Articles | Volume 18, issue 24
https://doi.org/10.5194/bg-18-6393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6393-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
School of Earth & Environmental Sciences, University of St.
Andrews, St. Andrews, UK
Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA
Kathy Allen
School of Ecosystem and Forest Sciences, University of Melbourne, 500
Yarra Boulevard, Richmond 3121, Australia
Patrick Baker
School of Ecosystem and Forest Sciences, University of Melbourne, 500
Yarra Boulevard, Richmond 3121, Australia
Gretel Boswijk
Tree-Ring Laboratory, School of Environment, The University of
Auckland, Private Bag 92019, Auckland, New Zealand
Brendan Buckley
Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA
Edward Cook
Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA
Rosanne D'Arrigo
Lamont-Doherty Earth Observatory, Palisades, New York 10964, USA
Dan Druckenbrod
Department of Geological, Environmental, and Marine Sciences, Rider
University, 2083 Lawrenceville Rd, Lawrenceville, NJ, 08648, USA
Anthony Fowler
Tree-Ring Laboratory, School of Environment, The University of
Auckland, Private Bag 92019, Auckland, New Zealand
Margaux Grandjean
School of Earth & Environmental Sciences, University of St.
Andrews, St. Andrews, UK
Paul Krusic
Department of Geography, University of Cambridge, Cambridge, UK
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Jonathan Palmer
ARC Centre of Excellence in Australian Biodiversity and Heritage,
School of Biological, Earth and Environmental Sciences, University of New
South Wales, Sydney, NSW 2052, Australia
Related authors
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Rob Wilson, Rosanne D'Arrigo, Laia Andreu-Hayles, Rose Oelkers, Greg Wiles, Kevin Anchukaitis, and Nicole Davi
Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, https://doi.org/10.5194/cp-13-1007-2017, 2017
Short summary
Short summary
Blue intensity shows great potential for reconstructing past summer temperatures from conifer trees growing at high latitude or the treeline. However, conifer species that express a strong colour difference between the heartwood and sapwood can impart a long-term trend bias in the resultant reconstructions. Herein, we highlight this issue using eight mountain hemlock sites across the Gulf of Alaska and explore how a non-biased reconstruction of past temperature could be derived using such data.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin J. Anchukaitis, Gabriele C. Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
Clim. Past, 21, 161–184, https://doi.org/10.5194/cp-21-161-2025, https://doi.org/10.5194/cp-21-161-2025, 2025
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years; however, climate model results and reconstructions of surface cooling using tree rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
Kristina Seftigen, Marina V. Fonti, Brian Luckman, Miloš Rydval, Petter Stridbeck, Georg von Arx, Rob Wilson, and Jesper Björklund
Clim. Past, 18, 1151–1168, https://doi.org/10.5194/cp-18-1151-2022, https://doi.org/10.5194/cp-18-1151-2022, 2022
Short summary
Short summary
New proxies and improvements in existing methodologies are needed to advance paleoclimate research. This study explored dendroanatomy, the analysis of wood anatomical parameters in dated tree rings, of Engelmann spruce from the Columbia Icefield area, Canada, as a proxy of past temperatures. Our new parameters compare favorably with state of the art proxy parameters from X-ray and visible light techniques, particularly with respect to the temporal stability of the temperature signal.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Lara Klippel, Scott St. George, Ulf Büntgen, Paul J. Krusic, and Jan Esper
Clim. Past, 16, 729–742, https://doi.org/10.5194/cp-16-729-2020, https://doi.org/10.5194/cp-16-729-2020, 2020
Short summary
Short summary
The PAGES2k multiproxy database offers a new and unique opportunity to study the lack of long-term cooling trends in tree-ring data, which can be expected in Northern Hemisphere summers, particularly in the high latitudes, due to orbitally driven changes in solar irradiance. Tests of different influencing factors reveal that preserving millennial-scale cooling trends related to orbital forcing is not feasible in most tree-ring datasets.
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019, https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Short summary
The New Zealand subantarctic islands, in the Pacific sector of the Southern Ocean, provide valuable records of past environmental change. We find that the Auckland Islands hosted a small ice cap around 384 000 years ago, but that there was little glaciation during the Last Glacial Maximum, around 21 000 years ago, in contrast to mainland New Zealand. This shows that the climate here is susceptible to changes in regional factors such as sea-ice expanse and the position of ocean fronts.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Mandy Freund, Benjamin J. Henley, David J. Karoly, Kathryn J. Allen, and Patrick J. Baker
Clim. Past, 13, 1751–1770, https://doi.org/10.5194/cp-13-1751-2017, https://doi.org/10.5194/cp-13-1751-2017, 2017
Short summary
Short summary
To understand how climate change will influence Australian rainfall we must first understand the long-term context of droughts and floods. We reconstruct warm and cool season rainfall in Australia's eight major climatic regions for several centuries into the past, building the clearest picture yet of long-term rainfall variability across the Australian continent. We find recent rainfall increases in the warm season in the north, and declines in the cool season in the south, to be highly unusual.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
Rob Wilson, Rosanne D'Arrigo, Laia Andreu-Hayles, Rose Oelkers, Greg Wiles, Kevin Anchukaitis, and Nicole Davi
Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, https://doi.org/10.5194/cp-13-1007-2017, 2017
Short summary
Short summary
Blue intensity shows great potential for reconstructing past summer temperatures from conifer trees growing at high latitude or the treeline. However, conifer species that express a strong colour difference between the heartwood and sapwood can impart a long-term trend bias in the resultant reconstructions. Herein, we highlight this issue using eight mountain hemlock sites across the Gulf of Alaska and explore how a non-biased reconstruction of past temperature could be derived using such data.
Ulf Büntgen and Paul J. Krusic
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-265, https://doi.org/10.5194/bg-2017-265, 2017
Revised manuscript not accepted
Short summary
Short summary
Changes in autumnal climate affecting the diversity and productivity of the ecosphere are arguably as important as vernal climatic changes. Here we present three examples of innovative, recent research in wildlife biology (big-game hunting), wood anatomy (tree-ring formation) and mycology (mushroom inventory), which refine our ability to better understand how varying environmental and climatic conditions impact the phenology, productiviy and diversity of different organisms in autumn.
Ian D. McHugh, Jason Beringer, Shaun C. Cunningham, Patrick J. Baker, Timothy R. Cavagnaro, Ralph Mac Nally, and Ross M. Thompson
Biogeosciences, 14, 3027–3050, https://doi.org/10.5194/bg-14-3027-2017, https://doi.org/10.5194/bg-14-3027-2017, 2017
Short summary
Short summary
We analysed a 3-year record of CO2 exchange at a eucalypt woodland and found that substantial nocturnal advective CO2 losses occurred, thus requiring correction. We demonstrated that the most common of these correction methods incurred substantial bias in long-term estimates of carbon balance if storage of CO2 below the measurement height was excluded. This is important because the majority of sites both in Australia and internationally lack such measurements.
