Articles | Volume 19, issue 6
https://doi.org/10.5194/bg-19-1635-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1635-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Graduate Division of Earth and Atmospheric Sciences, The Chinese
University of Hong Kong, Sha Tin, Hong Kong SAR, China
now at: Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology, Cambridge, MA, USA
Maria Val Martin
CORRESPONDING AUTHOR
Leverhulme Centre for Climate Change Mitigation, School of
Biosciences, University of Sheffield, Sheffield, UK
Graduate Division of Earth and Atmospheric Sciences, The Chinese
University of Hong Kong, Sha Tin, Hong Kong SAR, China
Institute of Environment, Energy and Sustainability, and State Key
Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha
Tin, Hong Kong SAR, China
Related authors
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Xiaohua Pan, Mian Chin, Ralph A. Kahn, Hitoshi Matsui, Toshihiko Takemura, Meiyun Lin, Yuanyu Xie, Dongchul Kim, and Maria Val Martin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2603, https://doi.org/10.5194/egusphere-2025-2603, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Wildfire smoke can travel thousands of kilometers, affecting air quality far from the fire itself. This study looks at how two key factors – how much smoke is emitted & how high it rises – affect how smoke spreads. Using data from a major 2008 Siberian wildfire, four computer models were tested. Results show that models often inject smoke too low & remove it too quickly, missing high-altitude smoke seen by satellites. Better estimates of smoke height are crucial to improve air quality forecasts.
Tiangang Yuan, Tzung-May Fu, Aoxing Zhang, David H. Y. Yung, Jin Wu, Sien Li, and Amos P. K. Tai
Atmos. Chem. Phys., 25, 4211–4232, https://doi.org/10.5194/acp-25-4211-2025, https://doi.org/10.5194/acp-25-4211-2025, 2025
Short summary
Short summary
This study utilizes a regional climate–air quality coupled model to first investigate the complex interaction between irrigation, climate and air quality in China. We found that large-scale irrigation practices reduce summertime surface ozone while raising secondary inorganic aerosol concentration via complicated physical and chemical processes. Our results emphasize the importance of making a tradeoff between air pollution controls and sustainable agricultural development.
Biao Luo, Lei Liu, David H. Y. Yung, Tiangang Yuan, Jingwei Zhang, Leo T. H. Ng, and Amos P. K. Tai
EGUsphere, https://doi.org/10.5194/egusphere-2025-72, https://doi.org/10.5194/egusphere-2025-72, 2025
Short summary
Short summary
Through a combination of emission models and air quality model, we aimed to address the pressing issue of poor nitrogen management while promoting sustainable food systems and public health in China. We discovered that improving nitrogen management of crop and livestock can substantially reduce air pollutant emissions, particularly in North China Plain. Our findings further provide the benefits of such interventions on PM2.5 reductions, offering valuable insights for policymakers.
Hemraj Bhattarai, Maria Val Martin, Stephen Sitch, David H. Y. Yung, and Amos P. K. Tai
EGUsphere, https://doi.org/10.5194/egusphere-2025-804, https://doi.org/10.5194/egusphere-2025-804, 2025
Short summary
Short summary
Wildfires are becoming more frequent and severe due to climate change, posing various risks. We explore how future climate conditions will influence global wildfire activity and carbon emissions by 2100. Using advanced computer modeling, we found that while some regions remain stable, boreal forests will see a major rise in burned area and emissions. These changes are driven by drier conditions and increased vegetation growth, highlighting the urgent need for better fire management strategies.
Amos P. K. Tai, Lina Luo, and Biao Luo
Atmos. Chem. Phys., 25, 923–941, https://doi.org/10.5194/acp-25-923-2025, https://doi.org/10.5194/acp-25-923-2025, 2025
Short summary
Short summary
We discuss our current understanding of and knowledge gaps in how agriculture and food systems affect air quality and how agricultural emissions can be mitigated. We argue that scientists need to address these gaps, especially as the importance of fossil fuel emissions is fading. This will help guide food-system transformation in economically viable, socially inclusive, and environmentally responsible ways and is essential to help society achieve sustainable development.
