S. and Manley, W. F.: A new procedure for
determining DL amino acid ratios in fossils using reverse phase liquid
chromatography, Quaternary Sci. Rev., 17, 987–1000, 1998.
Kędzierski, M., Uchman, A., Sawlowicz, Z., and Briguglio, A.: Fossilized bioelectric wire – the trace fossil Trichichnus, Biogeosciences, 12, 2301–2309, https://doi.org/10.5194/bg-12-2301-2015, 2015.
Kemp, W. M., Faganeli, J., Puskaric, S., Smith, E. M., and Boynton, W. R.:
Pelagic-benthic coupling and nutrient cycling. Ecosystems at the land-sea
margin: Drainage basin to coastal sea, Estuar. Coast. Shelf S., 55, 295–340,
1999.
Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D., and Hagy, J. D.: Temporal responses of coastal hypoxia to nutrient loading and physical controls, Biogeosciences, 6, 2985–3008, https://doi.org/10.5194/bg-6-2985-2009, 2009.
Kershaw, S., Tang, H., Li, Y., and Guo, L.: Oxygenation in carbonate microbialites and
associated facies after the end-Permian mass extinction: Problems and potential
solutions, J. Palaeogeogr., 7, 32–47, 2018.
Kidwell, S. M., Best, M. M., and Kaufman, D. S.: Taphonomic trade-offs in
tropical marine death assemblages: Differential time averaging, shell loss,
and probable bias in siliciclastic vs. carbonate facies, Geology, 33,
729–732, 2005.
Kobluk, D. R. and Risk, M. J.: Algal borings and framboidal pyrite in Upper
Ordovician brachiopods, Lethaia, 10, 135–143, 1977.
Kosnik, M. A., Kaufman, D. S., and Hua, Q.: Identifying outliers and
assessing the accuracy of amino acid racemization measurements for
geochronology: I. Age calibration curves, Quat. Geochronol., 3, 308–327,
2008.
Kowalewski, M., Flessa, K. W., and Aggen, J. A.: Taphofacies analysis of
Recent shelly cheniers (beach ridges), northeastern Baja California,
Mexico. Facies, 31, 209–242, 1994.
Kralj, M., Lipizer, M., Čermelj, B., Celio, M., Fabbro, C., Brunetti,
F., Francé, J., Mozetič, P., and Giani, M.: Hypoxia and dissolved
oxygen trends in the northeastern Adriatic Sea (Gulf of Trieste), Deep-Sea
Res. Pt. II, 164, 74–88, 2019.
Krampitz, G., Drolshagen, H., and Hotta, S.: Simultaneous binding of calcium
and bicarbonate by conchiolin of oyster shells, Experientia, 39, 1104–1105,
1983.
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana,
C. O., and Banta, G. T.: What is bioturbation? The need for a precise
definition for fauna in aquatic sciences, Mar. Ecol. Prog. Ser., 446,
285–302, 2012.
Kristensen, E., Delefosse, M., Quintana, C. O., Flindt, M. R., and Valdemarsen,
T.: Influence of benthic macrofauna community shifts on ecosystem
functioning in shallow estuaries, Front. Mar. Sci., 1, 00041, https://doi.org/10.3389/fmars.2014.00041, 2014.
Kristensen, E., Røy, H., Debrabant, K., and Valdemarsen, T.: Carbon
oxidation and bioirrigation in sediments along a Skagerrak-Kattegat-Belt Sea
depth transect, Mar. Ecol. Prog. Ser., 604, 33–50, 2018.
Leavitt, W. D., Halevy, I., Bradley, A. S., and Johnston, D. T.: Influence
of sulfate reduction rates on the Phanerozoic sulfur isotope record, P.
Natl. Acad. Sci. USA, 110, 11244–11249, 2013.
Lehto, N., Glud, R.N., á Norði, G., Zhang, H., and Davison, W.:
Anoxic microniches in marine sediments induced by aggregate settlement:
biogeochemical dynamics and implications, Biogeochemistry, 119, 307–327,
2014.
Lehtoranta, J., Ekholm, P., and Pitkänen, H.: Coastal eutrophication
thresholds: a matter of sediment microbial processes, AMBIO, 38, 303–308,
2009.
Lenstra, W. K., Hermans, M., Séguret, M. J., Witbaard, R., Behrends, T.,
Dijkstra, N., van Helmond, N. A., Kraal, P., Laan, P., Rijkenberg, M. J.,
and Severmann, S.: The shelf-to-basin iron shuttle in the Black Sea
revisited, Chem. Geol., 511, 314–341, 2019.