Chris S.~M. Turney, Andrew Klekociuk, Christopher J. Fogwill, Violette Zunz, Hugues Goosse, Claire L. Parkinson, Gilbert Compo, Matthew Lazzara, Linda Keller, Rob Allan, Jonathan G. Palmer, Graeme Clark, and Ezequiel Marzinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-51, https://doi.org/10.5194/tc-2017-51, 2017
Revised manuscript not accepted
Short summary
Short summary
We demonstrate that a mid-twentieth century decrease in geopotential height in the southwest Pacific marks a Rossby wave response to equatorial Pacific warming, leading to enhanced easterly airflow off George V Land. Our results suggest that in contrast to ozone hole-driven changes in the Amundsen Sea, the 1979–2015 increase in sea ice extent off George V Land may be in response to reduced northward Ekman drift and enhanced (near-coast) production as a consequence of low latitude forcing.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
Timo A. Räsänen, Ville Lindgren, Joseph H. A. Guillaume, Brendan M. Buckley, and Matti Kummu
Clim. Past, 12, 1889–1905, https://doi.org/10.5194/cp-12-1889-2016, https://doi.org/10.5194/cp-12-1889-2016, 2016
Short summary
Short summary
El Niño-Southern Oscillation (ENSO) is linked to severe droughts and floods in mainland Southeast Asia. This research provides a more accurate and uniform picture of the spatio-temporal effects of ENSO on precipitation (1980–2013) and improves our understanding of long-term (1650–2004) ENSO teleconnection and its variability over the study area. The results reveal not only recognisable spatio-temporal patterns but also a high degree of variability and non-stationarity in the effects of ENSO.
C. S. M. Turney, R. T. Jones, C. Fogwill, J. Hatton, A. N. Williams, A. Hogg, Z. A. Thomas, J. Palmer, S. Mooney, and R. W. Reimer
Clim. Past, 12, 189–200, https://doi.org/10.5194/cp-12-189-2016, https://doi.org/10.5194/cp-12-189-2016, 2016
Short summary
Short summary
Southern Hemisphere westerly airflow is considered a major driver of Southern Ocean and global climate. Observational records, however, are limited. Here we present a new Falkland Islands record that exploits "exotic" South America pollen and charcoal to reconstruct changing airflow. We find stronger winds 2000–1000 cal. yr BP, associated with increased burning, and a 250-year periodicity, suggesting solar forcing. Our results have important implications for understanding late Holocene climates.
C. S. M. Turney, C. J. Fogwill, A. R. Klekociuk, T. D. van Ommen, M. A. J. Curran, A. D. Moy, and J. G. Palmer
The Cryosphere, 9, 2405–2415, https://doi.org/10.5194/tc-9-2405-2015, https://doi.org/10.5194/tc-9-2405-2015, 2015
Short summary
Short summary
Recent trends in ocean circulation, sea ice and climate over the Southern Ocean and Antarctica are highly complex. Here we report a new snow core from the South Pole alongside reanalysis of 20th century global atmospheric circulation. We demonstrate for the first time that atmospheric pressure anomalies in the mid-latitudes act as "gatekeepers" to meridional exchange over continental Antarctica, modulated by the tropical Pacific, with potentially significant impacts on surface mass balance.
K. Schollaen, C. Karamperidou, P. Krusic, E. Cook, and G. Helle
Clim. Past, 11, 1325–1333, https://doi.org/10.5194/cp-11-1325-2015, https://doi.org/10.5194/cp-11-1325-2015, 2015
Short summary
Short summary
Indonesia’s climate has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over Indonesia. In this study we investigate ENSO-related signals in a tree-ring δ18O record of Javanese teak. Our results reveal a clear influence of Warm Pool El Niño events on Javanese tree-ring δ18O. These results illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics.
Related subject area
Earth System Science/Response to Global Change: Climate Change
Consistency of global carbon budget between concentration- and emission-driven historical experiments simulated by CMIP6 Earth system models and suggestions for improved simulation of CO2 concentration
Selecting allometric equations to estimate forest biomass from plot- rather than individual-level predictive performance
Impact of winter warming on CO2 fluxes in evergreen needleleaf forests
Effects of pH/pCO2 fluctuations on photosynthesis and fatty acid composition of two marine diatoms, with reference to consequences of coastal acidification
Long-term impacts of global temperature stabilization and overshoot on exploited marine species
Modelling ozone-induced changes in wheat amino acids and protein quality using a process-based crop model
Toward more robust net primary production projections in the North Atlantic Ocean
Assessment framework to predict sensitivity of marine calcifiers to ocean alkalinity enhancement – identification of biological thresholds and importance of precautionary principle
Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through marine enhanced rock weathering using olivine
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Effect of the 2022 summer drought across forest types in Europe
Simulating vertical phytoplankton dynamics in a stratified ocean using a two-layered ecosystem model
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Assessing the lifetime of anthropogenic CO2 and its sensitivity to different carbon cycle processes
Foliar nutrient uptake from dust sustains plant nutrition
Global and regional hydrological impacts of global forest expansion
The biological and preformed carbon pumps in perpetually slower and warmer oceans
The Effectiveness of Agricultural Carbon Dioxide Removal using the University of Victoria Earth System Climate Model
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Direct foliar phosphorus uptake from wildfire ash
Disentangling future effects of climate change and forest disturbance on vegetation composition and land-surface properties of the boreal forest
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Anthropogenic climate change drives non-stationary phytoplankton internal variability
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Quantifying land carbon cycle feedbacks under negative CO2 emissions
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Ideas and perspectives: Land–ocean connectivity through groundwater
Bioclimatic change as a function of global warming from CMIP6 climate projections
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Drivers of intermodel uncertainty in land carbon sink projections
Reviews and syntheses: A framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris D. Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
Biogeosciences, 22, 1447–1473, https://doi.org/10.5194/bg-22-1447-2025, https://doi.org/10.5194/bg-22-1447-2025, 2025
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations (CO2 concentration- and emission-driven experiments). We successfully identified problems with regard to the global carbon budget in each model. We also found urgent issues with regard to land use change CO2 emissions that should be solved in the latest generation of models.