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024, https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, and Zhaozhong Feng
Atmos. Chem. Phys., 24, 345–366, https://doi.org/10.5194/acp-24-345-2024, https://doi.org/10.5194/acp-24-345-2024, 2024
Short summary
Short summary
Surface ozone (O3) is well-known for posing great threats to both human health and agriculture worldwide. However, a multidecadal assessment of the impacts of O3 on public health and agriculture in China is lacking without sufficient O3 observations. We used a hybrid approach combining a chemical transport model and machine learning to provide a robust dataset of O3 concentrations over the past 4 decades in China, thereby filling the gap in the long-term O3 trend and impact assessment in China.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
Geosci. Model Dev., 16, 3083–3101, https://doi.org/10.5194/gmd-16-3083-2023, https://doi.org/10.5194/gmd-16-3083-2023, 2023
Short summary
Short summary
The emissions of volatile organic compounds from vegetation (BVOCs) influence atmospheric composition and contribute to certain gases and aerosols (tiny airborne particles) which play a role in climate change. BVOC emissions are likely to change in the future due to changes in climate and land use. Therefore, accurate simulation of BVOC emission is important, and this study describes an update to the simulation of BVOC emissions in the United Kingdom Earth System Model (UKESM).
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Felix Leung, Karina Williams, Stephen Sitch, Amos P. K. Tai, Andy Wiltshire, Jemma Gornall, Elizabeth A. Ainsworth, Timothy Arkebauer, and David Scoby
Geosci. Model Dev., 13, 6201–6213, https://doi.org/10.5194/gmd-13-6201-2020, https://doi.org/10.5194/gmd-13-6201-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is detrimental to plant productivity and crop yield. Currently, the Joint UK Land Environment Simulator (JULES) includes a representation of crops (JULES-crop). The parameters for O3 damage in soybean in JULES-crop were calibrated against photosynthesis measurements from the Soybean Free Air Concentration Enrichment (SoyFACE). The result shows good performance for yield, and it helps contribute to understanding of the impacts of climate and air pollution on food security.
Lang Wang, Amos P. K. Tai, Chi-Yung Tam, Mehliyar Sadiq, Peng Wang, and Kevin K. W. Cheung
Atmos. Chem. Phys., 20, 11349–11369, https://doi.org/10.5194/acp-20-11349-2020, https://doi.org/10.5194/acp-20-11349-2020, 2020
Short summary
Short summary
We investigate the effects of future land use and land cover change (LULCC) on surface ozone air quality worldwide and find that LULCC can significantly influence ozone in North America and Europe via modifying surface energy balance, boundary-layer meteorology, and regional circulation. The strength of such “biogeophysical effects” of LULCC is strongly dependent on forest type and generally greater than the “biogeochemical effects” via changing deposition and emission fluxes alone.
Cited articles
Ansari,
A. S. and Pandis, S. N.: Response of Inorganic PM to Precursor
Concentrations, Environ. Sci. Technol., 32, 2706–2714,
https://doi.org/10.1021/es971130j, 1998.
Asman, W. A. H., Sutton, M. A., and Schjorring, J. K.: Ammonia: emission,
atmospheric transport and deposition, New Phytol., 139, 27–48,
https://doi.org/10.1046/j.1469-8137.1998.00180.x, 1998.
Balasubramanian, S., Koloutsou-Vakakis, S., McFarland, D. M., and Rood, M.
J.: Reconsidering emissions of ammonia from chemical fertilizer usage in
Midwest USA: Ammonia emissions from fertilizer usage, J. Geophys. Res.-Atmos., 120, 6232–6246, https://doi.org/10.1002/2015JD023219, 2015.
Balasubramanian, S., Nelson, A., Koloutsou-Vakakis, S., Lin, J., Rood, M.
J., Myles, L., and Bernacchi, C.: Evaluation of DeNitrification
DeComposition model for estimating ammonia fluxes from chemical fertilizer
application, Agr. Forest Meteorol., 237, 123–134,
https://doi.org/10.1016/j.agrformet.2017.02.006, 2017.
Beeckman, F., Motte, H., and Beeckman, T.: Nitrification in agricultural
soils: impact, actors and mitigation, Curr. Opin. Biotech., 50,
166–173, https://doi.org/10.1016/j.copbio.2018.01.014, 2018.
Behera, S. N. and Sharma, M.: Transformation of atmospheric ammonia and acid
gases into components of PM2.5: an environmental chamber study, Environ. Sci.
Pollut. R., 19, 1187–1197, https://doi.org/10.1007/s11356-011-0635-9, 2012.