Levin, L. A., Rathburn, A. E., Gutiérrez, D., Muñoz, P., and
Shankle, A.: Bioturbation by symbiont-bearing annelids in near-anoxic
sediments: implications for biofacies models and paleo-oxygen
assessments, Palaeogeogr. Palaeocl., 199, 129–140, 2003.
Lewy, Z. and Samtleben, C.: Functional morphology and palaeontological
significance of the conchiolin layers in corbulid pelecypods, Lethaia, 12,
341–351, 1979.
Liu, A. G., McMahon, S., Matthews, J. J., Still, J. W., and Brasier, A. T.:
Petrological evidence supports the death mask model for the preservation of
Ediacaran soft-bodied organisms in South Australia, Geology, 47, 215–218,
2019.
Lohrer, A. M., Thrush, S. F., and Gibbs, M. M.: Bioturbators enhance
ecosystem function through complex biogeochemical interactions, Nature, 431,
1092–1095, 2004.
Loope, D. B. and Watkins, D. K.: Pennsylvanian fossils replaced by red
chert; early oxidation of pyritic precursors, J. Sediment. Res., 59,
375–386, 1989.
MacEachern, J. A., Bann, K. L., Bhattacharya, J. P., and Howell Jr., C. D.:
Ichnology of deltas, in: River Deltas: Concepts, Models, and Examples,
edited by: Giosan, L. and Bhattacharya, J. P., SEPM Society for
Sedimentary Geology, Tulsa, 49–85, 2005.
Machain-Castillo, M. L., Ruiz-Fernández, A. C., Gracia, A.,
Sanchez-Cabeza, J. A., Rodríguez-Ramírez, A.,
Alexander-Valdés, H. M., Pérez-Bernal, L. H., Nava-Fernández, X.
A., Gómez-Lizárraga, L. E., Almaraz-Ruiz, L., and Schwing, P. T.:
Natural and anthropogenic oil impacts on benthic foraminifera in the
southern Gulf of Mexico, Mar. Environ. Res., 149, 111–125, 2019.
Maire, O., Lecroart, P., Meysman, F., Rosenberg, R., Duchêne, J. C., and
Grémare, A.: Quantification of sediment reworking rates in bioturbation
research: a review, Aquat. Biol., 2, 219–238, 2008.
Manini, E., Fabiano, M., and Danovaro, R.: Benthic response to mucilaginous
aggregates in the northern Adriatic Sea: biochemical indicators of
eutrophication, Chem. Ecol., 17, 171–179, 2000.
Marchetti, R., Provini, A., and Crosa, G.: Nutrient load carried by the
River Po into the Adriatic Sea, 1968–1987, Mar. Pollut. Bull, 20, 168–172,
1989.
Mautner, A. K., Gallmetzer, I., Haselmair, A., Schnedl, S. M.,
Tomašových, A., and Zuschin, M.: Holocene ecosystem shifts and
human-induced loss of Arca and Ostrea shell beds in the north-eastern
Adriatic Sea, Mar. Pollut. Bull., 126, 19–30, 2018.
Meadows, A., Meadows, P. S., West, F. J. and Murray, J. M.: Bioturbation,
geochemistry and geotechnics of sediments affected by the oxygen minimum
zone on the Oman continental slope and abyssal plain, Arabian Sea, Deep-Sea
Res. Pt. II, 47, 259–280, 2000.
Meile, C. and Van Cappellen, P.: Particle age distributions and O2 exposure
times: timescales in bioturbated sediments, Global Biochem. Cy., 19, GB3013, https://doi.org/10.1029/2004GB002371,
2005.
Mermillod-Blondin, F. and Rosenberg, R.: Ecosystem engineering: the impact
of bioturbation on biogeochemical processes in marine and freshwater benthic
habitats, Aquat. Sci., 68, 434–442, 2006.
Mermillod-Blondin, F.: The functional significance of bioturbation and
biodeposition on biogeochemical processes at the water–sediment interface
in freshwater and marine ecosystems, J. N. Am. Benthol. Soc., 30, 770–778,
2011.
Meysman, F. J., Boudreau, B. P., and Middelburg, J. J.: Relations between
local, nonlocal, discrete and continuous models of bioturbation, J. Mar.
Res., 61, 391–410, 2003.
Meysman, F. J., Galaktionov, O. S., Gribsholt, B., and Middelburg, J. J.:
Bioirrigation in permeable sediments: Advective pore-water transport induced
by burrow ventilation, Limnol. Oceanogr., 51, 142–156, 2006.
Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., and Stora,
G.: The functional group approach to bioturbation: II. The effects of the
Macoma balthica community on fluxes of nutrients and dissolved organic
carbon across the sediment–water interface, J. Exp. Mar. Biol. Ecol., 337,
178–189, 2006.
Middelburg, J. J. and Levin, L. A.: Coastal hypoxia and sediment biogeochemistry, Biogeosciences, 6, 1273–1293, https://doi.org/10.5194/bg-6-1273-2009, 2009.
Moodley, L., Heip, C. H., and Middelburg, J. J.: Benthic activity in
sediments of the northwestern Adriatic Sea: sediment oxygen consumption,
macro-and meiofauna dynamics, J. Sea Res., 40, 263–280, 1998.
Moodley, L., Chen, G., Heip, C., and Vincx, M.: Vertical distribution of
meiofauna in sediments from contrasting sites in the Adriatic Sea: clues to
the role of abiotic versus biotic control, Ophelia, 53, 203–212, 2000.
Moraitis, M. L., Tsikopoulou, I., Geropoulos, A., Dimitriou, P. D.,
Papageorgiou, N., Giannoulaki, M., Valavanis, V. D., and Karakassis, I.:
Molluscan indicator species and their potential use in ecological status
assessment using species distribution modeling, Mar. Environ. Res., 140,
10–17, 2018.
Mozetič, P., Solidoro, C., Cossarini, G., Socal, G., Precali, R.,
Francé, J., Bianchi, F., De Vittor, C., Smodlaka, N., and Umani, S. F.:
Recent trends towards oligotrophication of the northern Adriatic: evidence
from chlorophyll a time series, Estuar. Coast., 33, 362–375, 2010.
Nebelsick, J. H., Schmid, B., and Stachowitsch, M.: The encrustation of
fossil and recent sea-urchin tests: ecological and taphonomic
significance, Lethaia, 30, 271–284, 1997.
Nerlović, V., Doğan, A., and Hrs-Brenko, M.: Response to oxygen
deficiency (depletion): Bivalve assemblages as an indicator of ecosystem
instability in the northern Adriatic Sea, Biologia, 66, 1114–1126, 2011.
Nilsson, H. C. and Rosenberg, R.: Succession in marine benthic habitats and
fauna in response to oxygen deficiency: analysed by sediment profile-imaging
and by grab samples, Mar. Ecol. Prog. Ser., 197, 139–149, 2000.
Norkko, A., Villnäs, A., Norkko, J., Valanko, S., and Pilditch, C.:
Size matters: implications of the loss of large individuals for ecosystem
function, Sci. Rep., 3, 1–7, 2013.
Novek, J. M., Dornbos, S. Q., and McHenry, L. J.: Palaeoredox geochemistry
and bioturbation levels of the exceptionally preserved early Cambrian Indian
Springs biota, Nevada, USA, Lethaia, 49, 604–616, 2016.
N'Siala, G. M., Grandi, V., Iotti, M., Montanari, G., Prevedelli, D., and
Simonini, R.: Responses of a northern Adriatic Ampelisca–Corbula community to seasonality and
short-term hydrological changes in the Po river, Mar. Environ. Res., 66,
466–476, 2008.
Occhipinti-Ambrogi, A., Savini, D., and Forni, G.: Macrobenthos community
structural changes off Cesenatico coast (Emilia Romagna, Northern Adriatic),
a six-year monitoring programme, Sci. Total. Environ., 353, 317–328, 2005.
Ogrinc, N. and Faganeli, J.: Stable carbon isotopes in pore waters of
coastal marine sediments (the Gulf of Trieste, N Adriatic), Acta Chim.
Slov., 50, 645–662, 2003.
Paganelli, D., Marchini, A., and Occhipinti-Ambrogi, A.: Functional
structure of marine benthic assemblages using Biological Traits Analysis
(BTA): a study along the Emilia-Romagna coastline (Italy, North-West
Adriatic Sea), Estuar. Coast. Shelf Sci., 96, 245–256, 2012.
Pakhomova, S. V., Hall, P. O., Kononets, M. Y., Rozanov, A. G., Tengberg,
A., and Vershinin, A. V.: Fluxes of iron and manganese across the
sediment–water interface under various redox conditions, Mar. Chem., 107,
319–331, 2007.
Palinkas, C. M. and Nittrouer, C. A.: Modern sediment accumulation on the
Po shelf, Adriatic Sea, Cont. Shelf Res., 27, 489–505, 2007.
