Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3317-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3317-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Emma Bousquet
CORRESPONDING AUTHOR
Centre d'Etudes Spatiales de la Biosphère (CESBIO), Université
de Toulouse (CNES/CNRS/INRAE/IRD/UPS), 18 av. Edouard Belin, bpi 2801, 31401
Toulouse CEDEX 9, France
Arnaud Mialon
Centre d'Etudes Spatiales de la Biosphère (CESBIO), Université
de Toulouse (CNES/CNRS/INRAE/IRD/UPS), 18 av. Edouard Belin, bpi 2801, 31401
Toulouse CEDEX 9, France
Nemesio Rodriguez-Fernandez
Centre d'Etudes Spatiales de la Biosphère (CESBIO), Université
de Toulouse (CNES/CNRS/INRAE/IRD/UPS), 18 av. Edouard Belin, bpi 2801, 31401
Toulouse CEDEX 9, France
Stéphane Mermoz
GlobEO, 31400 Toulouse, France
Yann Kerr
Centre d'Etudes Spatiales de la Biosphère (CESBIO), Université
de Toulouse (CNES/CNRS/INRAE/IRD/UPS), 18 av. Edouard Belin, bpi 2801, 31401
Toulouse CEDEX 9, France
Related authors
No articles found.
Juliette Ortet, Arnaud Mialon, Alain Royer, Mike Schwank, Manu Holmberg, Kimmo Rautiainen, Simone Bircher-Adrot, Andreas Colliander, Yann Kerr, and Alexandre Roy
The Cryosphere, 19, 3571–3598, https://doi.org/10.5194/tc-19-3571-2025, https://doi.org/10.5194/tc-19-3571-2025, 2025
Short summary
Short summary
We propose a new method to determine the ground surface temperature under the snowpack in the Arctic area from satellite observations. The obtained ground temperature time series were evaluated over 21 reference sites in Northern Alaska and compared with ground temperatures obtained with global models. The method is extremely promising for monitoring ground temperature below the snowpack and studying the spatio-temporal variability thanks to 15 years of observations over the whole Arctic area.
Kimmo Rautiainen, Manu Holmberg, Juval Cohen, Arnaud Mialon, Mike Schwank, Juha Lemmetyinen, Antonio de la Fuente, and Yann Kerr
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-68, https://doi.org/10.5194/essd-2025-68, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The SMOS Soil Freeze Thaw State product uses satellite data to monitor seasonal soil freezing and thawing globally, with a focus on high latitude regions. This is important for understanding greenhouse gas emissions, as frozen soil is associated with methane release. The product provides accurate data on key events such as the first day of soil freezing in autumn, helping scientists to study climate change, ecosystem dynamics and its impact on our planet.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr
Earth Syst. Sci. Data, 17, 1101–1119, https://doi.org/10.5194/essd-17-1101-2025, https://doi.org/10.5194/essd-17-1101-2025, 2025
Short summary
Short summary
Aboveground biomass (AGB) is a critical component of the Earth's carbon cycle. The presented dataset aims to help monitor this essential climate variable with AGB time series from 2011 onward, derived with a carefully calibrated spatial relationship between the measurements of the Soil Moisture and Ocean Salinity (SMOS) mission and pre-existing AGB maps. The produced dataset has been extensively compared with other available AGB time series and can be used in AGB studies.
Marta Bottani, Laurent Ferro-Famil, Juan Doblas, Stéphane Mermoz, Alexandre Bouvet, and Thierry Koleck
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 43–49, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-43-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-43-2024, 2024
Juan Doblas, Mariane Souza Reis, Stéphane Mermoz, Claudio Aparecido Almeida, Thierry Koleck, Cassiano Gustavo Messias, Luciana Soler, Alexandre Bouvet, and Sidnei J. S. Sant’Anna
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 127–133, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-127-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-127-2024, 2024
Thuy Le Toan, Ludovic Villard, Dinh Ho Tong Minh, Juan Doblas, Stephane Mermoz, Laurent Ferro-Famil, Thierry Koleck, Alexandre Bouvet, Milena Planells, and Laurent Polidori
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 287–293, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-287-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-287-2024, 2024
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022, https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Short summary
Most Earth system models make use of vegetation maps to initialize a simulation at global scale. Satellite-based biomass map estimates for Africa were used to estimate cover fractions for the 15 land cover classes. This study successfully demonstrates that satellite-based biomass maps can be used to better constrain vegetation maps. Applying this approach at the global scale would increase confidence in assessments of present-day biomass stocks.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Cited articles
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate
change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113,
11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016.
