Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
Daniel Joseph Fallu
Tromsø University Museum, UiT The Arctic University of Norway, Kvaløyen 30, 9013 Tromsø, Norway
Sara Cucchiaro
Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
Paolo Tarolli
Department of Land, Environment, Agriculture and Forestry, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
Clive Waddington
Archaeological Research Services Ltd, Angel House, Portland Square, Bakewell DE45 1HB, UK
David Cockcroft
Archaeological Research Services Ltd, Angel House, Portland Square, Bakewell DE45 1HB, UK
Lisa Snape
Department of Geography and Geology, University of Salzburg, 5020 Salzburg, Austria
Andreas Lang
Department of Geography and Geology, University of Salzburg, 5020 Salzburg, Austria
Sebastian Doetterl
Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
Antony G. Brown
Tromsø University Museum, UiT The Arctic University of Norway, Kvaløyen 30, 9013 Tromsø, Norway
Geography and Environmental Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
Kristof Van Oost
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
Related authors
No articles found.
Lei Zhang, Lin Yang, Thomas W. Crowther, Constantin M. Zohner, Sebastian Doetterl, Gerard B. M. Heuvelink, Alexandre M. J.-C. Wadoux, A.-Xing Zhu, Yue Pu, Feixue Shen, Haozhi Ma, Yibiao Zou, and Chenghu Zhou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-618, https://doi.org/10.5194/essd-2024-618, 2025
Preprint under review for ESSD
Short summary
Short summary
Current understanding of depth-dependent variations and controls of soil organic carbon turnover time (τ) at global, biome, and local scales remain incomplete. We used the state-of-the-art soil and root profile databases and satellite observations to generate spatially-explicit new global maps of top- and subsoil τ, with quantified uncertainties for better user applications. The new insights from resulting maps facilitate modelling efforts of carbon cycle and support effective carbon management.
Antoine de Clippele, Astrid C. H. Jaeger, Simon Baumgartner, Marijn Bauters, Pascal Boeckx, Clement Botefa, Glenn Bush, Jessica Carilli, Travis W. Drake, Christian Ekamba, Gode Lompoko, Nivens Bey Mukwiele, Kristof Van Oost, Roland A. Werner, Joseph Zambo, Johan Six, and Matti Barthel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3313, https://doi.org/10.5194/egusphere-2024-3313, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Tropical forest soils as a large terrestrial source of carbon dioxide (CO2) contribute to the GHG budgets. Despite this, carbon flux data from forested wetlands is scarce in tropical Africa. The study presents three years of semi-continuous measurements of surface CO2 fluxes within the Congo Basin. Although no seasonal patterns were evident, our results showed a positive effect of soil temperature and soil moisture, while a quadratic relationship was observed with the water table level.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2553, https://doi.org/10.5194/egusphere-2024-2553, 2024
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains, within south Africa they are regarded as ancient landforms and can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jonathan Rizzi, Ana M. Tarquis, Anne Gobin, Mikhail Semenov, Wenwu Zhao, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3873–3877, https://doi.org/10.5194/nhess-21-3873-2021, https://doi.org/10.5194/nhess-21-3873-2021, 2021
Mihai Ciprian Mărgărint, Mihai Niculiță, Giulia Roder, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3251–3283, https://doi.org/10.5194/nhess-21-3251-2021, https://doi.org/10.5194/nhess-21-3251-2021, 2021
Short summary
Short summary
Local stakeholders' knowledge plays a deciding role in emergencies, supporting rescue officers in natural hazard events; coordinating; and assisting, both physically and psychologically, the affected populations. Their risk perception was assessed using a questionnaire for an area in north-eastern Romania. The results show low preparedness and reveal substantial distinctions among stakeholders and different risks based on their cognitive and behavioral roles in their communities.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021, https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Short summary
Soil greenhouse gas (GHG) fluxes were measured monthly from nitrogen (N), phosphorous (P), N and P, and control plots of the first nutrient manipulation experiment located in an African pristine tropical forest using static chambers. The results suggest (1) contrasting soil GHG responses to nutrient addition, hence highlighting the complexity of the tropical forests, and (2) that the feedback of tropical forests to the global soil GHG budget could be altered by changes in N and P availability.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
E. Maset, S. Cucchiaro, F. Cazorzi, F. Crosilla, A. Fusiello, and A. Beinat
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 103–109, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-103-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-103-2021, 2021
A. Masiero, P. Dabove, V. Di Pietra, M. Piragnolo, A. Vettore, S. Cucchiaro, A. Guarnieri, P. Tarolli, C. Toth, V. Gikas, H. Perakis, K.-W. Chiang, L. M. Ruotsalainen, S. Goel, and J. Gabela
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 111–116, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-111-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-111-2021, 2021
Barbara Mauz, Loïc Martin, Michael Discher, Chantal Tribolo, Sebastian Kreutzer, Chiara Bahl, Andreas Lang, and Nobert Mercier
Geochronology, 3, 371–381, https://doi.org/10.5194/gchron-3-371-2021, https://doi.org/10.5194/gchron-3-371-2021, 2021
Short summary
Short summary
Luminescence dating requires irradiating the sample in the laboratory. Here, we address some concerns about the reliability of the calibration procedure that have been published recently. We found that the interplay between geometrical parameters such as grain size and aliquot size impacts the calibration value more than previously thought. The results of our study are robust and allow us to recommend an improved calibration procedure in order to enhance the reliability of the calibration value.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Lorenzo Marchi, Federico Cazorzi, Massimo Arattano, Sara Cucchiaro, Marco Cavalli, and Stefano Crema
Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021, https://doi.org/10.5194/nhess-21-87-2021, 2021
Short summary
Short summary
Debris-flow research requires experimental data that are difficult to collect because of the intrinsic characteristics of these hazardous processes. This paper presents debris-flow data recorded in the Moscardo Torrent (Italian Alps) between 1990 and 2019. In this time interval, 30 debris flows were observed. The paper presents data on triggering rainfall, flow velocity, peak discharge, and volume for the monitored hydrographs.
