Articles | Volume 18, issue 24
https://doi.org/10.5194/bg-18-6393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
School of Earth & Environmental Sciences, University of St.
Andrews, St. Andrews, UK
Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA
Kathy Allen
School of Ecosystem and Forest Sciences, University of Melbourne, 500
Yarra Boulevard, Richmond 3121, Australia
Patrick Baker
School of Ecosystem and Forest Sciences, University of Melbourne, 500
Yarra Boulevard, Richmond 3121, Australia
Gretel Boswijk
Tree-Ring Laboratory, School of Environment, The University of
Auckland, Private Bag 92019, Auckland, New Zealand
Brendan Buckley
Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA
Edward Cook
Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA
Rosanne D'Arrigo
Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA
Dan Druckenbrod
Department of Geological, Environmental, and Marine Sciences, Rider
University, 2083 Lawrenceville Rd, Lawrenceville, NJ, 08648, USA
Anthony Fowler
Tree-Ring Laboratory, School of Environment, The University of
Auckland, Private Bag 92019, Auckland, New Zealand
Margaux Grandjean
School of Earth & Environmental Sciences, University of St.
Andrews, St. Andrews, UK
Paul Krusic
Department of Geography, University of Cambridge, Cambridge, UK
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Jonathan Palmer
ARC Centre of Excellence in Australian Biodiversity and Heritage,
School of Biological, Earth and Environmental Sciences, University of New
South Wales, Sydney, NSW 2052, Australia
Related authors
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Cited articles
Allen, K. J., Cook, E. R., Francey, R. J., and Michael, K.: The climatic
response of Phyllocladus aspleniifolius (Labill.) Hook. f in Tasmania,
J. Biogeogr., 28, 305–316, https://doi.org/10.1046/j.1365-2699.2001.00546.x, 2002.
Allen, K. J., Ogden, J., Buckley, B. M., Cook, E. R., and Baker, P. J.: The
potential to reconstruct broadscale climate indices associated with
southeast Australian droughts from Athrotaxis species, Tasmania, Clim.
Dynam., 37, 1799–1821, https://doi.org/10.1007/s00382-011-1011-7,
2011.
Allen, K. J., Lee, G., Ling, F., Allie, S., Willis, M., and Baker, P. J.:
Palaeohydrology in climatological context: developing the case for use of
remote predictors in Australian streamflow reconstructions, Appl. Geogr., 64, 132–152, https://doi.org/10.1016/j.apgeog.2015.09.007, 2015a.
Allen, K. J., Nichols, S. C., Evans, R., Cook, E. R., Allie, S., Carson, G.,
Ling, F., and Baker, P. J.: Preliminary December–January inflow and
streamflow reconstructions from tree rings for western Tasmania,
southeastern Australia, Water Resour. Res., 51, 5487–5503, https://doi.org/10.1002/2015WR017062, 2015b.
Allen, K. J., Fenwick, P., Palmer, J. G., Nichols, S. C., Cook, E. R., Buckley,
B. M., and Baker, P. J.: A 1700-year Athrotaxis selaginoides tree-ring width
chronology from southeastern Australia, Dendrochronologia, 45, 90–100,
https://doi.org/10.1016/j.dendro.2017.07.004, 2017.
Allen, K. J., Cook, E. R., Evans, R., Francey, R., Buckley, B. M., Palmer,
J. G., Peterson, M. J., and Baker, P. J.: Lack of cool, not warm, extremes
distinguishes late 20th Century climate in 979-year Tasmanian summer
temperature reconstruction, Environ. Res. Lett., 13, 034041,
https://doi.org/10.1088/1748-9326/aaafd7, 2018.
Alexander, M. R., Pearl, J. K., Bishop, D. A., Cook, E. R., Anchukaitis, K. J.,
and Pederson, N.: The potential to strengthen temperature reconstructions in
ecoregions with limited tree line using a multispecies approach, Quat. Res., 92, 583–597, https://doi.org/10.1017/qua.2019.33, 2019.