Albini, F. A.: Dynamics and modeling of vegetation fires: observations, in:
Fire in the environment: the ecological, atmospheric, and climatic
importance of vegetation fires, edited by: Crutzen, P. J. and Goldammer, J.
G., John Wiley & Sons, Chichester, England, 39–52, 1993.
Alexander, M. E. and Cruz, M. G.: Crown fire dynamics in conifer forests, in:
Synthesis of knowledge of extreme fire behavior, USDA Forest Service,
Pacific Northwest Research Station, General technical report PNW-GTR-854, 1,
107–142, 2011.
Ambadan, J. T., Oja, M., Gedalof, Z. E., and Berg, A. A.: Satellite-Observed
Soil Moisture as an Indicator of Wildfire Risk, Remote Sens., 12, 1543,
https://doi.org/10.3390/rs12101543, 2020.
Aragão, L. E., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato,
L. B., Wagner, F. H., Silva, C. V. J., Silva Junior, C. H. L., Arai, E.,
Aguiar, A. P., Barlow, J., Berenguer, E., Deeter, M. N., Domingues, L. G.,
Gatti, L., Gloor, M., Malhi, G., Marengo, J. A., Miller, J. B., Phillips, O.
L., and Saatchi, S.: 21st Century drought-related fires counteract the
decline of Amazon deforestation carbon emissions, Nat. Commun., 9, 1–12,
https://doi.org/10.1038/s41467-017-02771-y, 2018.
Asner, G. P., Loarie, S. R., and Heyder, U.: Combined effects of climate and
land-use change on the future of humid tropical forests, Conserv. Lett., 3,
395–403, https://doi.org/10.1111/j.1755-263X.2010.00133.x, 2010.
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily
precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1, 2015.
Auld, T. D. and Bradstock, R. A.: Soil temperatures after the passage of a
fire: do they influence the germination of buried seeds? Aust. J. Ecol., 21,
106–109, 1996.
Barlow, J., Peres, C. A., Lagan, B. O., and Haugaasen, T.: Large tree
mortality and the decline of forest biomass following Amazonian wildfires,
Ecol. Lett., 6, 6–8, https://doi.org/10.1046/j.1461-0248.2003.00394.x,
2003.
Berenguer, E., Malhi, Y., Brando, P., Cardoso Nunes Cordeiro, A., Ferreira,
J., França, F., Chesini Rossi, L., Moraes de Seixas, M. M., and Barlow,
J.: Tree growth and stem carbon accumulation in human-modified Amazonian
forests following drought and fire, Philos. T. R. Soc. B., 373, 20170308,
https://doi.org/10.1098/rstb.2017.0308, 2018.
BLM: Mendocino Complex Fire, Watershed Modeling Report,
https://www.blm.gov/sites/blm.gov/files/uploads/Programs_Fire_California_Watershed_Modeling_Report-Mendocino-Complex-Fire.pdf (last access: 14
December 2021), 2018.
Boergens, E., Dobslaw, H., and Dill, R.: GFZ GravIS RL06 Continental Water
Storage Anomalies, V. 0002, GFZ Data Services [data set],
https://doi.org/10.5880/GFZ.GRAVIS_06_L3_TWS, 2019.
BoM: Annual climate statement 2020,
http://www.bom.gov.au/climate/current/annual/aus/2020/, last access: 14 December
2021.
Bousquet, E., Mialon, A., Rodriguez-Fernandez, N., Prigent, C., Wagner, F.
H., and Kerr, Y. H.: Influence of surface water variations on VOD and
biomass estimates from passive microwave sensors, Remote Sens. Environ.,
257, 112345, https://doi.org/10.1016/j.rse.2021.112345, 2021.
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.:
EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded
Data Sets, ISPRS Int. J. Geo-Inf., 1, 32–45,
https://doi.org/10.3390/ijgi1010032, 2012.
Broxton, P. D., Zeng, X., Sulla-Menashe, D., and Troch, P. A.: A global land
cover climatology using MODIS data, J. Appl. Meteorol. Clim., 53,
1593–1605, https://doi.org/10.1175/JAMC-D-13-0270.1, 2014.