Paul, C. R. C., Allison, P. A., and Brett, C. E.: The occurrence and preservation
of ammonites in the Blue Lias Formation (lower Jurassic) of Devon and
Dorset, England and their palaeoecological, sedimentological and diagenetic
significance, Palaeogeogr. Palaeocl., 270, 258–272, 2008.
Penna, N., Rinaldi, A., Montanari, G., Di Paolo, A., and Penna, A.:
Mucilaginous masses in the Adriatic Sea in the summer of 1989, Water
Res., 27, 1767–1771, 1993.
Petersen, J. K., Hansen, J. W., Laursen, M. B., Clausen, P., Carstensen, J.,
and Conley, D. J.: Regime shift in a coastal marine ecosystem, Ecol.
Appl., 18, 497–510, 2018.
Pirlet, H., Wehrmann, L. M., Brunner, B., Frank, N., Dewanckele, J. A. N.,
Van Rooij, D., Foubert, A., Swennen, R., Naudts, L., Boone, M., and Cnudde,
V.: Diagenetic formation of gypsum and dolomite in a cold-water coral mound
in the Porcupine Seabight, off Ireland, Sedimentology, 57, 786–805, 2010.
Powell, E. N., Hu, X., Cai, W. J., Ashton-Alcox, K. A., Parsons-Hubbard, K.
M., and Walker, S. E.: Geochemical controls on carbonate shell taphonomy in
Northern Gulf of Mexico continental shelf and slope sediments, Palaios, 27,
571–584, 2012.
Precali, R., Giani, M., Marini, M., Grilli, F., Ferrari, C. R., Pečar,
O., and Paschini, E.: Mucilaginous aggregates in the northern Adriatic in the
period 1999–2002: typology and distribution, Sci. Total. Environ., 353,
10–23, 2005.
Pruss, S., Fraiser, M., and Bottjer, D. J.: Proliferation of Early Triassic
wrinkle structures: implications for environmental stress following the
end-Permian mass extinction, Geology, 32, 461–464, 2004.
Queirós, A. M., Birchenough, S. N., Bremner, J., Godbold, J. A., Parker,
R. E., Romero-Ramirez, A., Reiss, H., Solan, M., Somerfield, P. J., Van
Colen, C., and Van Hoey, G.: A bioturbation classification of European
marine infaunal invertebrates, Ecol. Evol., 3, 3958–3985, 2013.
Raiswell, R. and Berner, R. A.: Pyrite formation in euxinic and
semi-euxinic sediments, Am. J. Sci., 285, 710–724, 1985.
Raiswell, R., Whaler, K., Dean, S., Coleman, M. L., and Briggs, D. E. G.: A
simple three-dimensional model of diffusion-with-precipitation applied to
localised pyrite formation in framboids, fossils and detrital iron
minerals, Mar. Geol., 113, 89–100, 1993.
Raiswell, R. and Canfield, D. E.: Rates of reaction between silicate iron
and dissolved sulfide in Peru Margin sediments, Geochim. Cosmochim. Ac., 60,
2777–2787, 1996.
Raiswell, R., Newton, R., Bottrell, S. H., Coburn, P. M., Briggs, D. E.,
Bond, D. P., and Poulton, S. W.: Turbidite depositional influences on the
diagenesis of Beecher's Trilobite Bed and the Hunsrück Slate; sites of
soft tissue pyritization, Am. J. Sci., 308, 105–129, 2008.
Renz, J. R., Powilleit, M., Gogina, M., Zettler, M. L., Morys, C., and
Forster, S.: Community bioirrigation potential (BIPc), an index to quantify
the potential for solute exchange at the sediment-water interface, Mar.
Environ. Res., 141, 214–224, 2018.
Reolid, M.: Pyritized radiolarians and siliceous sponges from
oxygen-restricted deposits (Lower Toarcian, Jurassic), Facies, 60, 789–799,
2014.
Rhoads, D. C. and Germano, J. D.: Interpreting long-term changes in benthic
community structure: a new protocol, Hydrobiologia, 142, 291–308, 1986.
Riedel, B., Zuschin, M., and Stachowitsch, M.: Tolerance of
benthic macrofauna to hypoxia and anoxia in shallow coastal seas: a realistic scenario, Mar.
Ecol. Prog. Ser., 458, 39–52, 2012.
Rosenberg, R., Nilsson, H. C., and Diaz, R. J.: Response of benthic fauna
and changing sediment redox profiles over a hypoxic gradient, Estuar. Coast.