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Laurent K. Kidinda, Folasade K. Olagoke, Cordula Vogel, Karsten Kalbitz, and Sebastian Doetterl
SOIL Discuss., https://doi.org/10.5194/soil-2020-80, https://doi.org/10.5194/soil-2020-80, 2020
Preprint withdrawn
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of microbial processes differ between soils developed from geochemically contrasting parent materials due to differences in resource availability. Across investigated geochemical regions and soil depths, soil microbes were P-limited rather than N-limited. Topsoil microbes were more C-limited than their subsoil counterparts but inversely P-limited.
Zhengang Wang, Jianxiu Qiu, and Kristof Van Oost
Geosci. Model Dev., 13, 4977–4992, https://doi.org/10.5194/gmd-13-4977-2020, https://doi.org/10.5194/gmd-13-4977-2020, 2020
Short summary
Short summary
This study developed a spatially distributed carbon cycling model applicable in an eroding landscape. It includes all three carbon isotopes so that it is able to represent the carbon isotopic compositions. The model is able to represent the observations that eroding area is enriched in 13C and depleted of 14C compared to depositional area. Our simulations show that the spatial variability of carbon isotopic properties in an eroding landscape is mainly caused by the soil redistribution.
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020, https://doi.org/10.5194/nhess-20-2585-2020, 2020
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Short summary
Rockfall size and frequency in two deglaciating cirques in the Central Alps, Austria, is analysed based on 6-year rockwall monitoring with terrestrial lidar (2011–2017). The erosion rates derived from this dataset are very high due to a frequent occurrence of large rockfalls in freshly deglaciated areas. The results obtained are important for rockfall hazard assessments, as, in rockwalls affected by glacier retreat, historical rockfall patterns are not good predictors of future events.
A. Masiero, G. Sofia, and P. Tarolli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 259–264, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-259-2020, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-259-2020, 2020
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
François Clapuyt, Veerle Vanacker, Marcus Christl, Kristof Van Oost, and Fritz Schlunegger
Solid Earth, 10, 1489–1503, https://doi.org/10.5194/se-10-1489-2019, https://doi.org/10.5194/se-10-1489-2019, 2019
Short summary
Short summary
Using state-of-the-art geomorphic techniques, we quantified a 2-order of magnitude discrepancy between annual, decadal, and millennial sediment fluxes of a landslide-affected mountainous river catchment in the Swiss Alps. Our results illustrate that the impact of a single sediment pulse is strongly attenuated at larger spatial and temporal scales by sediment transport. The accumulation of multiple sediment pulses has rather a measurable impact on the regional pattern of sediment fluxes.
He Zhang, Emilien Aldana-Jague, François Clapuyt, Florian Wilken, Veerle Vanacker, and Kristof Van Oost
Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, https://doi.org/10.5194/esurf-7-807-2019, 2019
Short summary
Short summary
We evaluated the performance of a drone system to reconstruct 3-D topography. We used a direct georeferencing method to make the pictures have precise coordinates, which also improves the survey efficiency. With both consumer-grade and professional-grade camera and drone setups, we obtained centimetric accuracy, which provides a flexible application in topography remote sensing using drones.
Andreas Ewald, Ingo Hartmeyer, Markus Keuschnig, Andreas Lang, and Jan-Christoph Otto
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-42, https://doi.org/10.5194/tc-2019-42, 2019
Preprint withdrawn
Short summary
Short summary
Processes destabilising recently deglaciated rocks, driving cirque headwall retreat, and putting alpine infrastructure at risk are poorly understood due to scarce in situ data. We monitored fracture deformation at a cirque headwall in the Austria Alps. We found thermo-mechanical expansion and freeze-thaw action as dominant processes for deformation. Our results highlight the importance of liquid water in combination with subzero-temperatures on the destabilisation of glacier headwalls.