Altman, J.: Tree-ring-based disturbance reconstruction in interdisciplinary
research: Current state and future directions. Dendrochronologia, 125733,
https://doi.org/10.1016/j.dendro.2020.125733, 2020.
Arbellay, E., Jarvis, I., Chavardès, R. D., Daniels, L. D., and Stoffel,
M.: Tree-ring proxies of larch bud moth defoliation: latewood width and blue
intensity are more precise than tree-ring width, Tree Physiol., 38,
1237–1245, https://doi.org/10.1093/treephys/tpy057, 2018.
Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R.,
Carrer, M., Grabner, M., Tegel, W., Levanic, T., and Panayotov, M.: Site-and
species-specific responses of forest growth to climate across the European
continent, Global Ecol. Biogeogr., 22, 706–717, https://doi.org/10.1111/geb.12023, 2013.
Babst, F., Wright, W. E., Szejner, P., Wells, L., Belmecheri, S., and Monson,
R. K.: Blue intensity parameters derived from Ponderosa pine tree rings
characterize intra-annual density fluctuations and reveal seasonally
divergent water limitations, Trees, 30, 1403–1415, https://doi.org/10.1007/s00468-016-1377-6, 2016.
Björklund, J. A., Gunnarson, B. E., Seftigen, K., Esper, J., and Linderholm, H. W.: Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information, Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, 2014a.
Björklund, J., Gunnarson, B.E., Seftigen, K., Zhang, P., and Linderholm,
H. W.: Using adjusted blue intensity data to attain high-quality summer
temperature information: a case study from Central Scandinavia, The Holocene,
25, 547–556, https://doi.org/10.1177/0959683614562434, 2014b.
Björklund, J., Seftigen, K., Schweingruber, F., Fonti, P., von Arx, G.,
Bryukhanova, M. V., Cuny, H. E., Carrer, M., Castagneri, D., and Frank, D. C.:
Cell size and wall dimensions drive distinct variability of earlywood and
latewood density in Northern Hemisphere conifers, New Phytologist, 216,
728–740, https://doi.org/10.1111/nph.14639, 2017.
Björklund, J., von Arx, G., Nievergelt, D., Wilson, R., Van den Bulcke, J., Günther, B., Loader, N. J., Rydval, M., Fonti, P., Scharnweber, T., Andreu-Hayles, L., Büntgen, U., D'Arrigo, R., Davi, N., De Mil, T., Esper, J., Gärtner, H., Geary, J., Gunnarson, B. E., Hartl, C., Hevia, A., Song, H., Janecka, K., Kaczka, R. J., Kirdyanov, A. V., Kochbeck, M., Liu, Y., Meko, M., Mundo, I., Nicolussi, K., Oelkers, R., Pichler, T., Sánchez-Salguero, R., Schneider, L., Schweingruber, F., Timonen, M., Trouet, V., Van Acker, J., Verstege, A., Villalba, R., Wilmking, M., and Frank, D.: Scientific Merits and Analytical Challenges of Tree-Ring Densitometry, Rev. Geophys., 57, 1224–1264, https://doi.org/10.1029/2019RG000642, 2019.
Björklund, J., Seftigen, K., Fonti, P., Nievergelt, D., von Arx, G.:
Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus
sylvestris, Dendrochronologia, 60, 125673, https://doi.org/10.1016/j.dendro.2020.125673, 2020.
Blake, S. A., Palmer, J. G., Björklund, J., Harper, J. B., and Turney, C. S.:
Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree
rings using Blue-Intensity (BI), Dendrochronologia, 60, 125664, https://doi.org/10.1016/j.dendro.2020.125664, 2020.
Boswijk, G., Fowler, A. M., Palmer, J. G., Fenwick, P., Hogg, A., Lorrey, A.
and Wunder, J.: The late Holocene kauri chronology: assessing the potential
of a 4500-year record for palaeoclimate reconstruction, Quat. Sci. Rev., 90, 128–142, https://doi.org/10.1016/j.quascirev.2014.02.022, 2014.