Bodirsky, B. L., Popp, A., Lotze-Campen, H., Dietrich, J. P., Rolinski, S.,
Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F.,
Biewald, A., and Stevanovic, M.: Reactive nitrogen requirements to feed the
world in 2050 and potential to mitigate nitrogen pollution, Nat. Commun., 5,
3858, https://doi.org/10.1038/ncomms4858, 2014.
Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as
patches of plant functional types: An integrating concept for climate and
ecosystem models: Plant functional types and climate models, Global Biogeochem. Cy., 16, 1–23, https://doi.org/10.1029/2000GB001360,
2002.
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek,
K. W., and Olivier, J. G. J.: A global high-resolution emission inventory
for ammonia, Global Biogeochem. Cy., 11, 561–587,
https://doi.org/10.1029/97GB02266, 1997.
Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: Estimation of global
NH 3 volatilization loss from synthetic fertilizers and animal manure
applied to arable lands and grasslands: AMMONIA EMISSION FROM FERTILIZERS,
Global Biogeochem. Cy., 16, 1–14,
https://doi.org/10.1029/2000GB001389, 2002.
Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.-F.:
Global ammonia distribution derived from infrared satellite observations,
Nat. Geosci., 2, 479–483, https://doi.org/10.1038/ngeo551, 2009.
Clarisse, L., Shephard, M. W., Dentener, F., Hurtmans, D., Cady-Pereira, K.,
Karagulian, F., Van Damme, M., Clerbaux, C., and Coheur, P.-F.: Satellite
monitoring of ammonia: A case study of the San Joaquin Valley, J. Geophys.
Res., 115, D13302, https://doi.org/10.1029/2009JD013291, 2010.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018.
Drewniak, B., Song, J., Prell, J., Kotamarthi, V. R., and Jacob, R.: Modeling agriculture in the Community Land Model, Geosci. Model Dev., 6, 495–515, https://doi.org/10.5194/gmd-6-495-2013, 2013.
Dutta, B., Congreves, K. A., Smith, W. N., Grant, B. B., Rochette, P.,
Chantigny, M. H., and Desjardins, R. L.: Improving DNDC model to estimate
ammonia loss from urea fertilizer application in temperate agroecosystems,
Nutr. Cycl. Agroecosys., 106, 275–292,
https://doi.org/10.1007/s10705-016-9804-z, 2016.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
European Environment Agency: Ammonia (NH3) emissions, 2010,
https://www.eea.europa.eu/ last access: 15 February 2022.
European Environment Agency: EMEP/EEA air pollutant emission inventory
guidebook 2013: Exhaust emissions from road transport, 160,
https://doi.org/10.2800/92722, 2013.
Fangmeier, A., Hadwiger-Fangmeier, A., Van der Eerden, L., and Jäger,
H.-J.: Effects of atmospheric ammonia on vegetation – A review,
Environ. Pollut., 86, 43–82,
https://doi.org/10.1016/0269-7491(94)90008-6, 1994.
FAO: World fertilizer trends and outlook to 2022, 2019,
https://www.fao.org/3/ca6746en/ca6746en.pdf, last access: 15 February 2022.
Gardner, W. R.: Movement of Nitrogen in Soil, in: Soil Nitrogen, John Wiley
& Sons, Ltd, 550–572, https://doi.org/10.2134/agronmonogr10.c15, 1965.
Gilhespy, S. L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li,
C., Misselbrook, T., Rees, R. M., Salas, W., Sanz-Cobena, A., Smith, P.,
Tilston, E. L., Topp, C. F. E., Vetter, S., and Yeluripati, J. B.: First 20
years of DNDC (DeNitrification DeComposition): Model evolution, 292, 51–62,
https://doi.org/10.1016/j.ecolmodel.2014.09.004, 2014.
Gu, B., Ge, Y., Ren, Y., Xu, B., Luo, W., Jiang, H., Gu, B., and Chang, J.:
Atmospheric Reactive Nitrogen in China: Sources, Recent Trends, and Damage
Costs, Environ. Sci. Technol., 46, 9420–9427, https://doi.org/10.1021/es301446g, 2012.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Guthrie, S., Dunkerley, F., Tabaqchali, H., Harshfield, A., Ioppolo, B., and
Manville, C.: Impact of ammonia emissions from agriculture on biodiversity:
An evidence synthesis, RAND Corporation, https://doi.org/10.7249/RR2695,
2018.