Shelf S., 53, 343–350, 2001.
Saleh, F., Pittet, B., Perrillat, J. P., and Lefebvre, B.: Orbital control
on exceptional fossil preservation, Geology, 47, 103–106, 2019.
Saleh, F., Pittet, B., Sansjofre, P., Guériau, P., Lalonde, S.,
Perrillat, J. P., Vidal, M., Lucas, V., El Hariri, K., Kouraiss, K., and
Lefebvre, B.: Taphonomic pathway of exceptionally preserved fossils in the
Lower Ordovician of Morocco, Geobios, 60, 99–115, 2020.
Sandnes, J., Forbes, T., Hansen, R., Sandnes, B., and Rygg, B.: Bioturbation
and irrigation in natural sediments, described by animal-community
parameters, Mar. Ecol. Prog. Ser., 197, 169–179, 2000.
Sangiorgi, F. and Donders, T. H.: Reconstructing 150 years of
eutrophication in the north-western Adriatic Sea (Italy) using
dinoflagellate cysts, pollen and spores, Estuar. Coast. Shelf S., 60, 69–79,
2004.
Savrda, C. E. and Ozalas, K.: Preservation of mixed-layer ichnofabrics in
oxygenation-event beds, Palaios, 8, 609–612, 1993.
Schaffner, L. C., Jonsson, P., Diaz, R. J., Rosenberg, R., and Gapcynski,
P.: Benthic communities and bioturbation history of estuarine and coastal
systems: effects of hypoxia and anoxia, in: Marine Coastal Eutrophication,
edited by: Vollenweider, R. A., Marchetti, R., and Viviani, R., Elsevier,
1001–1016, 1992.
Schieber, J.: Styles of agglutination in benthic foraminifera from modern
Santa Barbara Basin sediments and the implications of finding fossil analogs
in Devonian and Mississippian black shales, in: Anoxia. Evidence for
Eukaryote Survival and Paleontological Strategies, edited by: Altenbach, A.
V., Bernhard, J. M., and Seckbach, J., Springer, Dordrecht, 573–589, 2012.
Schieber, J. and Baird, G.: On the origin and significance of pyrite
spheres in Devonian black shales of North America, J. Sediment. Res., 71,
155–166, 2001.
Schiffbauer, J. D., Xiao, S., Cai, Y., Wallace, A. F., Hua, H., Hunter, J.,
Xu, H., Peng, Y., and Kaufman, A. J.: A unifying model for
Neoproterozoic–Palaeozoic exceptional fossil preservation through
pyritization and carbonaceous compression, Nat. Commun., 5, 1–12, 2014.
Schinner, G. O. F.: Burrowing behavior, substratum preference, and
distribution of Schizaster canaliferus (Echinoidea: Spatangoida) in the northern Adriatic
Sea, Mar. Ecol., 14, 129–145, 1993.
Schinner, F., Stachowitsch, M., and Hilgers, H.: Loss of benthic communities:
warning signal for coastal ecosystem management, Aq. Cons.-Mar. Freshw.
Ecosyst., 6, 343–352, 1997.
Schenau, S. J., Passier, H. F., Reichart, G. J., and De Lange, G. J.:
Sedimentary pyrite formation in the Arabian Sea, Mar. Geol., 185, 393–402,
2002.
Schnedl, S. M., Haselmair, A., Gallmetzer, I., Mautner, A. K.,
Tomašových, A., and Zuschin, M.: Molluscan benthic communities at
Brijuni Islands (northern Adriatic Sea) shaped by Holocene sea-level rise
and recent human eutrophication and pollution, The Holocene, 28, 1801–1817,
2018.
Simboura, N. and Zenetos, A.: Benthic indicators to use in ecological
quality classification of Mediterranean soft bottom marine ecosystems,
including a new biotic index, Mediterr. Mar. Sci., 3, 77–111, 2002.
Simonini, R., Ansaloni, I., Bonvicini Pagliai, A. M., and Prevedelli, D.:
Organic enrichment and structure of the macrozoobenthic community in the
northern Adriatic Sea in an area facing Adige and Po mouths, ICES J. Mar.
Sci., 61, 871–881, 2004.
Slagter, S., Tarhan, L. G., Hao, W., Planavsky, N. J., and Konhauser, K. O.:
Experimental evidence supports early silica cementation of the Ediacara
Biota, Geology, 49, 51–55, 2021.