Nicolas Picard, Noël Fonton, Faustin Boyemba Bosela, Adeline Fayolle, Joël Loumeto, Gabriel Ngua Ayecaba, Bonaventure Sonké, Olga Diane Yongo Bombo, Hervé Martial Maïdou, and Alfred Ngomanda
Biogeosciences, 22, 1413–1426, https://doi.org/10.5194/bg-22-1413-2025, https://doi.org/10.5194/bg-22-1413-2025, 2025
Short summary
Short summary
Allometric equations predict tree biomass and are crucial for estimating forest carbon storage, thus assessing the role of forests in climate change mitigation. Usually, these equations are selected based on tree-level predictive performance. However, we evaluated the model performance at plot and forest levels, finding it varies with plot size. This has significant implications for reducing uncertainty in biomass estimates at these levels.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Yu Shang, Jingmin Qiu, Yuxi Weng, Xin Wang, Di Zhang, Yuwei Zhou, Juntian Xu, and Futian Li
Biogeosciences, 22, 1203–1214, https://doi.org/10.5194/bg-22-1203-2025, https://doi.org/10.5194/bg-22-1203-2025, 2025
Short summary
Short summary
Research on the influences of dynamic pH on the marine ecosystem is still in its infancy. We manipulated the culturing pH to simulate pH fluctuation and found lower pH could increase eicosapentaenoic acid and docosahexaenoic acid production with unaltered growth and photosynthesis in two marine diatoms. It is important to consider pH variation for more accurate predictions regarding the consequences of acidification in coastal waters.
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 22, 1115–1133, https://doi.org/10.5194/bg-22-1115-2025, https://doi.org/10.5194/bg-22-1115-2025, 2025
Short summary
Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that only about half of the habitat loss for marine species is realized when temperature stabilization is initially reached. The maximum habitat loss happens over a century after peak warming in a temperature overshoot scenario peaking at 2 °C before stabilizing at 1.5 °C. We also emphasize that species adaptation may be key in mitigating the long-term impacts of temperature stabilization and overshoot.
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
Biogeosciences, 22, 1035–1056, https://doi.org/10.5194/bg-22-1035-2025, https://doi.org/10.5194/bg-22-1035-2025, 2025
Short summary
Short summary
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential for nutrition, like lysine and methionine. Here, we improve the DO3SE-CropN model to simulate wheat’s protective processes against O3 and their impact on protein and amino acid concentrations. While the model captures O3-induced yield losses, it underestimates amino acid reductions. Further research is needed to refine the model, enabling future risk assessments of O3's impact on yields and nutrition.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
Biogeosciences, 22, 841–862, https://doi.org/10.5194/bg-22-841-2025, https://doi.org/10.5194/bg-22-841-2025, 2025
Short summary
Short summary
The marine biogeochemistry components of Coupled Model Intercomparison Project phase 6 (CMIP6) models vary widely in their process representations. Using an innovative bioregionalization of the North Atlantic, we reveal that this model diversity largely drives the divergence in net primary production projections under a high-emission scenario. The identification of the most mechanistically realistic models allows for a substantial reduction in projection uncertainty.
Nina Bednaršek, Hanna van de Mortel, Greg Pelletier, Marisol García-Reyes, Richard A. Feely, and Andrew G. Dickson
Biogeosciences, 22, 473–498, https://doi.org/10.5194/bg-22-473-2025, https://doi.org/10.5194/bg-22-473-2025, 2025
Short summary
Short summary
The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. Our synthesis, based on 68 collected studies with 84 unique species, shows that 35 % of species respond positively, 26 % respond negatively, and 39 % show a neutral response to alkalinity addition. Biological thresholds were found from 50 to 500 µmol kg−1 NaOH addition. A precautionary approach is warranted to avoid potential risks, while current regulatory framework needs improvements to assure safe biological limits.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
Biogeosciences, 22, 355–384, https://doi.org/10.5194/bg-22-355-2025, https://doi.org/10.5194/bg-22-355-2025, 2025
Short summary
Short summary
Marine enhanced rock weathering (mERW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of mERW parameters and identifying aspects to consider when applying mERW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Philipp Suessle, Jan Taucher, Silvan Urs Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
Biogeosciences, 22, 71–86, https://doi.org/10.5194/bg-22-71-2025, https://doi.org/10.5194/bg-22-71-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine communities and the particle export they drive. Here, impacts of carbonate-based OAE on the flux and attenuation of sinking particles in an oligotrophic plankton community are presented. Whilst biological parameters remained unaffected, abiotic carbonate precipitation occurred. Among counteracting OAE’s efficiency, it influenced mineral ballasting and particle sinking velocities, requiring monitoring.
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024, https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
Biogeosciences, 21, 5481–5494, https://doi.org/10.5194/bg-21-5481-2024, https://doi.org/10.5194/bg-21-5481-2024, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests an alarming level of vulnerability of forests across Europe to more frequent droughts.
Qi Zheng, Johannes J. Viljoen, Xuerong Sun, and Robert J. W. Brewin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3502, https://doi.org/10.5194/egusphere-2024-3502, 2024
Short summary
Short summary
Phytoplankton contribute to half of Earth’s primary production, but not a lot is known about subsurface phytoplankton, living at the base of the sunlit ocean. We develop a two-layered box model to simulate phytoplankton seasonal and interannual variations in different depth layers of the ocean. Our model captures seasonal and long-term trends of the two layers, explaining how they respond to a warming ocean, furthering our understanding of how phytoplankton are responding to climate change.
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024, https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Short summary
The remaining carbon budget (RCB) represents the allowable future CO2 emissions before a temperature target is reached. Understanding the uncertainty in the RCB is critical for effective climate regulation and policy-making. One major source of uncertainty is the representation of the carbon cycle in Earth system models. We assessed how nutrient limitation affects the estimation of the RCB. We found a reduction in the estimated RCB when nutrient limitation is taken into account.
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024, https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
Short summary
Climate change is expected to increase the risk of forest fires. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. The findings suggest a longer fire season, more fires, and an increase in burnt area towards the end of the century.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
Christine Kaufhold, Matteo Willeit, Bo Liu, and Andrey Ganopolski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2976, https://doi.org/10.5194/egusphere-2024-2976, 2024
Short summary
Short summary
This study simulates long-term future climate scenarios to examine how long CO2 emissions will persist in the atmosphere. It shows that the effectiveness of carbon removal processes varies with the amount emitted. The removal of CO2 through silicate weathering is faster than previously thought, leading to a quicker reduction over time. The combined behaviour of different carbon cycle processes emphasizes the need to include all of them in models, as to better predict long-term atmospheric CO2.
Anton Lokshin, Daniel Palchan, Elnatan Golan, Ran Erel, Daniele Andronico, and Avner Gross
EGUsphere, https://doi.org/10.5194/egusphere-2024-2531, https://doi.org/10.5194/egusphere-2024-2531, 2024
Short summary
Short summary
Our research explores how chickpea plants can absorb essential nutrients like phosphorus, iron, and nickel directly from dust deposited on their leaves, in addition to uptake through their roots. This process was particularly effective under higher levels of atmospheric CO2, leading to increased plant growth. By using Nd isotopic tools, we traced the nutrients from dust and found that certain leaf traits enhance this uptake. This discovery may become increasingly important as CO2 levels rise.