Brown, T., Leach, S., Wachter, B., and Gardunio, B.: The Northern California
2018 Extreme Fire Season, in: Explaining Extremes of 2018 from a Climate
Perspective, B. Am. Meteorol. Soc., 101, S1–S4,
https://doi.org/10.1175/BAMS-D-19-0275.1, 2020.
Burrows, G. E.: Epicormic strand structure in Angophora, Eucalyptus and
Lophostemon (Myrtaceae): implications for fire resistance and recovery, New
Phytol., 153, 111–131, 2002.
Caccamo, G., Bradstock, R., Collins, L., Penman, T., and Watson, P.: Using
MODIS data to analyse post-fire vegetation recovery in Australian eucalypt
forests, J. Spat. Sci., 60, 341–352,
https://doi.org/10.1080/14498596.2015.974227, 2015.
CAMS: Copernicus Atmosphere Monitoring Service: Copernicus: A summer of
wildfires saw devastation and record emissions around the Northern
Hemisphere,
https://atmosphere.copernicus.eu/,
last access: 30 September 2021.
Certini, G.: Effects of fire on properties of forest soils: a review,
Oecologia, 143, 1–10, https://doi.org/10.1007/s00442-004-1788-8, 2005.
Chaparro, D., Piles, M., Vall-Llossera, M., and Camps, A.: Surface moisture
and temperature trends anticipate drought conditions linked to wildfire
activity in the Iberian Peninsula, Eur. J. Remote Sens., 49, 955–971, 2016.
Chen, Y., Velicogna, I., Famiglietti, J. S., and Randerson, J. T.: Satellite
observations of terrestrial water storage provide early warning information
about drought and fire season severity in the Amazon, J. Geophys.
Res.-Biogeo., 118, 495–504, https://doi.org/10.1002/jgrg.20046, 2013.
Cheng, D., Rogan, J., Schneider, L., and Cochrane, M.: Evaluating MODIS
active fire products in subtropical Yucatán forest, Remote Sens. Lett.,
4, 455–464, https://doi.org/10.1080/2150704X.2012.749360, 2013.
Chu, T. and Guo, X.: Remote sensing techniques in monitoring post-fire
effects and patterns of forest recovery in boreal forest regions: A review,
Remote Sens., 6, 470–520, https://doi.org/10.3390/rs6010470, 2013.
Chuvieco, E., Aguado, I., Jurdao, S., Pettinari, M. L., Yebra, M., Salas,
J., Hantson, S., de la Riva, J., Ibarra, P., Rodrigues, M., Echeverría,
M., Azqueta, D., Román, M. V., Bastarrika, A., Martínez, S.,
Recondo, C., Zapico, E., and Vega, J. M.: Integrating geospatial information
into fire risk assessment, Int. J. Wildland Fire, 23, 606–619,
https://doi.org/10.1071/WF12052, 2012.
Cochrane, M. A.: Fire science for rainforests, Nature, 421, 913–919,
https://doi.org/10.1038/nature01437, 2003.
Crockett, J. L. and Westerling, A. L.: Greater temperature and precipitation
extremes intensify Western US droughts, wildfire severity, and Sierra Nevada
tree mortality, J. Clim., 31, 341–354,
https://doi.org/10.1175/JCLI-D-17-0254.1, 2018.
de Faria, B. L., Marano, G., Piponiot, C., Silva, C. A., Dantas, V. D. L.,
Rattis, L., Rech, A. R., and Collalti, A.: Model-based estimation of
Amazonian forests recovery time after drought and fire events, Forests, 12,
8, https://doi.org/10.3390/f12010008, 2021.
de Jeu, R. and Owe, M.: AMSR2/GCOM-W1 Surface Soil Moisture (LPRM) L3 1 Day 10 km × 10 km Descending V001, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/M5DTR2QUYLS2, 2014.
de Jeu, R. A., Wagner, W., Holmes, T. R. H., Dolman, A. J., Van De Giesen,
N. C., and Friesen, J.: Global soil moisture patterns observed by space
borne microwave radiometers and scatterometers, Surv. Geophys., 29,
399–420, 2008.
de Groot, W. J., Cantin, A. S., Flannigan, M. D., Soja, A. J., Gowman, L.
M., and Newbery, A.: A comparison of Canadian and Russian boreal forest fire
regimes, Forest Ecol. Manag., 294, 23–34,
https://doi.org/10.1016/j.foreco.2012.07.033, 2013.
de Marzo, T., Pflugmacher, D., Baumann, M., Lambin, E. F., Gasparri, I., and
Kuemmerle, T.: Characterizing forest disturbances across the Argentine Dry
Chaco based on Landsat time series, Int. J. Appl. Earth Obs., 98, 102310,
https://doi.org/10.1016/j.jag.2021.102310, 2021.