Bradley, R. S.: Paleoclimatology: reconstructing climates of the Quaternary,
Elsevier, 595 pp., 1999.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov, S. G.,
and Vaganov, E. A.: Tree-ring width and density data around the Northern
Hemisphere: Part 1, local and regional climate signals, The Holocene, 12,
737–757, https://doi.org/10.1191/0959683602hl587rp, 2002.
Brookhouse, M. and Graham, R.: Application of the minimum blue-intensity
technique to a southern-hemisphere conifer, Tree-Ring Res., 72,
103–107, https://doi.org/10.3959/1536-1098-72.02.103, 2016.
Buckley, B. M., Cook, E. R., Peterson, M. J., and Barbetti, M.: A changing
temperature response with elevation for Lagarostrobos franklinii in
Tasmania, Australia, In Climatic Change at High Elevation Sites, Springer, Dordrecht. https://doi.org/10.1023/A:1005322332230, 245–266, 1997.
Buckley, B., Ogden, J., Palmer, J., Fowler, A., and Salinger, J.:
Dendroclimatic interpretation of tree-rings in Agathis australis (kauri), 1.
Climate correlation functions and master chronology. Journal of the Royal
Society of New Zealand, 30, 263–276, https://doi.org/10.1080/10412905.2002.9699839, 2000.
Buckley, B. M., Hansen, K. G., Griffin, K.L., Schmiege, S., Oelkers, R.,
D'Arrigo, R. D., Stahle, D. K., Davi, N., Nguyen, T. Q. T., Le, C. N., and Wilson,
R. J.: Blue intensity from a tropical conifer's annual rings for climate
reconstruction: An ecophysiological perspective, Dendrochronologia, 50,
10–22, https://doi.org/10.1016/j.dendro.2018.04.003, 2018.
Büntgen, U., Krusic, P. J., Verstege, A., Sangüesa-Barreda, G.,
Wagner, S., Camarero, J. J., Ljungqvist, F. C., Zorita, E., Oppenheimer, C.,
Konter, O., and Tegel, W.: New tree-ring evidence from the Pyrenees reveals
Western Mediterranean climate variability since medieval times, J. Climate, 30, 5295–5318, https://doi.org/10.1175/JCLI-D-16-0526.1, 2017.
Büntgen, U., Urban, O., Krusic, P.J., Rybníček, M.,
Kolář, T., Kyncl, T., Ač, A., Koňasová, E.,
Čáslavský, J., Esper, J., and Wagner, S.: Recent European drought
extremes beyond Common Era background variability, Nat. Geosci., 14,
190–196, https://doi.org/10.1038/s41561-021-00698-0, 2021.
Buras, A.: A comment on the expressed population signal, Dendrochronologia,
44, 130–132, https://doi.org/10.1016/j.dendro.2017.03.005, 2017
Buras, A., Spyt, B., Janecka, K., and Kaczka, R.: Divergent growth of Norway
spruce on Babia Góra Mountain in the western Carpathians,
Dendrochronologia, 50, 33–43, https://doi.org/10.1016/j.dendro.2018.04.005, 2018.
Camarero, J. J., Rozas, V., and Olano, J. M.: Minimum wood density of Juniperus
thurifera is a robust proxy of spring water availability in a continental
Mediterranean climate, J. Biogeogr., 41, 1105–1114, https://doi.org/10.1111/jbi.12271, 2014.
Camarero, J. J., Fernández-Pérez, L., Kirdyanov, A. V., Shestakova,
T. A., Knorre, A. A., Kukarskih, V. V., and Voltas, J.: Minimum wood density of
conifers portrays changes in early season precipitation at dry and cold
Eurasian regions, Trees, 31, 1423–1437, https://doi.org/10.1007/s00468-017-1559-x, 2017.
Campbell, R., McCarroll, D., Loader, N. J., Grudd, H., Robertson, I.,
Jalkanen, R.: Blue intensity in Pinus sylvestris tree-rings: developing a
new palaeoclimate proxy, The Holocene, 17, 821–828, https://doi.org/10.1177/0959683607080523, 2007.