Smith, C. R., Levin, L. A., Hoover, D. J., McMurtry, G., and Gage, J. D.:
Variations in bioturbation across the oxygen minimum zone in the northwest
Arabian Sea, Deep-Sea Res. Pt. II, 47, 227–257, 2000.
Solan, M. and Kennedy, R.: Observation and quantification of in situ
animal-sediment relations using time-lapse sediment profile imagery
(t-SPI), Mar. Ecol. Prog. Ser., 228, 179–191, 2002.
Solan, M., Cardinale, B. J., Downing, A. L., Engelhardt, K. A., Ruesink, J.
L., and Srivastava, D. S.: Extinction and ecosystem function in the marine
benthos, Science, 306, 1177–1180, 2004.
Solan, M., Ward, E. R., White, E. L., Hibberd, E. E., Cassidy, C., Schuster,
J. M., Hale, R., and Godbold, J. A.: Worldwide measurements of bioturbation
intensity, ventilation rate, and the mixing depth of marine sediments, Sci.
Data, 6, 1–6, 2019.
Solis-Weiss, V., Aleffi, F., Bettoso, N., Rossi, R., and Orel, G.: The
benthic macrofauna at the outfalls of the underwater sewage discharges in
the Gulf of Trieste (northern Adriatic Sea), Ann. Ser. Hist. Natur., 17,
1–16, 2007.
Spagnoli, F., Dinelli, E., Giordano, P., Marcaccio, M., Zaffagnini, F., and
Frascari, F.: Sedimentological, biogeochemical and mineralogical facies of
Northern and Central Western Adriatic Sea, J. Marine Syst., 139, 183–203,
2014.
Stachowitsch, M.: Mass mortality in the Gulf of Trieste: the course of
community destruction, Mar. Ecol., 5, 243–264, 1984.
Stachowitsch, M.: Anoxia in the Northern Adriatic Sea: rapid death, slow
recovery, Geol. Soc. Spec. Publ., 58, 119–129, 1991.
Staff, G. M. and Powell, E. N.: Local variability of taphonomic attributes
in a parautochthonous assemblage: can taphonomic signature distinguish a
heterogeneous environment?, J. Paleontol., 64, 648–658, 1990.
Steckbauer, A., Duarte, C. M., Carstensen, J., Vaquer-Sunyer, R., and
Conley, D. J.: Ecosystem impacts of hypoxia: thresholds of hypoxia and
pathways to recovery, Environ. Res. Lett., 6, 025003, https://doi.org/10.1088/1748-9326/6/2/025003, 2011.
Stefanon, A. T. and Boldrin, A.: The oxygen crisis of the northern Adriatic
Sea waters in late fall 1977 and its effects on benthic communities,
in: Proceedings of 6th International Science Symposium World Underwater
Federation (CMAS), edited by: Blanchard, J., Mair, J., and Morrison, I.,
National Environmental Research Council, Edinburgh, 167–175, 1982.
Stockdale, A., Davison, W., and Zhang, H.: Formation of iron sulfide at
faecal pellets and other microniches within suboxic surface
sediment, Geochim. Cosmochim. Ac., 74, 2665–2676, 2010.
Strang, K. M., Armstrong, H. A., Harper, D. A., and Trabucho-Alexandre, J.
P.: The Sirius Passet Lagerstätte: silica death masking opens the window
on the earliest matground community of the Cambrian
explosion, Lethaia, 49, 631–643, 2016.
Tarhan, L. G., Droser, M. L., Planavsky, N. J., and Johnston, D. T.:
Protracted development of bioturbation through the early Palaeozoic
Era, Nat. Geosci., 8, 865–869, 2015.
Tarhan, L. G., Hood, A. V., Droser, M. L., Gehling, J. G., and Briggs, D.
E.: Exceptional preservation of soft-bodied Ediacara Biota promoted by
silica-rich oceans, Geology, 44, 951–954, 2016.
Taylor, A., Goldring, R., and Gowland, S.: Analysis and application of
ichnofabrics, Earth-Sci. Rev., 60, 227–259, 2003.
Teal, L. R., Bulling, M. T., Parker, E. R., and Solan, M.: Global patterns
of bioturbation intensity and mixed depth of marine soft sediments, Aquat.
Biol., 2, 207–218, 2008.
Teal, L. R., Parker, E. R., and Solan, M.: Sediment mixed layer as a proxy
for benthic ecosystem process and function, Mar. Ecol. Prog. Ser., 414,
27–40, 2010.