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024, https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Rebecca Chloe Evans and H. Damon Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2024-1810, https://doi.org/10.5194/egusphere-2024-1810, 2024
Short summary
Short summary
To mitigate our impact on the climate, research suggests that we will need to both drastically reduce emissions and perform carbon dioxide removal (CDR). We simulated future climates under three emissions scenarios, in which we removed some carbon from the air and put it into agricultural soil at varying rates. We found that agricultural CDR is much more effective at reducing global temperatures if done in a low emissions scenario and at a high rate, and it becomes less effective with time.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024, https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Short summary
This paper explores the climate processes that drive increasing global average temperatures in zero-emission commitment (ZEC) simulations despite decreasing atmospheric CO2. ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024, https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Short summary
We mapped the distribution of future potential afforestation regions based on future high-resolution climate data and climate–vegetation models. After considering the national afforestation policy and climate change, we found that the future potential afforestation region was mainly located around and to the east of the Hu Line. This study provides a dataset for exploring the effects of future afforestation.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024, https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary
Short summary
We present coherence and time lags in spectral response of three vegetation types in the European temperate zone to the influencing meteorological factors and teleconnection indices for the period 2002–2022. Vegetation condition in broadleaved forest, coniferous forest and pastures was measured with MODIS NDVI and EVI, and the coherence between NDVI and EVI and meteorological elements was described using the methods of wavelet coherence and Pearson’s linear correlation with time lag.
Anton Lokshin, Daniel Palchan, and Avner Gross
Biogeosciences, 21, 2355–2365, https://doi.org/10.5194/bg-21-2355-2024, https://doi.org/10.5194/bg-21-2355-2024, 2024
Short summary
Short summary
Ash particles from wildfires are rich in phosphorus (P), a crucial nutrient that constitutes a limiting factor in 43 % of the world's land ecosystems. We hypothesize that wildfire ash could directly contribute to plant nutrition. We find that fire ash application boosts the growth of plants, but the only way plants can uptake P from fire ash is through the foliar uptake pathway and not through the roots. The fertilization impact of fire ash was also maintained under elevated levels of CO2.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Ben F. Meyer, Tom A. M. Pugh, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1028, https://doi.org/10.5194/egusphere-2024-1028, 2024
Short summary
Short summary
Disturbances (e.g. fire) can change which species grow in a forest, affecting water, carbon, energy flows, and the climate. They are expected to increase with climate change, but it is uncertain by how much. We studied how future climate and disturbances might impact vegetation with a simulation model. Our findings highlight the importance of considering both factors, with future disturbance patterns posing significant uncertainty. More research is needed to understand their future development.
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024, https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Short summary
The general impact of afforestation on the regional climate conditions in Europe during the period 1986–2015 is investigated. For this purpose, a regional climate model simulation is performed, in which afforestation during this period is considered, and results are compared to a simulation in which this is not the case. Results show that afforestation had discernible impacts on the climate change signal in Europe, which may have mitigated the local warming trend, especially in summer in Europe.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023, https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton internal variability using an Earth system model ensemble and identify a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Koramanghat Unnikrishnan Jayakrishnan and Govindasamy Bala
Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, https://doi.org/10.5194/bg-20-1863-2023, 2023
Short summary
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Cited articles
Allen, K. J., Cook, E. R., Francey, R. J., and Michael, K.: The climatic
response of Phyllocladus aspleniifolius (Labill.) Hook. f in Tasmania,
J. Biogeogr., 28, 305–316, https://doi.org/10.1046/j.1365-2699.2001.00546.x, 2002.
Allen, K. J., Ogden, J., Buckley, B. M., Cook, E. R., and Baker, P. J.: The
potential to reconstruct broadscale climate indices associated with
southeast Australian droughts from Athrotaxis species, Tasmania, Clim.
Dynam., 37, 1799–1821, https://doi.org/10.1007/s00382-011-1011-7,
2011.
Allen, K. J., Lee, G., Ling, F., Allie, S., Willis, M., and Baker, P. J.:
Palaeohydrology in climatological context: developing the case for use of
remote predictors in Australian streamflow reconstructions, Appl. Geogr., 64, 132–152, https://doi.org/10.1016/j.apgeog.2015.09.007, 2015a.
Allen, K. J., Nichols, S. C., Evans, R., Cook, E. R., Allie, S., Carson, G.,
Ling, F., and Baker, P. J.: Preliminary December–January inflow and
streamflow reconstructions from tree rings for western Tasmania,
southeastern Australia, Water Resour. Res., 51, 5487–5503, https://doi.org/10.1002/2015WR017062, 2015b.
Allen, K. J., Fenwick, P., Palmer, J. G., Nichols, S. C., Cook, E. R., Buckley,
B. M., and Baker, P. J.: A 1700-year Athrotaxis selaginoides tree-ring width
chronology from southeastern Australia, Dendrochronologia, 45, 90–100,
https://doi.org/10.1016/j.dendro.2017.07.004, 2017.
Allen, K. J., Cook, E. R., Evans, R., Francey, R., Buckley, B. M., Palmer,
J. G., Peterson, M. J., and Baker, P. J.: Lack of cool, not warm, extremes
distinguishes late 20th Century climate in 979-year Tasmanian summer
temperature reconstruction, Environ. Res. Lett., 13, 034041,
https://doi.org/10.1088/1748-9326/aaafd7, 2018.
Alexander, M. R., Pearl, J. K., Bishop, D. A., Cook, E. R., Anchukaitis, K. J.,
and Pederson, N.: The potential to strengthen temperature reconstructions in
ecoregions with limited tree line using a multispecies approach, Quat. Res., 92, 583–597, https://doi.org/10.1017/qua.2019.33, 2019.
Altman, J.: Tree-ring-based disturbance reconstruction in interdisciplinary
research: Current state and future directions. Dendrochronologia, 125733,
https://doi.org/10.1016/j.dendro.2020.125733, 2020.
Arbellay, E., Jarvis, I., Chavardès, R. D., Daniels, L. D., and Stoffel,
M.: Tree-ring proxies of larch bud moth defoliation: latewood width and blue
intensity are more precise than tree-ring width, Tree Physiol., 38,
1237–1245, https://doi.org/10.1093/treephys/tpy057, 2018.
Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R.,
Carrer, M., Grabner, M., Tegel, W., Levanic, T., and Panayotov, M.: Site-and
species-specific responses of forest growth to climate across the European
continent, Global Ecol. Biogeogr., 22, 706–717, https://doi.org/10.1111/geb.12023, 2013.
Babst, F., Wright, W. E., Szejner, P., Wells, L., Belmecheri, S., and Monson,
R. K.: Blue intensity parameters derived from Ponderosa pine tree rings
characterize intra-annual density fluctuations and reveal seasonally
divergent water limitations, Trees, 30, 1403–1415, https://doi.org/10.1007/s00468-016-1377-6, 2016.