Daniele Giordan, Yuichi S. Hayakawa, Francesco Nex, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 18, 3085–3087, https://doi.org/10.5194/nhess-18-3085-2018, https://doi.org/10.5194/nhess-18-3085-2018, 2018
Short summary
Short summary
In the special issue
The use of remotely piloted aircraft systems (RPAS) in monitoring applications and management of natural hazardswe propose a collection of papers that provide a critical description of the state of the art in the use of RPAS for different scenarios. In particular, the sequence of papers can be considered an exhaustive representation of the state of the art of the methodologies and approaches applied to the study and management of natural hazards.
Victoria Naipal, Philippe Ciais, Yilong Wang, Ronny Lauerwald, Bertrand Guenet, and Kristof Van Oost
Biogeosciences, 15, 4459–4480, https://doi.org/10.5194/bg-15-4459-2018, https://doi.org/10.5194/bg-15-4459-2018, 2018
Short summary
Short summary
We seek to better understand the links between soil erosion by rainfall and the global carbon (C) cycle by coupling a soil erosion model to the C cycle of a land surface model. With this modeling approach we evaluate the effects of soil removal on soil C stocks in the presence of climate change and land use change. We find that accelerated soil erosion leads to a potential SOC removal flux of 74 ±18 Pg of C globally over the period AD 1850–2005, with significant impacts on the land C balance.
S. Cucchiaro, E. Maset, A. Fusiello, and F. Cazorzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 281–288, https://doi.org/10.5194/isprs-archives-XLII-2-281-2018, https://doi.org/10.5194/isprs-archives-XLII-2-281-2018, 2018
Daniele Giordan, Yuichi Hayakawa, Francesco Nex, Fabio Remondino, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 18, 1079–1096, https://doi.org/10.5194/nhess-18-1079-2018, https://doi.org/10.5194/nhess-18-1079-2018, 2018
Short summary
Short summary
Remotely piloted aerial systems can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes like landslides or volcanic activities but also for the definition of effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazards.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
K. Pawłuszek, A. Borkowski, and P. Tarolli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1-W1, 83–90, https://doi.org/10.5194/isprs-archives-XLII-1-W1-83-2017, https://doi.org/10.5194/isprs-archives-XLII-1-W1-83-2017, 2017
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Gerard Govers, Roel Merckx, Bas van Wesemael, and Kristof Van Oost
SOIL, 3, 45–59, https://doi.org/10.5194/soil-3-45-2017, https://doi.org/10.5194/soil-3-45-2017, 2017
Short summary
Short summary
We discuss pathways towards better soil protection in the 21st century. The efficacy of soil conservation technology is not a fundamental barrier for a more sustainable soil management. However, soil conservation is generally not directly beneficial to the farmer. We believe that the solution of this conundrum is a rapid, smart intensification of agriculture in the Global South. This will reduce the financial burden and will, at the same time, allow more effective conservation.
Florian Wilken, Peter Fiener, and Kristof Van Oost
Earth Surf. Dynam., 5, 113–124, https://doi.org/10.5194/esurf-5-113-2017, https://doi.org/10.5194/esurf-5-113-2017, 2017
Short summary
Short summary
This study presents a model that accounts for preferential erosion and transport of sediment and soil organic carbon in agricultural landscapes. We applied the model to a small catchment in Belgium for a period of 100 years. After a thorough model evaluation, these simulations shows that sediment and carbon export are highly episodic and that the temporal variability is largely influenced by selective erosion and deposition.
Jianlin Zhao, Kristof Van Oost, Longqian Chen, and Gerard Govers
Biogeosciences, 13, 4735–4750, https://doi.org/10.5194/bg-13-4735-2016, https://doi.org/10.5194/bg-13-4735-2016, 2016
Short summary
Short summary
We used a novel approach to reassess erosion rates on the CLP. We found that both current average topsoil erosion rates and the maximum magnitude of the erosion-induced carbon sink are overestimated on the CLP. Although average topsoil losses on the CLP are still high, a major increase in agricultural productivity occurred since 1980. Hence, erosion is currently not a direct threat to agricultural productivity on the CLP but the long-term effects of erosion on soil quality remain important.
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
Victoria Naipal, Christian Reick, Kristof Van Oost, Thomas Hoffmann, and Julia Pongratz
Earth Surf. Dynam., 4, 407–423, https://doi.org/10.5194/esurf-4-407-2016, https://doi.org/10.5194/esurf-4-407-2016, 2016
Short summary
Short summary
We present a new large-scale coarse-resolution sediment budget model that is compatible with Earth system models and simulates sediment dynamics in floodplains and on hillslopes. We applied this model on the Rhine catchment for the last millennium, and found that the model reproduces the spatial distribution of sediment storage and the scaling relationships as found in observations. We also identified that land use change explains most of the temporal variability in sediment storage.
