Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6301-2021
https://doi.org/10.5194/bg-18-6301-2021
Research article
 | 
08 Dec 2021
Research article |  | 08 Dec 2021

Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils

Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on bg-2021-205', Anonymous Referee #1, 01 Sep 2021
  • RC2: 'Comment on bg-2021-205', Anonymous Referee #2, 08 Sep 2021

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (11 Oct 2021) by Jianming Xu
AR by Pengzhi Zhao on behalf of the Authors (23 Oct 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (08 Nov 2021) by Jianming Xu
AR by Pengzhi Zhao on behalf of the Authors (10 Nov 2021)  Manuscript 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Altmetrics
Final-revised paper
Preprint