Björklund, J. A., Gunnarson, B. E., Seftigen, K., Esper, J., and Linderholm, H. W.: Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information, Clim. Past, 10, 877–885, https://doi.org/10.5194/cp-10-877-2014, 2014a.
Björklund, J., Gunnarson, B.E., Seftigen, K., Zhang, P., and Linderholm,
H. W.: Using adjusted blue intensity data to attain high-quality summer
temperature information: a case study from Central Scandinavia, The Holocene,
25, 547–556, https://doi.org/10.1177/0959683614562434, 2014b.
Björklund, J., Seftigen, K., Schweingruber, F., Fonti, P., von Arx, G.,
Bryukhanova, M. V., Cuny, H. E., Carrer, M., Castagneri, D., and Frank, D. C.:
Cell size and wall dimensions drive distinct variability of earlywood and
latewood density in Northern Hemisphere conifers, New Phytologist, 216,
728–740, https://doi.org/10.1111/nph.14639, 2017.
Björklund, J., von Arx, G., Nievergelt, D., Wilson, R., Van den Bulcke, J., Günther, B., Loader, N. J., Rydval, M., Fonti, P., Scharnweber, T., Andreu-Hayles, L., Büntgen, U., D'Arrigo, R., Davi, N., De Mil, T., Esper, J., Gärtner, H., Geary, J., Gunnarson, B. E., Hartl, C., Hevia, A., Song, H., Janecka, K., Kaczka, R. J., Kirdyanov, A. V., Kochbeck, M., Liu, Y., Meko, M., Mundo, I., Nicolussi, K., Oelkers, R., Pichler, T., Sánchez-Salguero, R., Schneider, L., Schweingruber, F., Timonen, M., Trouet, V., Van Acker, J., Verstege, A., Villalba, R., Wilmking, M., and Frank, D.: Scientific Merits and Analytical Challenges of Tree-Ring Densitometry, Rev. Geophys., 57, 1224–1264, https://doi.org/10.1029/2019RG000642, 2019.
Björklund, J., Seftigen, K., Fonti, P., Nievergelt, D., von Arx, G.:
Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus
sylvestris, Dendrochronologia, 60, 125673, https://doi.org/10.1016/j.dendro.2020.125673, 2020.
Blake, S. A., Palmer, J. G., Björklund, J., Harper, J. B., and Turney, C. S.:
Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree
rings using Blue-Intensity (BI), Dendrochronologia, 60, 125664, https://doi.org/10.1016/j.dendro.2020.125664, 2020.
Boswijk, G., Fowler, A. M., Palmer, J. G., Fenwick, P., Hogg, A., Lorrey, A.
and Wunder, J.: The late Holocene kauri chronology: assessing the potential
of a 4500-year record for palaeoclimate reconstruction, Quat. Sci. Rev., 90, 128–142, https://doi.org/10.1016/j.quascirev.2014.02.022, 2014.
Bradley, R. S.: Paleoclimatology: reconstructing climates of the Quaternary,
Elsevier, 595 pp., 1999.
Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov, S. G.,
and Vaganov, E. A.: Tree-ring width and density data around the Northern
Hemisphere: Part 1, local and regional climate signals, The Holocene, 12,
737–757, https://doi.org/10.1191/0959683602hl587rp, 2002.
Brookhouse, M. and Graham, R.: Application of the minimum blue-intensity
technique to a southern-hemisphere conifer, Tree-Ring Res., 72,
103–107, https://doi.org/10.3959/1536-1098-72.02.103, 2016.
Buckley, B. M., Cook, E. R., Peterson, M. J., and Barbetti, M.: A changing
temperature response with elevation for Lagarostrobos franklinii in
Tasmania, Australia, In Climatic Change at High Elevation Sites, Springer, Dordrecht. https://doi.org/10.1023/A:1005322332230, 245–266, 1997.
Buckley, B., Ogden, J., Palmer, J., Fowler, A., and Salinger, J.:
Dendroclimatic interpretation of tree-rings in Agathis australis (kauri), 1.
Climate correlation functions and master chronology. Journal of the Royal
Society of New Zealand, 30, 263–276, https://doi.org/10.1080/10412905.2002.9699839, 2000.
Buckley, B. M., Hansen, K. G., Griffin, K.L., Schmiege, S., Oelkers, R.,
D'Arrigo, R. D., Stahle, D. K., Davi, N., Nguyen, T. Q. T., Le, C. N., and Wilson,
R. J.: Blue intensity from a tropical conifer's annual rings for climate
reconstruction: An ecophysiological perspective, Dendrochronologia, 50,
10–22, https://doi.org/10.1016/j.dendro.2018.04.003, 2018.
Büntgen, U., Krusic, P. J., Verstege, A., Sangüesa-Barreda, G.,
Wagner, S., Camarero, J. J., Ljungqvist, F. C., Zorita, E., Oppenheimer, C.,
Konter, O., and Tegel, W.: New tree-ring evidence from the Pyrenees reveals
Western Mediterranean climate variability since medieval times, J. Climate, 30, 5295–5318, https://doi.org/10.1175/JCLI-D-16-0526.1, 2017.
Büntgen, U., Urban, O., Krusic, P.J., Rybníček, M.,
Kolář, T., Kyncl, T., Ač, A., Koňasová, E.,
Čáslavský, J., Esper, J., and Wagner, S.: Recent European drought
extremes beyond Common Era background variability, Nat. Geosci., 14,
190–196, https://doi.org/10.1038/s41561-021-00698-0, 2021.
Buras, A.: A comment on the expressed population signal, Dendrochronologia,
44, 130–132, https://doi.org/10.1016/j.dendro.2017.03.005, 2017
Buras, A., Spyt, B., Janecka, K., and Kaczka, R.: Divergent growth of Norway
spruce on Babia Góra Mountain in the western Carpathians,
Dendrochronologia, 50, 33–43, https://doi.org/10.1016/j.dendro.2018.04.005, 2018.
Camarero, J. J., Rozas, V., and Olano, J. M.: Minimum wood density of Juniperus
thurifera is a robust proxy of spring water availability in a continental
Mediterranean climate, J. Biogeogr., 41, 1105–1114, https://doi.org/10.1111/jbi.12271, 2014.
Camarero, J. J., Fernández-Pérez, L., Kirdyanov, A. V., Shestakova,
T. A., Knorre, A. A., Kukarskih, V. V., and Voltas, J.: Minimum wood density of
conifers portrays changes in early season precipitation at dry and cold
Eurasian regions, Trees, 31, 1423–1437, https://doi.org/10.1007/s00468-017-1559-x, 2017.
Campbell, R., McCarroll, D., Loader, N. J., Grudd, H., Robertson, I.,
Jalkanen, R.: Blue intensity in Pinus sylvestris tree-rings: developing a
new palaeoclimate proxy, The Holocene, 17, 821–828, https://doi.org/10.1177/0959683607080523, 2007.