Campbell, R., McCarroll, D., Robertson, I., Loader, N. J., Grudd, H.,
and Gunnarson, B.: Blue intensity in Pinus sylvestris tree rings: a manual for a
new palaeoclimate proxy, Tree-Ring Res., 67, 127–135, https://doi.org/10.3959/2010-13.1, 2011.
Cleaveland, M. K.: Climatic response of densitometric properties in semiarid
site tree rings, Tree-Ring Bull, 46, 13–29, 1986.
Cook, E. R. and Peters, K.: The smoothing spline: a new approach to
standardizing forest interior tree-ring width series for dendroclimatic
studies, 45–53, 1981.
Cook, E. R.: The Decomposition of Tree-Ring Series for Environmental
Studies, Tree-Ring Bull., 47, 37–59, 1987.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in
dendroclimatology: a review and comparison of two techniques, Int. J. Climatol., 14, 379–402, doi.org/10.1002/joc.3370140404,
1994.
Cook, E. R., Palmer, J. G., Cook, B. I., Hogg, A., and D D'Arrigo, R.: A
multi-millennial palaeoclimatic resource from Lagarostrobos colensoi
tree-rings at Oroko Swamp, New Zealand, Glob. Planet. Change,
33, 209–220, https://doi.org/10.1016/S0921-8181(02)00078-4, 2002.
Cook, E. R., Buckley, B. M., Palmer, J. G., Fenwick, P., Peterson, M. J.,
Boswijk, G., and Fowler, A.: Millennia-long tree-ring records from Tasmania
and New Zealand: A basis for modelling climate variability and forcing,
past, present and future, J. Quat. Sci., 21, 689–699, https://doi.org/10.1002/jqs.1071,
2006.
Cook, E. R. and Pederson, N.: Uncertainty, emergence, and statistics in
dendrochronology, in: Dendroclimatology, Springer, Dordrecht, 77–112,
https://doi.org/10.1007/978-1-4020-5725-0_4, 2011.
D'Arrigo, R. D., Buckley, B. M., Cook, E. R., and Wagner, W. S.:
Temperature-sensitive tree-ring width chronologies of pink pine (Halocarpus
biformis) from Stewart Island, New Zealand. Palaeogeography,
Palaeoclimatology, Palaeoecology, 119, 293–300,
https://doi.org/10.1016/0031-0182(95)00014-3, 1996.
Davi, N. K., Rao, M. P., Wilson, R., Andreu-Hayles, L., Oelkers, R., D'Arrigo,
R., Nachin, B., Buckley, B., Pederson, N., Leland, C., and Suran, B.:
Accelerated Recent Warming and Temperature Variability over the Past Eight
Centuries in the Central Asian Altai from Blue Intensity in Tree Rings,
Geophys. Res. Lett., 49, doi.org/10.1029/2021GL092933, 2021.
Dolgova, E.: June–September temperature reconstruction in the Northern
Caucasus based on blue intensity data, Dendrochronologia, 39, 17–23, https://doi.org/10.1016/j.dendro.2016.03.002, 2016.
Drew, D. M., Allen, K., Downes, G. M., Evans, R., Battaglia, M., and Baker, P.:
Wood properties in a long-lived conifer reveal strong climate signals where
ring-width series do not, Tree Physiol., 33, 37–47, https://doi.org/10.1093/treephys/tps111, 2012.
Druckenbrod, D. L., Pederson, N., Rentch, J., and Cook, E.R.: A comparison of
times series approaches for dendroecological reconstructions of past canopy
disturbance events, Forest Ecol. Manage., 302, 23–33, https://doi.org/10.1016/j.foreco.2013.03.040, 2013.
Duncan, R. P., Fenwick, P., Palmer, J. G., McGlone, M. S., and Turney, C. S.:
Non-uniform interhemispheric temperature trends over the past 550
years, Clim. Dynam., 35, 1429–1438, https://doi.org/10.1007/s00382-010-0794-2, 2010.