V. Naipal, C. Reick, J. Pongratz, and K. Van Oost
Geosci. Model Dev., 8, 2893–2913, https://doi.org/10.5194/gmd-8-2893-2015, https://doi.org/10.5194/gmd-8-2893-2015, 2015
Short summary
Short summary
We adjusted the topographical and rainfall erosivity factors that are the triggers of erosion in the Revised Universal Soil Loss Equation (RUSLE) model to make the model better applicable at coarse resolution on a global scale. The adjusted RUSLE model compares much better to current high resolution estimates of soil erosion in the USA and Europe. It therefore provides a basis for estimating past and future global impacts of soil erosion on climate with the use of Earth system models.
F. Wiaux, M. Vanclooster, and K. Van Oost
Biogeosciences, 12, 4637–4649, https://doi.org/10.5194/bg-12-4637-2015, https://doi.org/10.5194/bg-12-4637-2015, 2015
Short summary
Short summary
In this study, we highlight the role of soil physical conditions and gas transfer mechanisms and dynamics in the decomposition and storage of soil organic carbon in subsoil layers. To illustrate it, we measured the time series of soil temperature, moisture and CO2 concentration and calculated CO2 fluxes along 1 m depth soil profiles during 6 months throughout two contrasted soil profiles along a hillslope in the central loess belt of Belgium.
S. Doetterl, J.-T. Cornelis, J. Six, S. Bodé, S. Opfergelt, P. Boeckx, and K. Van Oost
Biogeosciences, 12, 1357–1371, https://doi.org/10.5194/bg-12-1357-2015, https://doi.org/10.5194/bg-12-1357-2015, 2015
Short summary
Short summary
We link the mineralogy of soils affected by erosion and deposition to the distribution of soil carbon fractions, their turnover and microbial activity. We show that the weathering status of soils and their history are controlling the stabilization of carbon with minerals. After burial, aggregated C is preserved more efficiently while non-aggregated C can be released and younger C re-sequestered more easily. Weathering changes the effectiveness of stabilization mechanism limiting this C sink.
E. C. Brevik, A. Cerdà, J. Mataix-Solera, L. Pereg, J. N. Quinton, J. Six, and K. Van Oost
SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, https://doi.org/10.5194/soil-1-117-2015, 2015
Short summary
Short summary
This paper provides a brief accounting of some of the many ways that the study of soils can be interdisciplinary, therefore giving examples of the types of papers we hope to see submitted to SOIL.
D. Penna, M. Borga, G. T. Aronica, G. Brigandì, and P. Tarolli
Hydrol. Earth Syst. Sci., 18, 2127–2139, https://doi.org/10.5194/hess-18-2127-2014, https://doi.org/10.5194/hess-18-2127-2014, 2014
Z. Wang, K. Van Oost, A. Lang, T. Quine, W. Clymans, R. Merckx, B. Notebaert, and G. Govers
Biogeosciences, 11, 873–883, https://doi.org/10.5194/bg-11-873-2014, https://doi.org/10.5194/bg-11-873-2014, 2014
T. Hoffmann, S. M. Mudd, K. van Oost, G. Verstraeten, G. Erkens, A. Lang, H. Middelkoop, J. Boyle, J. O. Kaplan, J. Willenbring, and R. Aalto
Earth Surf. Dynam., 1, 45–52, https://doi.org/10.5194/esurf-1-45-2013, https://doi.org/10.5194/esurf-1-45-2013, 2013
Related subject area
Biogeochemistry: Soils
Effect of straw retention and mineral fertilization on P speciation and P-transformation microorganisms in water- extractable colloids of a Vertisol
A new approach to continuous monitoring of carbon use efficiency and biosynthesis in soil microbes from measurement of CO2 and O2
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
The effects of land use on soil carbon stocks in the UK
Technical note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Distinct changes in carbon, nitrogen, and phosphorus cycling in the litter layer across two contrasting forest-tundra ecotones
A microbially-driven and depth-explicit soil organic carbon model constrained by carbon isotopes to reduce equifinality
Earth observation reveals reduced winter wheat growth and the importance of soil water storing capacity during drought
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Plutonium concentrations link soil organic matter decline to wind erosion in ploughed soils of South Africa
A Synthesis of Sphagnum Litterbag Experiments: Initial Leaching Losses Bias Decomposition Rate Estimates
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Soil priming effects and involved microbial community along salt gradients
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Global patterns and drivers of phosphorus fractions in natural soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Shanshan Bai, Yifei Ge, Dongtan Yao, Yifan Wang, Jinfang Tan, Shuai Zhang, Yutao Peng, and Xiaoqian Jiang
Biogeosciences, 22, 135–151, https://doi.org/10.5194/bg-22-135-2025, https://doi.org/10.5194/bg-22-135-2025, 2025
Short summary
Short summary
Mineral fertilization led to increases in total P, available P, high-activity inorganic P fractions, and organic P but reduced the abundance of P-cycling genes by decreasing soil pH and increasing P in bulk soil. Straw retention enhanced organic carbon, total P, and available P concentrations in water-extractable colloids (WECs). Abundances of the phoD gene and phoD-harboring Proteobacteria in WECs were elevated under straw retention, suggesting an increase in P-mineralization capacity.