Campbell, R., McCarroll, D., Robertson, I., Loader, N. J., Grudd, H.,
and Gunnarson, B.: Blue intensity in Pinus sylvestris tree rings: a manual for a
new palaeoclimate proxy, Tree-Ring Res., 67, 127–135, https://doi.org/10.3959/2010-13.1, 2011.
Cleaveland, M. K.: Climatic response of densitometric properties in semiarid
site tree rings, Tree-Ring Bull, 46, 13–29, 1986.
Cook, E. R. and Peters, K.: The smoothing spline: a new approach to
standardizing forest interior tree-ring width series for dendroclimatic
studies, 45–53, 1981.
Cook, E. R.: The Decomposition of Tree-Ring Series for Environmental
Studies, Tree-Ring Bull., 47, 37–59, 1987.
Cook, E. R., Briffa, K. R., and Jones, P. D.: Spatial regression methods in
dendroclimatology: a review and comparison of two techniques, Int. J. Climatol., 14, 379–402, doi.org/10.1002/joc.3370140404,
1994.
Cook, E. R., Palmer, J. G., Cook, B. I., Hogg, A., and D D'Arrigo, R.: A
multi-millennial palaeoclimatic resource from Lagarostrobos colensoi
tree-rings at Oroko Swamp, New Zealand, Glob. Planet. Change,
33, 209–220, https://doi.org/10.1016/S0921-8181(02)00078-4, 2002.
Cook, E. R., Buckley, B. M., Palmer, J. G., Fenwick, P., Peterson, M. J.,
Boswijk, G., and Fowler, A.: Millennia-long tree-ring records from Tasmania
and New Zealand: A basis for modelling climate variability and forcing,
past, present and future, J. Quat. Sci., 21, 689–699, https://doi.org/10.1002/jqs.1071,
2006.
Cook, E. R. and Pederson, N.: Uncertainty, emergence, and statistics in
dendrochronology, in: Dendroclimatology, Springer, Dordrecht, 77–112,
https://doi.org/10.1007/978-1-4020-5725-0_4, 2011.
D'Arrigo, R. D., Buckley, B. M., Cook, E. R., and Wagner, W. S.:
Temperature-sensitive tree-ring width chronologies of pink pine (Halocarpus
biformis) from Stewart Island, New Zealand. Palaeogeography,
Palaeoclimatology, Palaeoecology, 119, 293–300,
https://doi.org/10.1016/0031-0182(95)00014-3, 1996.
Davi, N. K., Rao, M. P., Wilson, R., Andreu-Hayles, L., Oelkers, R., D'Arrigo,
R., Nachin, B., Buckley, B., Pederson, N., Leland, C., and Suran, B.:
Accelerated Recent Warming and Temperature Variability over the Past Eight
Centuries in the Central Asian Altai from Blue Intensity in Tree Rings,
Geophys. Res. Lett., 49, doi.org/10.1029/2021GL092933, 2021.
Dolgova, E.: June–September temperature reconstruction in the Northern
Caucasus based on blue intensity data, Dendrochronologia, 39, 17–23, https://doi.org/10.1016/j.dendro.2016.03.002, 2016.
Drew, D. M., Allen, K., Downes, G. M., Evans, R., Battaglia, M., and Baker, P.:
Wood properties in a long-lived conifer reveal strong climate signals where
ring-width series do not, Tree Physiol., 33, 37–47, https://doi.org/10.1093/treephys/tps111, 2012.
Druckenbrod, D. L., Pederson, N., Rentch, J., and Cook, E.R.: A comparison of
times series approaches for dendroecological reconstructions of past canopy
disturbance events, Forest Ecol. Manage., 302, 23–33, https://doi.org/10.1016/j.foreco.2013.03.040, 2013.
Duncan, R. P., Fenwick, P., Palmer, J. G., McGlone, M. S., and Turney, C. S.:
Non-uniform interhemispheric temperature trends over the past 550
years, Clim. Dynam., 35, 1429–1438, https://doi.org/10.1007/s00382-010-0794-2, 2010.
Esper, J., Frank, D. C., Timonen, M., Zorita, E., Wilson, R. J., Luterbacher,
J., Holzkämper, S., Fischer, N., Wagner, S., Nievergelt, D., and
Verstege, A.: Orbital forcing of tree-ring data, Nat. Clim. Change,
2, 862–866, https://doi.org/10.1038/NCLIMATE1589, 2012.
Evans R.: Rapid measurement of the transverse dimensions of tracheids in
radial wood sections from Pinus radiata, Holzforschung, 48, 168–172,
https://doi.org/10.1515/hfsg.1994.48.2.168, 1994.
Fonti, P., Bryukhanova, M. V., Myglan, V. S., Kirdyanov, A. V., Naumova, O. V.,
and Vaganov, E. A.: Temperature-induced responses of xylem structure of Larix
sibirica (Pinaceae) from the Russian Altay, American Journal of Botany,
100, 1332–1343, https://doi.org/10.3732/ajb.1200484, 2013.
Fowler, A., Palmer, J., Salinger, J., and Ogden, J.: Dendroclimatic
interpretation of tree-rings in Agathis australis (kauri): 2. Evidence of a
significant relationship with ENSO, Journal of the Royal Society of New
Zealand, 30, 277–292, https://doi.org/10.1080/03014223.2000.9517622, 2000.
Fowler, A. M., Boswijk, G., Lorrey, A. M., Gergis, J., Pirie, M., McCloskey,
S. P., Palmer, J. G., and Wunder, J.: Multi-centennial tree-ring record of
ENSO-related activity in New Zealand, Nat. Clim. Change, 2,
172–176, https://doi.org/10.1038/nclimate1374, 2012.
Fritts, H. C., Smith, D. G., Cardis, J. W., and Budelsky, C. A.: Tree-ring
characteristics along a vegetation gradient in northern Arizona, Ecology,
46, 393–401, doi.org/10.2307/1934872, 1965.
Fritts, H. C.: Tree Rings and Climate, London, Academic Press Ltd, 553 pp., 1976.
Fuentes, M., Salo, R., Björklund, J., Seftigen, K., Zhang, P.,
Gunnarson, B., Aravena, J. C., and Linderholm, H. W.: A 970-year-long summer
temperature reconstruction from Rogen, west-central Sweden, based on blue
intensity from tree rings, The Holocene, 28, 254–266, https://doi.org/10.1177/0959683617721322, 2017.
Harley, G. L., Heeter, K. J., Maxwell, J. T., Rayback, S. A., Maxwell, R. S.,
Reinemann, T. E., and Taylor, A.: Towards broad-scale temperature
reconstructions for Eastern North America using blue light intensity from
tree rings, Int. J. Clim., 41, 3142–3159, https://doi.org/10.1002/joc.6910, 2021.