Esper, J., Frank, D. C., Timonen, M., Zorita, E., Wilson, R. J., Luterbacher,
J., Holzkämper, S., Fischer, N., Wagner, S., Nievergelt, D., and
Verstege, A.: Orbital forcing of tree-ring data, Nat. Clim. Change,
2, 862–866, https://doi.org/10.1038/NCLIMATE1589, 2012.
Evans R.: Rapid measurement of the transverse dimensions of tracheids in
radial wood sections from Pinus radiata, Holzforschung, 48, 168–172,
https://doi.org/10.1515/hfsg.1994.48.2.168, 1994.
Fonti, P., Bryukhanova, M. V., Myglan, V. S., Kirdyanov, A. V., Naumova, O. V.,
and Vaganov, E. A.: Temperature-induced responses of xylem structure of Larix
sibirica (Pinaceae) from the Russian Altay, American Journal of Botany,
100, 1332–1343, https://doi.org/10.3732/ajb.1200484, 2013.
Fowler, A., Palmer, J., Salinger, J., and Ogden, J.: Dendroclimatic
interpretation of tree-rings in Agathis australis (kauri): 2. Evidence of a
significant relationship with ENSO, Journal of the Royal Society of New
Zealand, 30, 277–292, https://doi.org/10.1080/03014223.2000.9517622, 2000.
Fowler, A. M., Boswijk, G., Lorrey, A. M., Gergis, J., Pirie, M., McCloskey,
S. P., Palmer, J. G., and Wunder, J.: Multi-centennial tree-ring record of
ENSO-related activity in New Zealand, Nat. Clim. Change, 2,
172–176, https://doi.org/10.1038/nclimate1374, 2012.
Fritts, H. C., Smith, D. G., Cardis, J. W., and Budelsky, C. A.: Tree-ring
characteristics along a vegetation gradient in northern Arizona, Ecology,
46, 393–401, doi.org/10.2307/1934872, 1965.
Fritts, H. C.: Tree Rings and Climate, London, Academic Press Ltd, 553 pp., 1976.
Fuentes, M., Salo, R., Björklund, J., Seftigen, K., Zhang, P.,
Gunnarson, B., Aravena, J. C., and Linderholm, H. W.: A 970-year-long summer
temperature reconstruction from Rogen, west-central Sweden, based on blue
intensity from tree rings, The Holocene, 28, 254–266, https://doi.org/10.1177/0959683617721322, 2017.
Harley, G. L., Heeter, K. J., Maxwell, J. T., Rayback, S. A., Maxwell, R. S.,
Reinemann, T. E., and Taylor, A.: Towards broad-scale temperature
reconstructions for Eastern North America using blue light intensity from
tree rings, Int. J. Clim., 41, 3142–3159, https://doi.org/10.1002/joc.6910, 2021.
Harris, I. P. D. J., Jones, P. D., Osborn, T. J., and Lister, D.H.: Updated
high-resolution grids of monthly climatic observations–the CRU TS3. 10,
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Heeter, K. J., Harley, G. L., Maxwell, J. T., McGee, J. H., and Matheus, T. J.:
Late summer temperature variability for the Southern Rocky Mountains (USA)
since 1735 CE: applying blue light intensity to low-latitude Picea
engelmannii Parry ex Engelm, Clim. Change, 162, 965–988, https://doi.org/10.1007/s10584-020-02772-9, 2020.
Helama, S., Arentoft, B. W., Collin-Haubensak, O., Hyslop, M. D., Brandstrup,
C. K., Mäkelä, H. M., Tian, Q., and Wilson, R.: Dendroclimatic signals
deduced from riparian versus upland forest interior pines in North Karelia,
Finland, Ecol. Res., 28, 1019–1028, https://doi.org/10.1007/s11284-013-1084-3, 2013.
Kaczka, R. J., Spyt, B., Janecka, K., Beil, I., Büntgen, U., Scharnweber,
T., Nievergelt, D., and Wilmking, M.: Different maximum latewood density and
blue intensity measurements techniques reveal similar results,
Dendrochronologia, 49, 94–101, https://doi.org/10.1016/j.dendro.2018.03.005, 2018.