Kyle E. Smart, Daniel O. Breecker, Christopher B. Blackwood, and Timothy M. Gallagher
Biogeosciences, 22, 87–101, https://doi.org/10.5194/bg-22-87-2025, https://doi.org/10.5194/bg-22-87-2025, 2025
Short summary
Short summary
When microbes consume carbon within soils, it is important to know how much carbon is respired and lost as carbon dioxide versus how much is used to make new biomass. We used a new approach of monitoring carbon dioxide and oxygen to track the fate of consumed carbon during a series of laboratory experiments where sugar was added to moistened soil. Our approach allowed us to estimate how much sugar was converted to dead microbial biomass, which is more likely to be preserved in soils.
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Peter Levy, Laura Bentley, Peter Danks, Bridget Emmett, Angus Garbutt, Stephen Heming, Peter Henrys, Aidan Keith, Inma Lebron, Niall McNamara, Richard Pywell, John Redhead, David Robinson, and Alexander Wickenden
Biogeosciences, 21, 4301–4315, https://doi.org/10.5194/bg-21-4301-2024, https://doi.org/10.5194/bg-21-4301-2024, 2024
Short summary
Short summary
We collated a large data set (15 790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects was large. This has important implications for agri-environment schemes seeking to sequester carbon in the soil by altering land use because the effect of a given intervention is very hard to verify.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Frank Hagedorn, Joesphine Imboden, Pavel Moiseev, Decai Gao, Emmanuel Frossard, Daniel Christen, Konstantin Gavazov, and Jasmin Fetzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2622, https://doi.org/10.5194/egusphere-2024-2622, 2024
Short summary
Short summary
At treeline, plant species change abruptly from low stature plants in tundra to trees in forests. Our study documents that from tundra towards forest, the litter layer gets strongly enriched in nutrients. We show that these litter quality changes alter nutrient processing by soil microbes and increase the nutrient release during decomposition in forest than in tundra. The associated improvement of nutrient availability in the forest potentially stimulates tree growth and treeline shifts.
Marijn Van de Broek, Gerard Govers, Marion Schrumpf, and Johan Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-2205, https://doi.org/10.5194/egusphere-2024-2205, 2024
Short summary
Short summary
Soil organic carbon models are used to predict how soils affect the concentration of CO2 in the atmosphere. We show that equifinality – the phenomenon that different parameter values lead to correct overall model outputs, albeit with a different model behaviour – is an important source of model uncertainty. Our results imply that adding more complexity to soil organic carbon models is unlikely to lead to better predictions, as long as more data to constrain model parameters are not available.
Hanna Sjulgård, Lukas Valentin Graf, Tino Colombi, Juliane Hirte, Thomas Keller, and Helge Aasen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1872, https://doi.org/10.5194/egusphere-2024-1872, 2024
Short summary
Short summary
Our results showed that crop development derived from satellite images was lower in a dry year compared to a normal year, and faster growth was found more important for higher biomass during drought. The magnitude of the drought impact differed between fields, where higher crop performance was related to more plant available water, suggesting that soil properties play a role in crop response to drought. Our results shows that satellite images can be used to assess plant-soil-weather interactions
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
EGUsphere, https://doi.org/10.5194/egusphere-2024-1312, https://doi.org/10.5194/egusphere-2024-1312, 2024
Short summary
Short summary
We measured concentrations of fallout radionuclides (FRNs) in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century CE, the FRN data strongly correlate with the soil organic matter (SOM) content of the soils. The finding implies that wind erosion strongly influenced SOM loss in the soils we investigated. Furthermore, the exponential decline of FRN concentrations and SOM content over time peaks shortly after native grassland is cultivated.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2024-1686, https://doi.org/10.5194/egusphere-2024-1686, 2024
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024, https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024, https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Short summary
Soil salinity mediates microorganisms and soil processes like soil organic carbon (SOC) cycling. We observed that negative priming effects at the early stages might be due to the preferential utilization of cottonseed meal. The positive priming that followed decreased with the increase in salinity.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023, https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among terrestrial, wetland, and marine ecosystems and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in terrestrial ecosystems but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023, https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Imane Slimani, Xia Zhu-Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Cited articles
Ali, R. S., Kandeler, E., Marhan, S., Demyan, M. S., Ingwersen, J., Mirzaeitalarposhti, R., and Poll, C.:
Controls on microbially regulated soil organic carbon decomposition at the regional scale,
Soil Biol. Biochem.,
118, 59–68, https://doi.org/10.1016/j.soilbio.2017.12.007, 2018.