Harris, I. P. D. J., Jones, P. D., Osborn, T. J., and Lister, D.H.: Updated
high-resolution grids of monthly climatic observations–the CRU TS3. 10,
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Heeter, K. J., Harley, G. L., Maxwell, J. T., McGee, J. H., and Matheus, T. J.:
Late summer temperature variability for the Southern Rocky Mountains (USA)
since 1735 CE: applying blue light intensity to low-latitude Picea
engelmannii Parry ex Engelm, Clim. Change, 162, 965–988, https://doi.org/10.1007/s10584-020-02772-9, 2020.
Helama, S., Arentoft, B. W., Collin-Haubensak, O., Hyslop, M. D., Brandstrup,
C. K., Mäkelä, H. M., Tian, Q., and Wilson, R.: Dendroclimatic signals
deduced from riparian versus upland forest interior pines in North Karelia,
Finland, Ecol. Res., 28, 1019–1028, https://doi.org/10.1007/s11284-013-1084-3, 2013.
Kaczka, R. J., Spyt, B., Janecka, K., Beil, I., Büntgen, U., Scharnweber,
T., Nievergelt, D., and Wilmking, M.: Different maximum latewood density and
blue intensity measurements techniques reveal similar results,
Dendrochronologia, 49, 94–101, https://doi.org/10.1016/j.dendro.2018.03.005, 2018.
Kaczka, R. J. and Wilson, R.: I-BIND: International Blue Intensity Network
Development Working Group, Dendrochronologia, 68, 125859, https://doi.org/10.1016/j.dendro.2021.125859, 2021.
Ljungqvist, F. C., Thejll, P., Björklund, J., Gunnarson, B. E.,
Piermattei, A., Rydval, M., Seftigen, K., Støve, B., and Büntgen, U.:
Assessing non-linearity in European temperature-sensitive tree-ring data,
Dendrochronologia, 59, 125652, https://doi.org/10.1016/j.dendro.2019.125652, 2019.
Loader, N. J., Santillo, P. M., Woodman-Ralph, J. P., Rolfe, J. E., Hall, M. A.,
Gagen, M., Robertson, I., Wilson, R., Froyd, C. A., and McCarroll, D.:
Multiple stable isotopes from oak trees in southwestern Scotland and the
potential for stable isotope dendroclimatology in maritime climatic regions,
Chem. Geol., 252, 62–71, https://doi.org/10.1016/j.chemgeo.2008.01.006,
2008.
Loader, N. J., Young, G. H., McCarroll, D., Davies, D., Miles, D., and Bronk
Ramsey, C.: Summer precipitation for the England and Wales region,
1201–2000 CE, from stable oxygen isotopes in oak tree rings, J. Quat. Sci., 35, 731–736, https://doi.org/10.1002/jqs.3226, 2020.
Lorimer, C. G. and Frelich, L. E.: A methodology for estimating canopy
disturbance frequency and intensity in dense temperate forests, Canadian
Journal of Forest Research, 19, 651–663, https://doi.org/10.1139/x89-102, 1989.
McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., and Edouard, J. L.:
Blue reflectance provides a surrogate for latewood density of high-latitude
pine tree rings, Arctic, Antarctic, and Alpine Research, 34, 450–453,
https://doi.org/10.2307/1552203, 2002.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quat. Sci. Rev., 23, 771–801, https://doi.org/10.1016/j.quascirev.2003.06.017,
2004.
Neukom, R., Gergis, J., Karoly, D. J., Wanner, H., Curran, M., Elbert, J.,
González-Rouco, F., Linsley, B. K., Moy, A. D., Mundo, I., and Raible,
C. C.: Inter-hemispheric temperature variability over the past millennium,
Nat. Clim. Change, 4, 362–367, https://doi.org/10.1038/nclimate2174, 2014.
O'Donnell, A. J., Allen, K. J., Evans, R. M., Cook, E. R., Trouet, V., and Baker,
P. J.: Wood density provides new opportunities for reconstructing past
temperature variability from southeastern Australian trees, Global Planet. Change, 141, 1–11, https://doi.org/10.1016/j.gloplacha.2016.03.010, 2016.
Palmer, J. G. and Xiong, L.: New Zealand climate over the last 500 years
reconstructed from Libocedrus bidwillii Hook. f. tree-ring chronologies, The
Holocene, 14, 282–289, https://doi.org/10.1191/0959683604hl679rr, 2004.
Panyushkina, I. P., Hughes, M. K., Vaganov, E. A., and Munro, M. A.: Summer
temperature in northeastern Siberia since 1642 reconstructed from tracheid
dimensions and cell numbers of Larix cajanderi, Canadian Journal of Forest
Research, 33, 1905–1914, https://doi.org/10.1139/x03-109, 2003.
Prendin, A. L., Petit, G., Carrer, M., Fonti, P., Björklund, J., and von
Arx, G.: New research perspectives from a novel approach to quantify
tracheid wall thickness, Tree Physiol., 37, 976–983, https://doi.org/10.1093/treephys/tpx037, 2017.
Reid, E. and Wilson, R.: Delta Blue Intensity vs. Maximum Density: A Case
Study using Pinus uncinata in the Pyrenees, Dendrochronologia, 61, 125706, https://doi.org/10.1016/j.dendro.2020.125706, 2020.
Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S.,
Rosenfeld, A., Wurtele J., Groom D., and Wickham C.: A new estimate of the
average earth surface land temperature spanning 1753 to 2011, Geoinformatics and Geostatistics, 1:1, available at: https://static.berkeleyearth.org/papers/Results-Paper-Berkeley-Earth.pdf,
2013.
Rydval, M., Larsson, L. Å., McGlynn, L., Gunnarson, B. E., Loader, N. J.,
Young, G. H., and Wilson, R.: Blue intensity for dendroclimatology: should we
have the blues? Experiments from Scotland, Dendrochronologia, 32, 191–204,
https://doi.org/10.1016/j.dendro.2014.04.003, 2014.
Rydval, M., Druckenbrod, D., Anchukaitis, K. J., and Wilson, R.: Detection and
removal of disturbance trends in tree-ring series for dendroclimatology,
Canadian Journal of Forest Research, 46, 387–401, https://doi.org/10.1139/cjfr-2015-0366, 2015.
Rydval, M., Loader, N.J., Gunnarson, B. E., Druckenbrod, D. L., Linderholm,
H. W., Moreton, S. G., Wood, C. V., and Wilson, R.: Reconstructing 800 years of
summer temperatures in Scotland from tree rings, Clim. Dynam., 49,
2951–2974, https://doi.org/10.1007/s00382-016-3478-8, 2017.
Rydval, M., Druckenbrod, D. L., Svoboda, M., Trotsiuk, V., Janda, P.,
Mikoláš, M., Čada, V., Bače, R., Teodosiu, M., and Wilson, R.:
Influence of sampling and disturbance history on climatic sensitivity of
temperature-limited conifers, The Holocene, 28, 1574–1587, https://doi.org/10.1177/0959683618782605, 2018.