DEWR: Department of the Environment and Water Resources: Australia's native
vegetation: a summary of Australia's major vegetation groups, Australian
Government, Canberra,
http://www.environment.gov.au/
(last access: 20 July 2021), 2007.
Didan, K.: MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg
CMG V006 EVI, NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MOD13C2.006, 2015.
Dowdy, A. J.: Climatological variability of fire weather in Australia, J.
Appl. Meteorol. Clim., 57, 221–234,
https://doi.org/10.1175/JAMC-D-17-0167.1, 2018.
Ehsani, M. R., Arevalo, J., Risanto, C. B., Javadian, M., Devine, C. J.,
Arabzadeh, A., Venegas-Quiñones, H. L., Dell'Oro, A. P., and Behrangi,
A.: 2019–2020 Australia fire and its relationship to hydroclimatological
and vegetation variabilities, Water, 12, 3067,
https://doi.org/10.3390/w12113067, 2020.
Fan, L., Wigneron, J. P., Xiao, Q., Al-Yaari, A., Wen, J., Martin-StPaul,
N., Dupuy, J. L., Pimont, F., Al Bitar, A., Fernandez-Moran, R., and Kerr,
Y. H.: Evaluation of microwave remote sensing for monitoring live fuel
moisture content in the Mediterranean region, Remote Sens. Environ.,
205, 210–223, https://doi.org/10.1016/j.rse.2017.11.020, 2018.
FAO: Food and Agriculture Organization: Fire Management – Global Assessment
2006, A Thematic Study Prepared in the Framework of the Global Forest
Resources Assessment 2005, Rome, ISBN 978-92-5-105666-0, 2006.
Farahmand, A., Stavros, E. N., Reager, J. T., Behrangi, A., Randerson, J. T., and Quayle, B.: Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States, Nat. Hazards Earth Syst. Sci., 20, 1097–1106, https://doi.org/10.5194/nhess-20-1097-2020, 2020.
Fernandez-Carrillo, A., McCaw, L., and Tanase, M. A.: Estimating prescribed
fire impacts and post-fire tree survival in eucalyptus forests of Western
Australia with L-band SAR data, Remote Sens. Environ., 224, 133–144,
https://doi.org/10.1016/j.rse.2019.02.005, 2019.
Forkel, M., Thonicke, K., Beer, C., Cramer, W., Bartalev, S., and
Schmullius, C.: Extreme fire events are related to previous-year surface
moisture conditions in permafrost-underlain larch forests of Siberia,
Environ. Res. Lett., 7, 044021,
https://doi.org/10.1088/1748-9326/7/4/044021, 2012.
Forkel, M., Dorigo, W., Lasslop, G., Teubner, I., Chuvieco, E., and
Thonicke, K.: A data-driven approach to identify controls on global fire
activity from satellite and climate observations (SOFIA V1), Geosci. Model
Dev., 10, 4443–4476, https://doi.org/10.5194/gmd-10-4443-2017, 2017.
Frappart, F., Wigneron, J. P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang,
M., Moisy, C., Le Masson, E., Aoulad Lafkih, Z., Vallé, C., Ygorra, B.,
and Baghdadi, N.: Global monitoring of the vegetation dynamics from the
Vegetation Optical Depth (VOD): A review, Remote Sens., 12, 2915,
https://doi.org/10.3390/rs12182915, 2020.
GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software
Library, Open Source Geospatial Foundation, https://gdal.org/ (last access: 1 October 2021),
2020.
Giglio, L., Schroeder, W., Hall, J. V., and Justice, C. O.: MODIS Collection
6 Active Fire Product User's Guide Revision C, Department of Geographical
Sciences, University of Maryland, 2020.
Gignoux, J., Clobert, J., and Menaut, J. C.: Alternative fire resistance
strategies in savanna trees, Oecologia, 110, 576–583,
https://doi.org/10.1007/s004420050198, 1997.
Goetz, S. J., Fiske, G. J., and Bunn, A. G.: Using satellite time-series
data sets to analyze fire disturbance and forest recovery across Canada,
Remote Sens. Environ., 101, 352–365,
https://doi.org/10.1016/j.rse.2006.01.011, 2006.