He, J., Zhang, Y., Glotfelty, T., He, R., Bennartz, R., Rausch, J., and
Sartelet, K.: Decadal simulation and comprehensive evaluation of CESM/CAM5.1
with advanced chemistry, aerosol microphysics, and aerosol-cloud
interactions, J. Adv. Model. Earth Syst., 7, 110–141,
https://doi.org/10.1002/2014MS000360, 2015.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and
Zhang, H.: A high-resolution ammonia emission inventory in China: Ammonia
emission in China, Global Biogeochem. Cy., 26,
https://doi.org/10.1029/2011GB004161, 2012.
Huijsmans, J. F. M., Vermeulen, G. D., Hol, J. M. G., and Goedhart, P. W.: A
model for estimating seasonal trends of ammonia emission from cattle manure
applied to grassland in the Netherlands, Atmospheric Environment, 173,
231–238, https://doi.org/10.1016/j.atmosenv.2017.10.050, 2018.
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A New
Sea Surface Temperature and Sea Ice Boundary Dataset for the Community
Atmosphere Model, J. Climate, 21, 5145–5153,
https://doi.org/10.1175/2008JCLI2292.1, 2008.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121, 2013.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J.,
Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones,
C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K.,
Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van
Vuuren, D. P., and Wang, Y. P.: Harmonization of land-use scenarios for the
period 1500–2100: 600 years of global gridded annual land-use transitions,
wood harvest, and resulting secondary lands, Clim. Change, 109, 117–161,
https://doi.org/10.1007/s10584-011-0153-2, 2011.
Hutchinson, G. L., Millington, R. J., and Peters, D. B.: Atmospheric
Ammonia: Absorption by Plant Leaves, Science, 175, 771–772,
https://doi.org/10.1126/science.175.4023.771, 1972.
Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Hu, M., and Zhu, T.: Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China), Atmos. Chem. Phys., 11, 10803–10822, https://doi.org/10.5194/acp-11-10803-2011, 2011.
Institute for the Study of Earth, Oceans, and Space, University of New
Hampshire: DNDC v9.5 Scientific Basis and Processes, 2017,
https://www.dndc.sr.unh.edu/papers/DNDC_Scientific_Basis_and_Processes.pdf, last access: 15 February 2022.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Krupa, S. V.: Effects of atmospheric ammonia (NH3) on terrestrial
vegetation: a review, Environ. Pollut., 124, 179–221,
https://doi.org/10.1016/S0269-7491(02)00434-7, 2003.
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012.
Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes, Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013, 2013.
Lawrence, D., Fisher, R., Koven, C., Swenson, S., and Vertenstein, M.:
Technical Description of version 5.0 of the Community Land Model (CLM),
http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf, last access: February 2018.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., Kampenhout, L., Kennedy, D., Kluzek,
E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks,
W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger,
A. M., Bisht, G., Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark,
M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A.
M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S.,
Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier,
J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M.,
Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng,
X.: The Community Land Model Version 5: Description of New Features,
Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model. Earth Syst.,
11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land
surface in the Community Land Model (CLM 3.0), J. Geophys. Res., 112,
G01023, https://doi.org/10.1029/2006JG000168, 2007.
Levis, S., Badger, A., Drewniak, B., Nevison, C., and Ren, X.: CLMcrop
yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5,
Clim. Change, 146, 501–515, https://doi.org/10.1007/s10584-016-1654-9,
2018.
Li, C., Frolking, S., and Frolking, T. A.: A model of nitrous oxide
evolution from soil driven by rainfall events: 2. Model applications, 97,
9777–9783, https://doi.org/10.1029/92JD00510, 1992.
Li, C., Salas, W., Zhang, R., Krauter, C., Rotz, A., and Mitloehner, F.:
Manure-DNDC: a biogeochemical process model for quantifying greenhouse gas
and ammonia emissions from livestock manure systems, Nutr. Cycl. Agroecosyst.,
93, 163–200, https://doi.org/10.1007/s10705-012-9507-z, 2012.
Lin, B.-L., Sakoda, A., Shibasaki, R., and Suzuki, M.: A Modelling Approach
to Global Nitrate Leaching Caused by Anthropogenic Fertilisation, Water
Res., 35, 1961–1968, https://doi.org/10.1016/S0043-1354(00)00484-X,
2001.
Liu, X., Tai, A. P. K., and Fung, K. M.: Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition through terrestrial ecosystem changes, Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, 2021.