Seftigen, K., Fuentes, M., Ljungqvist, F. C., and Björklund, J.: Using
Blue Intensity from drought-sensitive Pinus sylvestris in Fennoscandia to
improve reconstruction of past hydroclimate variability, Clim. Dynam.,
1–16, https://doi.org/10.1007/s00382-020-05287-2, 2020.
St. George, S.: An overview of tree-ring width records across the Northern
Hemisphere, Quat. Sci. Rev., 95, 132–150, https://doi.org/10.1016/j.quascirev.2014.04.029, 2014.
Trotsiuk, V., Pederson, N., Druckenbrod, D. L., Orwig, D. A., Bishop, D. A.,
Barker-Plotkin, A., Fraver, S., and Martin-Benito, D.: Testing the efficacy
of tree-ring methods for detecting past disturbances, Forest Ecol.
Manage., 425, 59–67, https://doi.org/10.1016/j.foreco.2018.05.045, 2018.
Visser, H. and Molenaar, J.: Kalman filter analysis in dendroclimatology,
Biometrics, 44, 929–940, https://doi.org/10.2307/2531724, 1988.
von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K., and Carrer, M.:
Quantitative wood anatomy – practical guidelines, Front. Plant
Sci., 7, 781, https://doi.org/10.3389/fpls.2016.00781, 2016.
Wang, L., Payette, S., and Bégin, Y.: Relationships between anatomical
and densitometric characteristics of black spruce and summer temperature at
tree line in northern Quebec, Canadian Journal of Forest Research, 32,
477–486, https://doi.org/10.1139/x01-208, 2002.
Wigley, T. M., Briffa, K. R., and Jones, P. D.: On the average value of
correlated time series, with applications in dendroclimatology and
hydrometeorology, J. Appl. Meteorol. Clim., 23,
201–213, https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2, 1984.
Wiles, G. C., Charlton, J., Wilson, R. J., D'Arrigo, R. D., Buma, B., Krapek,
J., Gaglioti, B. V., Wiesenberg, N., and Oelkers, R.: Yellow-cedar blue intensity
tree-ring chronologies as records of climate in Juneau, Alaska, USA,
Canadian Journal of Forest Research, 49, 1483–1492, https://doi.org/10.1139/cjfr-2018-0525, 2019.
Wilmking, M., van der Maaten-Theunissen, M., van der Maaten, E.,
Scharnweber, T., Buras, A., Biermann, C., Gurskaya, M., Hallinger, M.,
Lange, J., Shetti, R., and Smiljanic, M.: Global assessment of relationships
between climate and tree growth, Glob. Change Biol., 26, 3212–3220,
https://doi.org/10.1111/gcb.15057, 2020.
Wilson, R. J. and Hopfmueller, M.: Dendrochronological investigations of
Norway spruce along an elevational transect in the Bavarian Forest, Germany,
Dendrochronologia, 19, 67–79, 2001.
Wilson, R. J. and Luckman, B. H.: Dendroclimatic reconstruction of maximum
summer temperatures from upper treeline sites in Interior British Columbia,
Canada, The Holocene, 13, 851–861, https://doi.org/10.1191/0959683603hl663rp,
2003.
Wilson, R. and Elling, W.: Temporal instability in tree-growth/climate
response in the Lower Bavarian Forest region: implications for
dendroclimatic reconstruction, Trees, 18, 19–28, https://doi.org/10.1007/s00468-003-0273-z, 2004.
Wilson, R. J. S, Rao, R., Rydval, M., Wood, C., Larsson, L.-A., and Luckman, B. H.:
Blue Intensity for Dendroclimatology: The BC Blues: A Case Study from
British Columbia Canada, The Holocene, 24, 1428–1438, https://doi.org/10.1177/0959683614544051, 2014.
Wilson, R., Anchukaitis, K., Briffa, K., Büntgen, U., Cook, E., D’Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helema, S., Klesse, S., Krusic, P., Linderholm, H.W., Myglan, V., Osborn, T., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., and Zorita, E.: Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: the long term context, Quat. Sci. Rev., 134, 1–18, https://doi.org/10.1016/j.quascirev.2015.12.005, 2016.
Wilson, R., Wilson, D., Rydval, M., Crone, A., Büntgen, U., Clark, S.,
Ehmer, J., Forbes, E., Fuentes, M., Gunnarson, B. E., Linderholm, H.,
Nicolussi, K., Wood, C., and Mills, C.: Facilitating tree-ring dating of
historic conifer timbers using Blue Intensity, J. Archaeol. Sci., 78, 99–111, https://doi.org/10.1016/j.jas.2016.11.011, 2017a.
Wilson, R., D'Arrigo, R., Andreu-Hayles, L., Oelkers, R., Wiles, G., Anchukaitis, K., and Davi, N.: Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska, Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, 2017b.
Wilson, R., Anchukaitis, K., Andreu-Hayles, L., Cook, E., D'Arrigo, R.,
Davi, N., Haberbauer, L., Krusic, P., Luckman, B., Morimoto, D., and Oelkers,
R.: Improved dendroclimatic calibration using blue intensity in the
southern Yukon, The Holocene, 29, 1817–1830, https://doi.org/10.1177/0959683619862037, 2019.
Xiong, L., Okada, N., Fujiwara, T., Ohta, S., and Palmer, J. G.: Chronology
development and climate response analysis of different New Zealand pink pine
(Halocarpus biformis) tree-ring parameters, Canadian Journal of Forest
Research, 28, 566–573, https://doi.org/10.1139/cjfr-28-4-566, 1998.
Yasue, K., Funada, R., Kobayashi, O., and Ohtani, J.: The effects of tracheid
dimensions on variations in maximum density of Picea glehnii and
relationships to climatic factors, Trees, 14, 223–229, https://doi.org/10.1007/PL00009766, 2000.
Young, G. H., Loader, N. J., McCarroll, D., Bale, R. J., Demmler, J. C., Miles,
D., Nayling, N. T., Rinne, K. T., Robertson, I., Watts, C., and Whitney, M.:
Oxygen stable isotope ratios from British oak tree-rings provide a strong
and consistent record of past changes in summer rainfall, Clim. Dynam.,
45, 3609–3622, https://doi.org/10.1007/s00382-015-2559-4, 2015.
Short summary
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance palaeoclimatology in Australasia. Calibration experiments, using several conifer species from Tasmania and New Zealand, model 50–80 % of the summer temperature variance. The implications of these results have profound consequences for high-resolution paleoclimatology in Australasia, as the speed and cheapness of BI generation could lead to a step change in our understanding of past climate in the region.
We explore blue intensity (BI) – a low-cost method for measuring ring density – to enhance...
Altmetrics
Final-revised paper
Preprint