Guglielmetti, M., Schwank, M., Mätzler, C., Oberdörster, C.,
Vanderborght, J., and Flühler, H.: Measured microwave radiative transfer
properties of a deciduous forest canopy, Remote Sens. Environ., 109,
523–532, https://doi.org/10.1016/j.rse.2007.02.003, 2007.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R.,
Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R.
G.: High-resolution global maps of 21st-century forest cover change,
Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Heath, J. T., Chafer, C. J., Bishop, T. F., and Van Ogtrop, F. F.: Post-fire
recovery of eucalypt-dominated vegetation communities in the Sydney Basin,
Australia, Fire Ecol., 12, 53–79,
https://doi.org/10.4996/fireecology.1203053, 2016.
Helfrich, S., McNamara, D., Ramsay, B., Baldwin, T., and Kasheta, T.:
Enhancements to, and forthcoming developments in the Interactive Multisensor
Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576–1586,
https://doi.org/10.1002/hyp.6720, 2007.
Higuera, P. E. and Abatzoglou, J. T.: Record-setting climate enabled the
extraordinary 2020 fire season in the western United States, Glob. Change
Biol., 27, 1–2, https://doi.org/10.1111/gcb.15388, 2020.
Hochberg, M. E., Menaut, J. C., and Gignoux, J.: The influences of tree
biology and fire in the spatial structure of the West African savannah, J.
Ecol., 82, 217–226, 1994.
Holgate, C. M., van Dijk, A. I., Cary, G. J., and Yebra, M.: Using
alternative soil moisture estimates in the McArthur Forest Fire Danger
Index, Int. J. Wildland Fire, 26, 806–819, https://doi.org/10.1071/WF16217,
2017.
Imaoka, K., Kachi, M., Kasahara, M., Ito, N., Nakagawa, K., and Oki, T.:
Instrument performance and calibration of AMSR-E and AMSR2, Int. Arch.
Photogramm., 38, 13–18, 2010.
Jackson, T. J., Schmugge, T. J., and Wang, J. R.: Passive microwave sensing
of soil moisture under vegetation canopies, Water Resour. Res., 18,
1137–1142, 1982.
Jackson, T. J. and Schmugge, T. J.: Vegetation effects on the microwave
emission of soils, Remote Sens. Environ., 36, 203–212, 1991.
Jarvis, A., Reuter, H., Nelson, A., and Guevara, E.: Hole-filled seamless
SRTM data V3, International Centre for Tropical Agriculture (CIAT),
available from CGIAR-CSI SRTM 90 m database, http://srtm.csi.cgiar.org
(last access: 30 September 2021), 2006.
Jensen, D., Reager, J. T., Zajic, B., Rousseau, N., Rodell, M., and Hinkley,
E.: The sensitivity of US wildfire occurrence to pre-season soil moisture
conditions across ecosystems, Environ. Res. Lett., 13, 014021,
https://doi.org/10.1088/1748-9326/aa9853, 2018.
Jin, Y., Randerson, J. T., Goetz, S. J., Beck, P. S., Loranty, M. M., and
Goulden, M. L.: The influence of burn severity on postfire vegetation
recovery and albedo change during early succession in North American boreal
forests, J. Geophys. Res.-Biogeo., 117, G01036,
https://doi.org/10.1029/2011JG001886, 2012.
Jones, M. O., Jones, L. A., Kimball, J. S., and McDonald, K. C.: Satellite
passive microwave remote sensing for monitoring global land surface
phenology, Remote Sens. Environ., 115, 1102–1114,
https://doi.org/10.1016/j.rse.2010.12.015, 2011.
Justice, C., Giglio, L., Boschetti, L., Roy, D., Csiszar, I., Morisette, J.,
and Kaufman, Y.: Algorithm technical background document MODIS fire
products, MODIS Science Team, Washington DC, USA,
https://eospso.nasa.gov/sites/default/files/atbd/atbd_mod14.pdf (last access: 1 January 2020), 2006.
Kerr, Y. H. and Njoku, E. G.: A semiempirical model for interpreting
microwave emission from semiarid land surfaces as seen from space, IEEE T.
Geosci. Remote, 28, 384–393, https://doi.org/10.1109/36.54364, 1990.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Martinuzzi, J. A. M. J., Font,
J., and Berger, M.: Soil moisture retrieval from space: The Soil Moisture
and Ocean Salinity (SMOS) mission, IEEE T. Geosci. Remote, 39, 1729–1735,
https://doi.org/10.1109/36.942551, 2001.
Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F.,
Boutin, J., Escorihuela, M. J., Font, J., Reul, N., Gruhier, C., Juglea, S.
E., Drinkwater, M. R., Hahne, A., Martin-Neira, M., and Mecklenburg, S.: The
SMOS mission: New tool for monitoring key elements of the global water
cycle, P. IEEE, 98, 666–687, https://doi.org/10.1109/JPROC.2010.2043032,
2010.
Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferrazzoli, P.,
Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S. E., Leroux,
D., Mialon, A., and Delwart, S.: The SMOS Soil Moisture Retrieval Algorithm,
Geosci. Remote Sens., 50, 1384–1403,
https://doi.org/10.1109/TGRS.2012.2184548, 2012.
Konings, A. G., Rao, K., and Steele-Dunne, S. C.: Macro to micro: microwave
remote sensing of plant water content for physiology and ecology, New
Phytol., 223, 1166–1172, https://doi.org/10.1111/nph.15808, 2019.
Konings, A. G., Holtzman, N., Rao, K., Xu, L., and Saatchi, S. S.:
Interannual Variations of Vegetation Optical Depth Are Due to Both Water
Stress and Biomass Changes, Geophys. Res. Lett., 48, e2021GL095267,
https://doi.org/10.1029/2021GL095267, 2021.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of
the Köppen-Geiger climate classification updated, Meteorol. Z., 15,
259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I.
C., and Harrison, S. P.: The importance of antecedent vegetation and drought
conditions as global drivers of burnt area, Biogeosciences, 18, 3861–3879,
https://doi.org/10.5194/bg-18-3861-2021, 2021.
Mbow, C., Goïta, K., and Bénié, G. B.: Spectral
indices and fire behavior simulation for fire risk assessment in savanna
ecosystems, Remote Sens. Environ., 91, 1–13,
https://doi.org/10.1016/j.rse.2003.10.019, 2004.
McColl, J. G.: Soil-Plant Relationships in a Eucalyptus Forest on the South
Coast of New South Wales, Ecology, 50, 354–362,
https://doi.org/10.2307/1933883, 1969.
Menaut, J. C., Gignoux, J., Prado, C., and Clobert, J.: Tree community
dynamics in a humid savanna of the Cote-d'Ivoire: modelling the effects of
fire and competition with grass and neighbours, J. Biogeogr., 17, 471–481,
1990.
Mermoz, S. and Le Toan, T.: Forest disturbances and regrowth assessment
using ALOS PALSAR data from 2007 to 2010 in Vietnam, Cambodia and Lao PDR,
Remote Sens., 8, p. 217, https://doi.org/10.3390/rs8030217, 2016.
Mhawej, M., Faour, G., and Adjizian-Gerard, J.: Wildfire likelihood's
elements: a literature review, Challenges, 6, 282–293,
https://doi.org/10.3390/challe6020282, 2015.
Mialon, A., Coret, L., Kerr, Y. H., Sécherre, F., and Wigneron, J.-P.:
Flagging the topographic impact on the SMOS signal, IEEE T. Geosci. Remote,
46, 689–694, https://doi.org/10.1109/TGRS.2007.914788, 2008.
Mialon, A., Rodriguez-Fernandez, N. J., Santoro, M., Saatchi, S., Mermoz,
S., Bousquet, E., and Kerr, Y. H.: Evaluation of the Sensitivity of SMOS L-VOD
to Forest Above-Ground Biomass at Global Scale, Remote Sens., 12, 1450,
https://doi.org/10.3390/rs12091450, 2020.
Mo, T., Choudhury, B. J., Schmugge, T. J., Wang, J. R., and Jackson, T. J.:
A model for microwave emission from vegetation-covered fields, J. Geophys.
Res., 87, 11229–11237, https://doi.org/10.1029/JC087iC13p11229, 1982.
NSIDC (National Snow and Ice Data Center): IMS Daily Northern Hemisphere Snow and Ice Analysis at 4 km Resolution [data set], Version 1, Boulder, Colorado, USA, https://doi.org/10.7265/N52R3PMC, 2008.
Nepstad, D., Carvalho, G., Barros, A. C., Alencar, A., Capobianco, J. P.,
Bishop, J., Moutinho, P., Lefebvre, P., Silva Junior, U. L., and Prins, E.:
Road paving, fire regime feedbacks, and the future of Amazon forests, Forest
Ecol. Manag., 154, 395–407,
https://doi.org/10.1016/S0378-1127(01)00511-4, 2001.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of
satellite-derived global land surface moisture, J. Geophys. Res., 113,
F01002, https://doi.org/10.1029/2007JF000769, 2008.