Tesi, T., Langone, L., Goñi, M. A., Wheatcroft, R. A., Miserocchi, S.,
and Bertotti, L.: Early diagenesis of recently deposited organic matter: A
9-yr time-series study of a flood deposit, Geochim. Cosmochim. Ac., 83,
19–36, 2012.
Thamdrup, B., Fossing, H., and Jørgensen, B. B.: Manganese, iron and sulfur cycling in a coastal
marine sediment, Aarhus Bay, Denmark, Geochim. Cosmochim. Ac., 58, 5115–5129,
1994.
Thayer, C. W.: Sediment-mediated biological disturbance and the evolution of
marine benthos, in: Biotic Interactions in Recent and Fossil Benthic
Communities, edited by: Tevesz, M. J. S. and McCall, P. L., Springer,
Boston, 479–625, 1983.
Thomsen, E. and Vorren, T. O.: Pyritization of tubes and burrows from Late
Pleistocene continental shelf sediments off North Norway, Sedimentology, 31,
481–492, 1984.
Trueman, E. R.: Observations on the mechanism of the opening of the valves
of a burrowing lamellibranch, Mya arenaria, J. Exp. Biol., 31, 291–305, 1954.
Tomašových, A., Kidwell, S. M., Barber, R. F., and Kaufman, D. S.:
Long-term accumulation of carbonate shells reflects a 100-fold drop in loss
rate, Geology, 42, 819–822, 2014.
Tomašových, A., Gallmetzer, I., Haselmair, A., Kaufman, D. S.,
Vidović, J., and Zuschin, M.: Stratigraphic unmixing reveals repeated
hypoxia events over the past 500 yr in the northern Adriatic
Sea, Geology, 45, 363–366, 2017.
Tomašových, A., Gallmetzer, I., Haselmair, A., Kaufman, D.S., Kralj,
M., Cassin, D., Zonta, R., and Zuschin, M.: Tracing the effects of
eutrophication on molluscan communities in sediment cores: outbreaks of an
opportunistic species coincide with reduced bioturbation and high frequency
of hypoxia in the Adriatic Sea, Paleobiology, 44, 575–602, 2018.
Tomašových, A., Gallmetzer, I., Haselmair, A., Kaufman, D. S.,
Mavrič, B., and Zuschin, M.: A decline in molluscan carbonate production
driven by the loss of vegetated habitats encoded in the Holocene sedimentary
record of the Gulf of Trieste, Sedimentology, 66, 781–807, 2019a.
Tomašových, A., Kidwell, S. M., Alexander, C. R., and Kaufman, D.
S.: Millennial-scale age offsets within fossil assemblages: Result of
bioturbation below the taphonomic active zone and out-of-phase
production, Paleoceanogr. Paleocl., 34, 954–977, 2019b.
Tomašových, A., Albano, P. G., Fuksi, T., Gallmetzer, I., Haselmair,
A., Kowalewski, M., Nawrot, R., Nerlović, V., Scarponi, D., and Zuschin,
M.: Ecological regime shift preserved in the Anthropocene stratigraphic
record, P. Roy. Soc. B, 287, 20200695, https://doi.org/10.1098/rspb.2020.0695, 2020.
Tomašových, A., Gallmetzer, I., Haselmair, A., and Zuschin, M.:
Inferring time averaging and hiatus durations in the stratigraphic record of
high-frequency depositional sequences, Sedimentology, 2022,
doi.org/10.1111/sed.12936, 2021.
Underwood, C. J. and Bottrell, S. H.: Diagenetic controls on multiphase
pyritization of graptolites, Geol. Mag., 131, 315–327, 1994.
Valente, R. M. and Cuomo, C.: Did multiple sediment-associated stressors
contribute to the 1999 lobster mass mortality event in Western Long Island
Sound, USA?, Estuaries, 28, 529–540, 2005.
van de Velde, S. and Meysman, F. J.: The influence of bioturbation on iron
and sulphur cycling in marine sediments: a model analysis, Aquat.
Geochem., 22, 469–504, 2016.
Vatova A.: La fauna bentonica dell'alto e medio Adriatico, Nova Thalassia, 1,
1–110, 1949.
Villnäs, A., Norkko, J., Lukkari, K., Hewitt, J., and Norkko, A.:
Consequences of increasing hypoxic disturbance on benthic communities and
ecosystem functioning, Plos One, 7, e44920, https://doi.org/10.1371/journal.pone.0044920, 2012.
Virtasalo, J. J., Löwemark, L., Papunen, H., Kotilainen, A. T., and
Whitehouse, M. J.: Pyritic and baritic burrows and microbial filaments in
postglacial lacustrine clays in the northern Baltic Sea, J. Geol. Soc.