Lombardozzi, D. L., Lu, Y., Lawrence, P. J., Lawrence, D. M., Swenson, S.,
Oleson, K. W., Wieder, W. R., and Ainsworth, E. A.: Simulating Agriculture
in the Community Land Model Version 5, J. Geophys. Res.-Biogeo., 125, e2019JG005529, https://doi.org/10.1029/2019JG005529, 2020.
Lu, X., Mo, J., and Dong, S.: Effects of nitrogen deposition on forest
biodiversity, Acta Ecol. Sin., 28, 5532–5548,
https://doi.org/10.1016/S1872-2032(09)60012-3, 2008.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017.
Metzger, S.: Gas/aerosol partitioning: 1. A computationally efficient model,
J. Geophys. Res., 107, 4312, https://doi.org/10.1029/2001JD001102, 2002.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
National Oceanic and Atmospheric Administration: Atmospheric Ammonia:
Sources and Fate – A Review of Ongoing Federal Research and Future Need,
J. Molec. Liq.,
https://csl.noaa.gov/aqrs/reports/ammonia.pdf (last access: 15 February 2022), 2000.
Neale, R. B., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S.,
Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., and Lamarque,
J.-F.: Description of the NCAR community atmosphere model (CAM 5.0), https://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf, (last access: 15 February 2022), 1,
1–12, 2010.
Nemitz, E., Milford, C., and Sutton, M. A.: A two-layer canopy compensation
point model for describing bi-directional biosphere-atmosphere exchange of
ammonia, Q. J. Roy. Meteor. Soc., 127, 815–833,
https://doi.org/10.1002/qj.49712757306, 2001.
Nevison, C., Hess, P., Riddick, S., and Ward, D.: Denitrification, leaching,
and river nitrogen export in the Community Earth System Model, J. Adv.
Model. Earth Syst., 8, 272–291, https://doi.org/10.1002/2015MS000573, 2016.
Paulot, F. and Jacob, D. J.: Hidden Cost of U.S. Agricultural Exports:
Particulate Matter from Ammonia Emissions, Environ. Sci. Technol., 48, 903–908,
https://doi.org/10.1021/es4034793, 2014.
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze,
D. K.: Ammonia emissions in the United States, European Union, and China
derived by high-resolution inversion of ammonium wet deposition data:
Interpretation with a new agricultural emissions inventory
(MASAGE_NH3), J. Geophys. Res.-Atmos., 119, 4343–4364,
https://doi.org/10.1002/2013JD021130, 2014.
Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene,
W. C., Lima, I. D., Doney, S. C., and Stock, C. A.: Global oceanic emission
of ammonia: Constraints from seawater and atmospheric observations, Global Biogeochem. Cy., 29, 1165–1178, https://doi.org/10.1002/2015GB005106,
2015.
Pleim, J. E., Bash, J. O., Walker, J. T., and Cooter, E. J.: Development and
evaluation of an ammonia bidirectional flux parameterization for air quality
models: Ammonia bidirectional flux model, J. Geophys. Res.-Atmos., 118,
3794–3806, https://doi.org/10.1002/jgrd.50262, 2013.
Pleim, J. E., Ran, L., Appel, W., Shephard, M. W., and Cady-Pereira, K.: New
Bidirectional Ammonia Flux Model in an Air Quality Model Coupled With an
Agricultural Model, J. Adv. Model. Earth Syst., 11, 2934–2957,
https://doi.org/10.1029/2019MS001728, 2019.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000-Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling: MONTHLY IRRIGATED AND
RAINFED CROP AREAS, Global Biogeochem. Cy., 24, GB1011, https://doi.org/10.1029/2008GB003435, 2010.
Riddick, S., Ward, D., Hess, P., Mahowald, N., Massad, R., and Holland, E.: Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model, Biogeosciences, 13, 3397–3426, https://doi.org/10.5194/bg-13-3397-2016, 2016.
Saikawa, E., Schlosser, C. A., and Prinn, R. G.: Global modeling of soil
nitrous oxide emissions from natural processes: Global soil nitrous oxide
emissions, Global Biogeochem. Cy.,, 27, 972–989,
https://doi.org/10.1002/gbc.20087, 2013.
Saikawa, E., Prinn, R. G., Dlugokencky, E., Ishijima, K., Dutton, G. S., Hall, B. D., Langenfelds, R., Tohjima, Y., Machida, T., Manizza, M., Rigby, M., O'Doherty, S., Patra, P. K., Harth, C. M., Weiss, R. F., Krummel, P. B., van der Schoot, M., Fraser, P. J., Steele, L. P., Aoki, S., Nakazawa, T., and Elkins, J. W.: Global and regional emissions estimates for N2O, Atmos. Chem. Phys., 14, 4617–4641, https://doi.org/10.5194/acp-14-4617-2014, 2014.