Pérez-Cabello, F., Montorio, R., and Alves, D. B.: Remote Sensing
Techniques to assess Post-Fire Vegetation Recovery, Curr. Opin. Env. Sci.
Health, 21, 100251, https://doi.org/10.1016/j.coesh.2021.100251, 2021.
Parsons, D. J. and DeBenedetti, S. H.: Impact of fire suppression on a
mixed-conifer forest, Forest Ecol. Manag., 2, 21–33, 1979.
Prigent, C., Jimenez, C., and Bousquet, P.: Satellite-derived global surface
water extent and dynamics over the last 25 years (GIEMS-2), J. Geophys.
Res.-Atmos., 125, e2019JD030711, https://doi.org/10.1029/2019JD030711, 2019.
Rahmoune, R., Ferrazzoli, P., Singh, Y., Kerr, Y. H., Richaume, P., and Al
Bitar, A.: SMOS Retrieval Results Over Forests: Comparisons With Independent
Measurements, IEEE J. Sel. Top. Appl., 7, 3858–3866,
https://doi.org/10.1109/JSTARS.2014.2321027, 2014.
Ray, D., Nepstad, D., and Moutinho, P.: Micrometeorological and canopy
controls of fire susceptibility in a forested Amazon landscape, Ecol. Appl.,
15, 1664–1678, https://doi.org/10.1890/05-0404, 2005.
Rodriguez-Fernandez, N. J., Mialon, A., Mermoz, S., Bouvet, A., Richaume,
P., Al Bitar, A., Al-Yaari, A., Brandt, M., Kaminski, T., Le Toan, T., Kerr,
Y. H., and Wigneron, J. P.: An evaluation of SMOS L-band vegetation optical
depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass
in Africa, Biogeosciences, 15, 4627–4645,
https://doi.org/10.5194/bg-15-4627-2018, 2018.
Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J. T.: Influence
of tree species on continental differences in boreal fires and climate
feedbacks, Nat. Geosci., 8, 228–234, https://doi.org/10.1038/ngeo2352,
2015.
Roy, D. P., Boschetti, L., Justice, C. O., and Ju, J.: The collection 5
MODIS burned area product–Global evaluation by comparison with the MODIS
active fire product, Remote Sens. Environ., 112, 3690–3707, 2008.
Sackett, S. S.: Scheduling prescribed burns for hazard reduction in the
southeast, J. Forest., 73, 143–147,
1975.
Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D., Avitabile, V.,
Araza, A., de Bruin, S., Herold, M., Quegan, S., Rodríguez-Veiga, P.,
Balzter, H., Carreiras, J., Schepaschenko, D., Korets, M., Shimada, M.,
Itoh, T., Moreno Martínez, A., Cavlovic, J., Cazzolla Gatti, R., da
Conceição Bispo, P., Dewnath, N., Labrière, N., Liang, J.,
Lindsell, J., Mitchard, E. T. A., Morel, A., Pacheco Pascagaza, A. M., Ryan,
C. M., Slik, F., Laurin, G. V., Verbeeck, H., Wijaya, A., and Willcock, S.:
The global forest above-ground biomass pool for 2010 estimated from
high-resolution satellite observations, Earth Syst. Sci. Data, 13,
3927–3950, https://doi.org/10.5194/essd-13-3927-2021, 2021.
Schwank, M., Rautiainen, K., Mätzler, C., Stähli, M., Lemmetyinen,
J., Pulliainen, J., Vehviläinen, J., Kontu, A., Ikonen, J., Ménard,
C. B., Drusch, M., Wiesmann, A., and Wegmüller, U.: Model for microwave
emission of a snow-covered ground with focus on L band, Remote Sens.
Environ., 154, 180–191, https://doi.org/10.1016/j.rse.2014.08.029, 2014.
Shakesby, R. A. and Doerr, S. H.: Wildfire as a hydrological and
geomorphological agent, Earth-Sci. Rev., 74, 269–307,
https://doi.org/10.1016/j.earscirev.2005.10.006, 2005.
Silva, C. V., Aragão, L. E., Barlow, J., Espirito-Santo, F., Young, P.