London, 167, 1185–1198, 2010.
Virtasalo, J. J., Whitehouse, M. J., and Kotilainen, A. T.: Iron isotope
heterogeneity in pyrite fillings of Holocene worm burrows, Geology, 41,
39–42, 2013.
Volkenborn, N., Meile, C., Polerecky, L., Pilditch, C. A., Norkko, A.,
Norkko, J., Hewitt, J. E., Thrush, S. F., Wethey, D. S., and Woodin, S. A.:
Intermittent bioirrigation and oxygen dynamics in permeable sediments: An
experimental and modeling study of three tellinid bivalves, J. Mar.
Res., 70, 794–823, 2012.
Vopel, K., Thistle, D., and Rosenberg, R.: Effect of the brittle star
Amphiura filiformis (Amphiuridae, Echinodermata) on oxygen flux into the
sediment, Limnol. Oceanogr., 48, 2034–2045, 2003.
Walker, S. E. and Goldstein, S. T.: Taphonomic tiering: experimental field
taphonomy of molluscs and foraminifera above and below the sediment–water
interface, Palaeogeogr. Palaeocl., 149, 227–244, 1999.
Westall, F.: The nature of fossil bacteria: a guide to the search for
extraterrestrial life, J. Geophys. Res.-Planets, 104, 16437–16451, 1999.
Wignall, P. B., Newton, R., and Brookfield, M. E.: Pyrite framboid evidence
for oxygen-poor deposition during the Permian–Triassic crisis in
Kashmir, Palaeogeogr. Palaeocl., 216, 183–188, 2005.
Wijsman, J. W. M., Herman, P. M. J., Middelburg, J. J., and Soetaert, K.: A
model for early diagenetic processes in sediments of the continental shelf
of the Black Sea, Estuar. Coast. Shelf S., 54, 403–421, 2002.
Wilson, M. A. and Taylor, P. D.: Exceptional pyritized cyanobacterial mats
encrusting brachiopod shells from the Upper Ordovician (Katian) of the
Cincinnati, Ohio, region, Palaios, 32, 673–677, 2017.
Wheatcroft, R. A.: Preservation potential of sedimentary event
layers, Geology, 18, 843–845, 1990.
Woodin, S. A., Wethey, D. S., and Volkenborn, N.: Infaunal hydraulic
ecosystem engineers: cast of characters and impacts, Integr. Comp.
Biol., 50, 176–187, 2010.
Wrede, A., Dannheim, J., Gutow, L. and Brey, T.: Who really matters:
influence of German Bight key bioturbators on biogeochemical cycling and
sediment turnover, J. Exp. Mar. Biol. Ecol., 488, 92–101, 2017.
Wrede, A., Beermann, J., Dannheim, J., Gutow, L. and Brey, T.: Organism
functional traits and ecosystem supporting services–A novel approach to
predict bioirrigation, Ecol. Indic., 91, 737–743, 2018.
Yonge, C. M.: On the habits and adaptations of Aloidis (Corbula) gibba, J. Mar. Biol. Assoc.
UK, 26, 358–376, 1946.
Yonge, C. M.: Ligamental structure in Mactracea and Myacea (Mollusca:
Bivalvia), J. Mar. Biol. Assoc. UK, 62, 171–186, 1982.
Zanchettin, D., Traverso, P., and Tomasino, M.: Po River discharges: a
preliminary analysis of a 200-year time series, Climatic Change, 89,
411–433, 2008.
Zhu, M., Babcock, L. E., and Steiner, M.: Fossilization modes in the
Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic
preservation and diagenetic alteration in exceptional
preservation, Palaeogeogr. Palaeocl., 220, 31–46, 2005.
Zillén, L., Conley, D. J., Andrén, T., Andrén, E., and
Björck, S.: Past occurrences of hypoxia in the Baltic Sea and the role
of climate variability, environmental change and human impact, Earth-Sci.
Rev., 91, 77–92, 2008.
Zuschin, M., Stachowitsch, M., Pervesler, P., and Kollmann, H.: Structural
features and taphonomic pathways of a high-biomass epifauna in the northern
Gulf of Trieste, Adriatic Sea, Lethaia, 32, 299–316, 1999.
Zuschin, M. and Stachowitsch, M.: Epifauna-dominated benthic shelf
assemblages: lessons from the modern Adriatic Sea, Palaios, 24, 211–221,
2009.
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical...
Altmetrics
Final-revised paper
Preprint