Shou, W., Zong, H., Ding, P., and Hou, L.: A modelling approach to assess
the effects of atmospheric nitrogen deposition on the marine ecosystem in
the Bohai Sea, China, Estuar. Coast. Shelf Sci., 208, 36–48,
https://doi.org/10.1016/j.ecss.2018.04.025, 2018.
Snider, G., Weagle, C. L., Murdymootoo, K. K., Ring, A., Ritchie, Y., Stone, E., Walsh, A., Akoshile, C., Anh, N. X., Balasubramanian, R., Brook, J., Qonitan, F. D., Dong, J., Griffith, D., He, K., Holben, B. N., Kahn, R., Lagrosas, N., Lestari, P., Ma, Z., Misra, A., Norford, L. K., Quel, E. J., Salam, A., Schichtel, B., Segev, L., Tripathi, S., Wang, C., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., Liu, Y., Martins, J. V., Rudich, Y., and Martin, R. V.: Variation in global chemical composition of PM2.5: emerging results from SPARTAN, Atmos. Chem. Phys., 16, 9629–9653, https://doi.org/10.5194/acp-16-9629-2016, 2016.
Sutton, M. A.: The surface/atmosphere exchange of ammonia, PhD thesis, University of Edinburgh, 1990.
Sutton, M. A., Pitcairn, C. E., and Fowler, D.: The exchange of ammonia
between the atmosphere and plant communities, Adv. Ecol. Res., 24, 301–393, 1993.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E.,
Theobald, M. R., Tang, Y. S., Braban, C. F., Vieno, M., Dore, A. J.,
Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D., Blackall, T. D.,
Milford, C., Flechard, C. R., Loubet, B., Massad, R., Cellier, P., Personne,
E., Coheur, P. F., Clarisse, L., Van Damme, M., Ngadi, Y., Clerbaux, C.,
Skjøth, C. A., Geels, C., Hertel, O., Wichink Kruit, R. J., Pinder, R.
W., Bash, J. O., Walker, J. T., Simpson, D., Horváth, L., Misselbrook,
T. H., Bleeker, A., Dentener, F., and de Vries, W.: Towards a
climate-dependent paradigm of ammonia emission and deposition, Philos. T. Roy. Soc. B, 368, 20130166, https://doi.org/10.1098/rstb.2013.0166, 2013.
Tian, D. and Niu, S.: A global analysis of soil acidification caused by
nitrogen addition, Environ. Res. Lett., 10, 024019,
https://doi.org/10.1088/1748-9326/10/2/024019, 2015.
Tie, X. and Cao, J.: Aerosol pollution in China: Present and future impact
on environment, Particuology, 7, 426–431,
https://doi.org/10.1016/j.partic.2009.09.003, 2009.
US Environmental Protection Agency: National Emission Inventory (NEI)
Report,
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data (last access: 15 February 2022), 2014.
Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., and Coheur, P. F.: Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations, Atmos. Chem. Phys., 14, 2905–2922, https://doi.org/10.5194/acp-14-2905-2014, 2014.
Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D., and Coheur, P.-F.: Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets, Atmos. Meas. Tech., 10, 4905–4914, https://doi.org/10.5194/amt-10-4905-2017, 2017.
Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D.,
Clerbaux, C., and Coheur, P.-F.: Industrial and agricultural ammonia point
sources exposed, Nature, 564, 99–103,
https://doi.org/10.1038/s41586-018-0747-1, 2018a.
Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., Coheur, P.-F.,: Level 2 dataset and Level 3 oversampled average map of the IASI/Metop-A ammonia (NH3) morning column measurements (ANNI-NH3-v2.1R-I) from 2008 to 2016, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.894736, 2018b.
Van Hove, L. W. A., Koops, A. J., Adema, E. H., Vredenberg, W. J., and
Pieters, G. A.: Analysis of the uptake of atmospheric ammonia by leaves of
Phaseolus vulgaris L., Atmos. Environ., 21, 1759–1763,
https://doi.org/10.1016/0004-6981(87)90115-6, 1987.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L.,
Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr,
W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der
Werf, G. R.: Biomass Burning emissions for CMIP6 (v1.2),
https://doi.org/10.22033/ESGF/input4MIPs.1117, 2016.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017.