Kaczka, R. J. and Wilson, R.: I-BIND: International Blue Intensity Network
Development Working Group, Dendrochronologia, 68, 125859, https://doi.org/10.1016/j.dendro.2021.125859, 2021.
Ljungqvist, F. C., Thejll, P., Björklund, J., Gunnarson, B. E.,
Piermattei, A., Rydval, M., Seftigen, K., Støve, B., and Büntgen, U.:
Assessing non-linearity in European temperature-sensitive tree-ring data,
Dendrochronologia, 59, 125652, https://doi.org/10.1016/j.dendro.2019.125652, 2019.
Loader, N. J., Santillo, P. M., Woodman-Ralph, J. P., Rolfe, J. E., Hall, M. A.,
Gagen, M., Robertson, I., Wilson, R., Froyd, C. A., and McCarroll, D.:
Multiple stable isotopes from oak trees in southwestern Scotland and the
potential for stable isotope dendroclimatology in maritime climatic regions,
Chem. Geol., 252, 62–71, https://doi.org/10.1016/j.chemgeo.2008.01.006,
2008.
Loader, N. J., Young, G. H., McCarroll, D., Davies, D., Miles, D., and Bronk
Ramsey, C.: Summer precipitation for the England and Wales region,
1201–2000 CE, from stable oxygen isotopes in oak tree rings, J. Quat. Sci., 35, 731–736, https://doi.org/10.1002/jqs.3226, 2020.
Lorimer, C. G. and Frelich, L. E.: A methodology for estimating canopy
disturbance frequency and intensity in dense temperate forests, Canadian
Journal of Forest Research, 19, 651–663, https://doi.org/10.1139/x89-102, 1989.
McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., and Edouard, J. L.:
Blue reflectance provides a surrogate for latewood density of high-latitude
pine tree rings, Arctic, Antarctic, and Alpine Research, 34, 450–453,
https://doi.org/10.2307/1552203, 2002.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quat. Sci. Rev., 23, 771–801, https://doi.org/10.1016/j.quascirev.2003.06.017,
2004.
Neukom, R., Gergis, J., Karoly, D. J., Wanner, H., Curran, M., Elbert, J.,
González-Rouco, F., Linsley, B. K., Moy, A. D., Mundo, I., and Raible,
C. C.: Inter-hemispheric temperature variability over the past millennium,
Nat. Clim. Change, 4, 362–367, https://doi.org/10.1038/nclimate2174, 2014.
O'Donnell, A. J., Allen, K. J., Evans, R. M., Cook, E. R., Trouet, V., and Baker,
P. J.: Wood density provides new opportunities for reconstructing past
temperature variability from southeastern Australian trees, Global Planet. Change, 141, 1–11, https://doi.org/10.1016/j.gloplacha.2016.03.010, 2016.
Palmer, J. G. and Xiong, L.: New Zealand climate over the last 500 years
reconstructed from Libocedrus bidwillii Hook. f. tree-ring chronologies, The
Holocene, 14, 282–289, https://doi.org/10.1191/0959683604hl679rr, 2004.
Panyushkina, I. P., Hughes, M. K., Vaganov, E. A., and Munro, M. A.: Summer
temperature in northeastern Siberia since 1642 reconstructed from tracheid
dimensions and cell numbers of Larix cajanderi, Canadian Journal of Forest
Research, 33, 1905–1914, https://doi.org/10.1139/x03-109, 2003.
Prendin, A. L., Petit, G., Carrer, M., Fonti, P., Björklund, J., and von
Arx, G.: New research perspectives from a novel approach to quantify
tracheid wall thickness, Tree Physiol., 37, 976–983, https://doi.org/10.1093/treephys/tpx037, 2017.
Reid, E. and Wilson, R.: Delta Blue Intensity vs. Maximum Density: A Case
Study using Pinus uncinata in the Pyrenees, Dendrochronologia, 61, 125706, https://doi.org/10.1016/j.dendro.2020.125706, 2020.
Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S.,
Rosenfeld, A., Wurtele J., Groom D., and Wickham C.: A new estimate of the
average earth surface land temperature spanning 1753 to 2011, Geoinformatics and Geostatistics, 1:1, available at: https://static.berkeleyearth.org/papers/Results-Paper-Berkeley-Earth.pdf,
2013.
Rydval, M., Larsson, L. Å., McGlynn, L., Gunnarson, B. E., Loader, N. J.,
Young, G. H., and Wilson, R.: Blue intensity for dendroclimatology: should we
have the blues? Experiments from Scotland, Dendrochronologia, 32, 191–204,
https://doi.org/10.1016/j.dendro.2014.04.003, 2014.
Rydval, M., Druckenbrod, D., Anchukaitis, K. J., and Wilson, R.: Detection and
removal of disturbance trends in tree-ring series for dendroclimatology,
Canadian Journal of Forest Research, 46, 387–401, https://doi.org/10.1139/cjfr-2015-0366, 2015.
Rydval, M., Loader, N.J., Gunnarson, B. E., Druckenbrod, D. L., Linderholm,
H. W., Moreton, S. G., Wood, C. V., and Wilson, R.: Reconstructing 800 years of
summer temperatures in Scotland from tree rings, Clim. Dynam., 49,
2951–2974, https://doi.org/10.1007/s00382-016-3478-8, 2017.
Rydval, M., Druckenbrod, D. L., Svoboda, M., Trotsiuk, V., Janda, P.,
Mikoláš, M., Čada, V., Bače, R., Teodosiu, M., and Wilson, R.:
Influence of sampling and disturbance history on climatic sensitivity of
temperature-limited conifers, The Holocene, 28, 1574–1587, https://doi.org/10.1177/0959683618782605, 2018.
Seftigen, K., Fuentes, M., Ljungqvist, F. C., and Björklund, J.: Using
Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to
improve reconstruction of past hydroclimate variability, Clim. Dynam.,
1–16, https://doi.org/10.1007/s00382-020-05287-2, 2020.
St. George, S.: An overview of tree-ring width records across the Northern
Hemisphere, Quat. Sci. Rev., 95, 132–150, https://doi.org/10.1016/j.quascirev.2014.04.029, 2014.
Trotsiuk, V., Pederson, N., Druckenbrod, D. L., Orwig, D. A., Bishop, D. A.,
Barker-Plotkin, A., Fraver, S., and Martin-Benito, D.: Testing the efficacy
of tree-ring methods for detecting past disturbances, Forest Ecol.
Manage., 425, 59–67, https://doi.org/10.1016/j.foreco.2018.05.045, 2018.
Visser, H. and Molenaar, J.: Kalman filter analysis in dendroclimatology,
Biometrics, 44, 929–940, https://doi.org/10.2307/2531724, 1988.
von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K., and Carrer, M.:
Quantitative wood anatomy – practical guidelines, Front. Plant
Sci., 7, 781, https://doi.org/10.3389/fpls.2016.00781, 2016.
Wang, L., Payette, S., and Bégin, Y.: Relationships between anatomical
and densitometric characteristics of black spruce and summer temperature at
tree line in northern Quebec, Canadian Journal of Forest Research, 32,
477–486, https://doi.org/10.1139/x01-208, 2002.
Wigley, T. M., Briffa, K. R., and Jones, P. D.: On the average value of
correlated time series, with applications in dendroclimatology and
hydrometeorology, J. Appl. Meteorol. Clim., 23,
201–213, https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2, 1984.
Wiles, G. C., Charlton, J., Wilson, R. J., D'Arrigo, R. D., Buma, B., Krapek,
J., Gaglioti, B. V., Wiesenberg, N., and Oelkers, R.: Yellow-cedar blue intensity
tree-ring chronologies as records of climate in Juneau, Alaska, USA,
Canadian Journal of Forest Research, 49, 1483–1492, https://doi.org/10.1139/cjfr-2018-0525, 2019.