An, F. Y., Lai, Z. P., Liu, X. J., Fan, Q. S., and Wei, H. C.:
Abnormal ratio in lacustrine sediments of Qaidam Basin, NE Qinghai–Tibetan Plateau: A significant role of aeolian dust input,
Quatern. Int.,
469, 44–57, https://doi.org/10.1016/j.quaint.2016.12.050, 2018.
Antle, J. M., Stoorvogel, J. J., and Valdivia, R. O.:
Assessing the economic impacts of agricultural carbon sequestration: Terraces and agroforestry in the Peruvian Andes,
Agr. Ecosyst. Environ.,
122, 435–445, https://doi.org/10.1016/j.agee.2007.02.003, 2007.
Bailey, V. L., Pries, C. H., and Lajtha, K.:
What do we know about soil carbon destabilization?,
Environ. Res. Lett.,
14, 083004, https://doi.org/10.1088/1748-9326/ab2c11, 2019.
Berhe, A. A., Harte, J., Harden, J. W., and Torn, M. S.:
The Significance of the Erosion-induced Terrestrial Carbon Sink,
BioScience,
57, 337–346, https://doi.org/10.1641/b570408, 2007.
Beuselinck, L., Govers, G., Poesen, J., Degraer, G., and Froyen, L.:
Grain-size analysis by laser diffractometry: Comparison with the sieve-pipette method,
Catena,
32, 193–208, https://doi.org/10.1016/S0341-8162(98)00051-4, 1998.
Bosatta, E. and Ågren, G. I.:
Soil organic matter quality interpreted thermodynamically,
Soil Biol. Biochem.,
31, 1889–1891, https://doi.org/10.1016/S0038-0717(99)00105-4, 1999.
Brown, A. G., Fallu, D. J., Walsh, K., Cucchiaro, S., Tarolli, P., Zhao, P., Pears, B., Van Oost, K., Snape, L., Lang, A., Albert, R., Alsos, I. G., and Waddington, C.:
Ending the cinderella status of terraces and lynchets in Europe: the geomorphology of agricultural terraces and implications for ecosystem services and climate adaptation,
Geomorphology,
379, 107579, https://doi.org/10.1016/j.geomorph.2020.107579, 2021.
British Geological Survey, Natural Environment Research Council, Nottingham, available at: https://www.mineralsuk.com (last access: 4 December 2021), 2018.
Chen, D., Wei, W., Daryanto, S., and Tarolli, P.:
Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China,
Sci. Total Environ.,
721, 137751, https://doi.org/10.1016/j.scitotenv.2020.137751, 2020.
Cockcroft, D. and Waddington, C.:
Plantation Camp Agricultural Terraces, Northumberland Archaeological Evaluation, unpublished technical report,
Archaeological Research Services Ltd., Bakewell, forthcoming, 2020.
Craine, J. M., Fierer, N., and McLauchlan, K. K.:
Widespread coupling between the rate and temperature sensitivity of organic matter decay,
Nat. Geosci.,
3, 854–857, https://doi.org/10.1038/ngeo1009, 2010a.
Craine, J., Spurr, R., McLauchlan, K., and Fierer, N.:
Landscape-level variation in temperature sensitivity of soil organic carbon decomposition,
Soil Biol. Biochem.,
42, 373–375, https://doi.org/10.1016/j.soilbio.2009.10.024, 2010b.
Cucchiaro, S., Fallu, D. J., Zhang, H., Walsh, K., Van Oost, K., Brown, A. G., and Tarolli, P.:
Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions,
Remote Sens.-Basel,
12, 1946, https://doi.org/10.3390/rs12121946, 2020a.
Cucchiaro, S., Fallu, D. J., Zhao, P., Waddington, C., Cockcroft, D., Tarolli, P., and Brown, A. G.:
SfM photogrammetry for GeoArchaeology, in: Remote Sensing of Geomorphology, Elsevier B.V., 183–205, https://doi.org/10.1016/B978-0-444-64177-9.00006-0, 2020b.
Curtaz, F., Stanchi, S., D'Amico, M. E., Filippa, G., Zanini, E., and Freppaz, M.:
Soil evolution after land-reshaping in mountains areas (Aosta Valley, NW Italy),
Agr. Ecosyst. Environ.,
199, 238–248, https://doi.org/10.1016/j.agee.2014.09.013, 2015.
Davidson, E. A. and Janssens, I. A.:
Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,
Nature,
440, 165–173, https://doi.org/10.1038/nature04514, 2006.
De Blécourt, M., Hänsel, V. M., Brumme, R., Corre, M. D., and Veldkamp, E.:
Soil redistribution by terracing alleviates soil organic carbon losses caused by forest conversion to rubber plantation,
Forest Ecol. Manag.,
313, 26–33, https://doi.org/10.1016/j.foreco.2013.10.043, 2014.
Doetterl, S., Cornelis, J.-T., Six, J., Bodé, S., Opfergelt, S., Boeckx, P., and Van Oost, K.: Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape, Biogeosciences, 12, 1357–1371, https://doi.org/10.5194/bg-12-1357-2015, 2015.
Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., and Fiener, P.:
Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes,
Earth-Sci. Rev.,
154, 102–122, https://doi.org/10.1016/j.earscirev.2015.12.005, 2016.
Doetterl, S., Berhe, A. A., Arnold, C., Bodé, S., Fiener, P., Finke, P., Fuchslueger, L., Griepentrog, M., Harden, J. W., Nadeu, E., Schnecker, J., Six, J., Trumbore, S., Van Oost, K., Vogel, C., and Boeckx, P.:
Links among warming, carbon and microbial dynamics mediated by soil mineral weathering,
Nat. Geosci.,
11, 589–593, https://doi.org/10.1038/s41561-018-0168-7, 2018.
Dunjó, G., Pardini, G., and Gispert, M.:
Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain,
Catena,
52, 23–37, https://doi.org/10.1016/S0341-8162(02)00148-0, 2003.
Frodsham, P. and Waddington, C.:
The Breamish Valley Archaeology Project 1994–2002. Archaeology in Northumberland National Park, Report 136, 171–189,
Council for British Archaeology Research, Cambridge, 2004.
Gao, X., Li, W., Salman, A., Wang, R., Du, L., Yao, L., Hu, Y., and Guo, S.:
Impact of topsoil removal on soil CO2 emission and temperature sensitivity in Chinese Loess Plateau,
Sci. Total Environ.,
708, 135102, https://doi.org/10.1016/j.scitotenv.2019.135102, 2020.
Gillabel, J., Cebrian-Lopez, B., Six, J., and Merckx, R.:
Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition,
Glob. Change Biol.,
16, 2789–2798, https://doi.org/10.1111/j.1365-2486.2009.02132.x, 2010.
Harden, J. W., Sharpe, J. M., Parton, W. J., Ojima, D. S., Fries, T. L., Huntington, T. G., and Dabney, S. M.:
Dynamic replacement and loss of soil carbon on eroding cropland,
Global Biogeochem. Cy.,
13, 885–901, https://doi.org/10.1029/1999GB900061, 1999.
Kagabo, D. M., Stroosnijder, L., Visser, S. M., and Moore, D.:
Soil erosion, soil fertility and crop yield on slow-forming terraces in the highlands of Buberuka, Rwanda,
Soil Till. Res.,
128, 23–29, https://doi.org/10.1016/j.still.2012.11.002, 2013.
Kirschbaum, M. U. F.:
The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage,
Soil Biol. Biochem.,
27, 753–760, https://doi.org/10.1016/0038-0717(94)00242-S, 1995.
Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.:
Long-term sensitivity of soil carbon turnover to warming,
Nature,
433, 298–301, https://doi.org/10.1038/nature03226, 2005.
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., and Leinweber, P.:
Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry,
J. Plant Nutr. Soil Sc.,
171, 61–82, https://doi.org/10.1002/jpln.200700048, 2008.
Liu, Y., Wang, C., He, N., Wen, X., Gao, Y., Li, S., Niu, S., Butterbach-Bahl, K., Luo, Y., and Yu, G.:
A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms,
Glob. Change Biol.,
23, 455–464, https://doi.org/10.1111/gcb.13372, 2017.
Mesfin, A.:
A Field Guideline on Bench Terrace Design and Construction,
available at: https://nrmdblog.files.wordpress.com/2016/04/bench-terrace-manual.pdf (last access: 2 December 2021),
Ministry of Agriculture and Natural Resources Natural Resource Management Directorate, Ethiopia, 2016.
Muñoz-Salinas, E., Bishop, P., Sanderson, D. C., and Zamorano, J. J.:
Interpreting luminescence data from a portable OSL reader: Three case studies in fluvial settings,
Earth Surf. Proc. Land.,
36, 651–660, https://doi.org/10.1002/esp.2084, 2011.
Paul, E. A., Morris, S. J., and Bohm, S.:
The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers,
Assessment Methods for Soil Carbon,
14, 193–206, 2001.
Porat, N., López, G. I., Lensky, N., Elinson, R., Avni, Y., Elgart-Sharon, Y., Faershtein, G., and Gadot, Y.:
Using portable OSL reader to obtain a time scale for soil accumulation and erosion in archaeological terraces, the Judean Highlands, Israel,
Quat. Geochronol.,
49, 65–70, 2019.
Portenga, E. W., Bishop, P., Gore, D. B., and Westaway, K. E.:
Landscape preservation under post-European settlement alluvium in the south-eastern Australian tablelands, inferred from portable OSL reader data,
Earth Surf. Proc. Land.,
41, 1697–1707, 2016.
Shi, P., Zhang, Y., Li, P., Li, Z., Yu, K., Ren, Z., Xu, G., Cheng, S., Wang, F., and Ma, Y.:
Distribution of soil organic carbon impacted by land-use changes in a hilly watershed of the Loess Plateau, China,
Sci. Total Environ.,
652, 505–512, https://doi.org/10.1016/j.scitotenv.2018.10.172, 2019.