Vira, J., Hess, P., Melkonian, J., and Wieder, W. R.: An improved mechanistic model for ammonia volatilization in Earth system models: Flow of Agricultural Nitrogen version 2 (FANv2), Geosci. Model Dev., 13, 4459–4490, https://doi.org/10.5194/gmd-13-4459-2020, 2020.
Vira, J., Hess, P., Ossohou, M., and Galy-Lacaux, C.: Evaluation of interactive and prescribed agricultural ammonia emissions for simulating atmospheric composition in CAM-chem, Atmos. Chem. Phys., 22, 1883–1904, https://doi.org/10.5194/acp-22-1883-2022, 2022.
Wang, J., Xing, J., Mathur, R., Pleim, J. E., Wang, S., Hogrefe, C., Gan,
C.-M., Wong, D. C., and Hao, J.: Historical Trends in PM2.5 -Related
Premature Mortality during 1990–2010 across the Northern Hemisphere,
Environmen. Health Perspec., 125, 400–408,
https://doi.org/10.1289/EHP298, 2017.
Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 41,
52–63, https://doi.org/10.1016/j.atmosenv.2007.10.058, 2007.
Whitburn, S., Van Damme, M., Clarisse, L., Hurtmans, D., Clerbaux, C., and Coheur, P.-F.: IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions, Atmos. Chem. Phys., 17, 12239–12252, https://doi.org/10.5194/acp-17-12239-2017, 2017.
Wortman, E., Tomaszewski, T., Waldner, P., Schleppi, P., Thimonier, A.,
Eugster, W., Buchmann, N., and Sievering, H.: Atmospheric nitrogen
deposition and canopy retention influences on photosynthetic performance at
two high nitrogen deposition Swiss forests, Tellus B, 64, 17216, https://doi.org/10.3402/tellusb.v64i0.17216, 2012.
Xing, Y.-F., Xu, Y.-H., Shi, M.-H., and Lian, Y.-X.: The impact of PM2.5 on
the human respiratory system, J. Thorac. Dis., 8.1, 69–74, https://doi.org/10.3978/j.issn.2072-1439.2016.01.19, 2016.
Yang, Y., Ruan, Z., Wang, X., Yang, Y., Mason, T. G., Lin, H., and Tian, L.:
Short-term and long-term exposures to fine particulate matter constituents
and health: A systematic review and meta-analysis, Environ. Pollut.,
247, 874–882, https://doi.org/10.1016/j.envpol.2018.12.060, 2019.
Zhang, J. and Liu, M. G.: Observations on nutrient elements and sulphate in
atmospheric wet depositions over the northwest Pacific coastal oceans –
Yellow Sea, Mar. Chem., 47, 173–189,
https://doi.org/10.1016/0304-4203(94)90107-4, 1994.
Zhang, Y. and Niu, H.: The development of the DNDC plant growth sub-model
and the application of DNDC in agriculture: A review, Agric. Ecosyst. Environ., 230, 271–282,
https://doi.org/10.1016/j.agee.2016.06.017, 2016.
Zhang, L., Chen, Y., Zhao, Y., Henze, D. K., Zhu, L., Song, Y., Paulot, F., Liu, X., Pan, Y., Lin, Y., and Huang, B.: Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18, 339–355, https://doi.org/10.5194/acp-18-339-2018, 2018.
Zhao, Y., Zhang, L., Tai, A. P. K., Chen, Y., and Pan, Y.: Responses of surface ozone air quality to anthropogenic nitrogen deposition in the Northern Hemisphere, Atmos. Chem. Phys., 17, 9781–9796, https://doi.org/10.5194/acp-17-9781-2017, 2017.
Zheng, Y., Xue, T., Zhang, Q., Geng, G., Tong, D., Li, X., and He, K.: Air
quality improvements and health benefits from China's clean air action since
2013, Environ. Res. Lett., 12, 114020,
https://doi.org/10.1088/1748-9326/aa8a32, 2017.
Zhu, L., Henze, D., Bash, J., Jeong, G.-R., Cady-Pereira, K., Shephard, M., Luo, M., Paulot, F., and Capps, S.: Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes, Atmos. Chem. Phys., 15, 12823–12843, https://doi.org/10.5194/acp-15-12823-2015, 2015.
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging...
Altmetrics
Final-revised paper
Preprint