Wilmking, M., van der Maaten-Theunissen, M., van der Maaten, E.,
Scharnweber, T., Buras, A., Biermann, C., Gurskaya, M., Hallinger, M.,
Lange, J., Shetti, R., and Smiljanic, M.: Global assessment of relationships
between climate and tree growth, Glob. Change Biol., 26, 3212–3220,
https://doi.org/10.1111/gcb.15057, 2020.
Wilson, R. J. and Hopfmueller, M.: Dendrochronological investigations of
Norway spruce along an elevational transect in the Bavarian Forest, Germany,
Dendrochronologia, 19, 67–79, 2001.
Wilson, R. J. and Luckman, B. H.: Dendroclimatic reconstruction of maximum
summer temperatures from upper treeline sites in Interior British Columbia,
Canada, The Holocene, 13, 851–861, https://doi.org/10.1191/0959683603hl663rp,
2003.
Wilson, R. and Elling, W.: Temporal instability in tree-growth/climate
response in the Lower Bavarian Forest region: implications for
dendroclimatic reconstruction, Trees, 18, 19–28, https://doi.org/10.1007/s00468-003-0273-z, 2004.
Wilson, R. J. S, Rao, R., Rydval, M., Wood, C., Larsson, L.-A., and Luckman, B. H.:
Blue Intensity for Dendroclimatology: The BC Blues: A Case Study from
British Columbia Canada, The Holocene, 24, 1428–1438, https://doi.org/10.1177/0959683614544051, 2014.
Wilson, R., Anchukaitis, K., Briffa, K., Büntgen, U., Cook, E., D’Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helema, S., Klesse, S., Krusic, P., Linderholm, H.W., Myglan, V., Osborn, T., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., and Zorita, E.: Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: the long term context, Quat. Sci. Rev., 134, 1–18, https://doi.org/10.1016/j.quascirev.2015.12.005, 2016.
Wilson, R., Wilson, D., Rydval, M., Crone, A., Büntgen, U., Clark, S.,
Ehmer, J., Forbes, E., Fuentes, M., Gunnarson, B. E., Linderholm, H.,
Nicolussi, K., Wood, C., and Mills, C.: Facilitating tree-ring dating of
historic conifer timbers using Blue Intensity, J. Archaeol. Sci., 78, 99–111, https://doi.org/10.1016/j.jas.2016.11.011, 2017a.
Wilson, R., D'Arrigo, R., Andreu-Hayles, L., Oelkers, R., Wiles, G., Anchukaitis, K., and Davi, N.: Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska, Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, 2017b.
Wilson, R., Anchukaitis, K., Andreu-Hayles, L., Cook, E., D'Arrigo, R.,
Davi, N., Haberbauer, L., Krusic, P., Luckman, B., Morimoto, D., and Oelkers,
R.: Improved dendroclimatic calibration using blue intensity in the
southern Yukon, The Holocene, 29, 1817–1830, https://doi.org/10.1177/0959683619862037, 2019.
Xiong, L., Okada, N., Fujiwara, T., Ohta, S., and Palmer, J. G.: Chronology
development and climate response analysis of different New Zealand pink pine
(Halocarpus biformis) tree-ring parameters, Canadian Journal of Forest
Research, 28, 566–573, https://doi.org/10.1139/cjfr-28-4-566, 1998.
Yasue, K., Funada, R., Kobayashi, O., and Ohtani, J.: The effects of tracheid
dimensions on variations in maximum density of Picea glehnii and
relationships to climatic factors, Trees, 14, 223–229, https://doi.org/10.1007/PL00009766, 2000.
Young, G. H., Loader, N. J., McCarroll, D., Bale, R. J., Demmler, J. C., Miles,
D., Nayling, N. T., Rinne, K. T., Robertson, I., Watts, C., and Whitney, M.:
Oxygen stable isotope ratios from British oak tree-rings provide a strong
and consistent record of past changes in summer rainfall, Clim. Dynam.,
45, 3609–3622, https://doi.org/10.1007/s00382-015-2559-4, 2015.
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance...
Altmetrics
Final-revised paper
Preprint