Six, J., Elliott, E. T., Paustian, K., and Doran, J. W.:
Aggregation and Soil Organic Matter Accumulation in Cultivated and Native Grassland Soils,
Soil Sci. Soc. Am. J.,
62, 1367, https://doi.org/10.2136/sssaj1998.03615995006200050032x, 1998.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K.:
Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils,
Plant Soil,
241, 155–176, https://doi.org/10.1023/A:1016125726789, 2002.
Sollins, P., Homann, P., and Caldwell, B. A.:
Stabilization and destabilization of soil organic matter: Mechanisms and controls,
Geoderma,
74, 65–105, https://doi.org/10.1016/S0016-7061(96)00036-5, 1996.
Stavi, I., Gusarov, Y., and Halbac-Cotoara-Zamfir, R.:
Collapse and failure of ancient agricultural stone terraces: On-site geomorphic processes, pedogenic mechanisms, and soil quality,
Geoderma,
344, 144–152, https://doi.org/10.1016/j.geoderma.2019.03.007, 2019.
Tarolli, P., Preti, F., and Romano, N.:
Terraced landscapes: from an old best practice to a potential hazard for soil degradation due to land abandonment,
Anthropocene,
6, 10–25. https://doi.org/10.1016/j.ancene.2014.03.002, 2014.
Tarolli, P., Sofia, G., Calligaro, S., Prosdocimi, M., Preti, F., and Dalla Fontana, G.:
Vineyards in Terraced Landscapes: New Opportunities from Lidar Data,
Land Degrad. Dev.,
26, 92–102, https://doi.org/10.1002/ldr.2311, 2015.
Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V., Marques Da Silva, J. R., and Merckx, R.:
The impact of agricultural soil erosion on the global carbon cycle,
Science,
318, 626–629, https://doi.org/10.1126/science.1145724, 2007.
Van Oost, K., Verstraeten, G., Doetterl, S., Notebaert, B., Wiaux, F., Broothaerts, N., and Six, J.:
Legacy of human-induced C erosion and burial on soil-atmosphere C exchange,
P. Natl. Acad. Sci. USA,
109, 19492–19497, https://doi.org/10.1073/pnas.1211162109, 2012.
VandenBygaart, A. J., Kroetsch, D., Gregorich, E. G., and Lobb, D.:
Soil C erosion and burial in cropland,
Glob. Change Biol.,
18, 1441–1452, https://doi.org/10.1111/j.1365-2486.2011.02604.x, 2012.
VandenBygaart A. J., Gregorich E. G., and Helgason B. L.:
Cropland C erosion and burial: Is buried soil organic matter biodegradable?,
Geoderma,
239, 240–249, https://doi.org/10.1016/j.geoderma.2014.10.011, 2015.
Walter, C., Merot, P., Layer, B., and Dutin, G.:
The effect of hedgerows on soil organic carbon storage in hillslopes,
Soil Use Manage.,
19, 201–207, https://doi.org/10.1079/sum2002190, 2003.
Wang, Q., Liu, S., and Tian, P.:
Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems,
Glob. Change Biol.,
24, 2841–2849, https://doi.org/10.1111/gcb.14105, 2018.
Wang, Z., Van Oost, K., Lang, A., Quine, T., Clymans, W., Merckx, R., Notebaert, B., and Govers, G.: The fate of buried organic carbon in colluvial soils: a long-term perspective, Biogeosciences, 11, 873–883, https://doi.org/10.5194/bg-11-873-2014, 2014.
Wang, Z., Van Oost, K., and Govers, G.:
Predicting the long-term fate of buried organic carbon in colluvial soils,
Global Biogeochem. Cy.,
29, 65–79, https://doi.org/10.1002/2014GB004912, 2015.
Wei, W., Chen, D., Wang, L., Daryanto, S., Chen, L., Yu, Y., Lu, Y., Sun, G., and Feng, T.:
Global synthesis of the classifications, distributions, benefits and issues of terracing,
Earth-Sci. Rev.,
159, 388–403, https://doi.org/10.1016/j.earscirev.2016.06.010, 2016.
Wiaux, F., Vanclooster, M., and Van Oost, K.: Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope, Biogeosciences, 12, 4637–4649, https://doi.org/10.5194/bg-12-4637-2015, 2015.
Xia, S., Song, Z., Li, Q., Guo, L., Yu, C., Singh, B. P., Fu, X., Chen, C., Wang, Y., and Wang, H.:
Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13C-δ15N, and lignin biomarker,
Glob. Change Biol.,
27, 417–434, 2021.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4253 KB) - Full-text XML
- Corrigendum
-
Supplement
(1269 KB) - BibTeX
- EndNote
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature...
Altmetrics
Final-revised paper
Preprint