J., Anderson, L. O., Berenguer, E., Brasil, I., Brown, I. F., Castro, B.,
Farias, R., Ferreira, J., França, F., Graça, P. M. L. A., Kirsten,
L., Lopes, A. P., Salimon, C., Scaranello, M. A., Seixas, M., Souza, F. C.,
and Xaud, H. A. M.: Drought-induced Amazonian wildfires instigate a
decadal-scale disruption of forest carbon dynamics, Philos. T. R. Soc. B.,
373, 20180043, https://doi.org/10.1098/rstb.2018.0043, 2018.
Stephens, S. L., Collins, B. M., Fettig, C. J., Finney, M. A., Hoffman, C.
M., Knapp, E. E., North, M. P., Safford, H., and Wayman, R. B.: Drought,
tree mortality, and wildfire in forests adapted to frequent fire,
BioScience, 68, 77–88, https://doi.org/10.1093/biosci/bix146, 2018.
Stocks, B. J., Alexander, M. E., and Lanoville, R. A.: Overview of the
International Crown Fire Modelling Experiment (ICFME), Can. J. Forest Res.,
34, 1543–1547, https://doi.org/10.1139/x04-905, 2004.
Torres, R. C., Giorgis, M. A., Trillo, C., Volkmann, L., Demaio, P.,
Heredia, J., and Renison, D.: Post-fire recovery occurs overwhelmingly by
resprouting in the Chaco Serrano forest of Central Argentina, Austral. Ecol.,
39, 346–354, https://doi.org/10.1111/aec.12084, 2014.
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave remote sensing: Active and passive, Microwave remote sensing fundamentals and radiometry, 1, 1981.
Vadrevu, K. P., Lasko, K., Giglio, L., Schroeder, W., Biswas, S., and
Justice, C.: Trends in vegetation fires in south and southeast Asian
countries, Sci. Rep.-UK, 9, 1–13,
https://doi.org/10.1038/s41598-019-43940-x, 2019.
Veraverbeke, S., Van De Kerchove, R., Verstraeten, W., Lhermitte, S., and
Goossens, R.: Fire-induced changes in vegetation, albedo and land surface
temperature assessed with MODIS, 30th EARSeL symposium, in: Remote sensing for science, education, and natural and cultural heritage, proceedings of the EARSeL Symposium 2010, Paris, France, 431–438, 2010.
Vittucci, C., Ferrazzoli, P., Kerr, Y., Richaume, P., Guerriero, L.,
Rahmoune, R., and Laurin, G. V.: SMOS retrieval over forests: Exploitation
of optical depth and tests of soil moisture estimates, Remote Sens.
Environ., 180, 115–127, https://doi.org/10.1016/j.rse.2016.03.004, 2016.
Wan, Z., Hook, S., and Hulley, G.: MOD11C3 MODIS/Terra Land Surface
Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006,
LST_Day_CMG and LST_Night_CMG, NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/MODIS/MOD11C3.006, 2015.
Weber, M. G. and Stocks, B. J.: Forest fires and sustainability in the
boreal forests of Canada, Ambio, 27, 545–550, 1998.
Wigneron, J. P., Kerr, Y. H., Waldteufel, P., Saleh, K., Escorihuela, M. J.,
Richaume, P., Ferrazzoli, P., de Rosnay, P., Gurney, R., Calvet, J. C.,
Grant, J., Guglielmetti, M., Hornbuckle, B., Mätzler, C., Pellarin, T.,
and Schwank, M.: L-band Microwave Emission of the Biosphere (L-MEB) Model:
Description and calibration against experimental data sets over crop fields,
Remote Sens. Environ., 107, 639–655,
https://doi.org/10.1016/j.rse.2006.10.014, 2007.
Wilkinson, G. and Jennings, S.: Survival and recovery of Eucalyptus obliqua
regeneration following wildfire, Tasforests, 5, 1–11, 1993.
Withey, K., Berenguer, E., Palmeira, A. F., Espírito-Santo, F. D.,
Lennox, G. D., Silva, C. V., Aragão, L. E. O. C., Ferreira, J.,
França, F., Malhi, Y., Rossi, L. C., and Barlow, J.: Quantifying
immediate carbon emissions from El Niño-mediated wildfires in humid
tropical forests, Philos. T. R. Soc. B, 373, 20170312, 2018.
Yang, J., Pan, S., Dangal, S., Zhang, B., Wang, S., and Tian, H.:
Continental-scale quantification of post-fire vegetation greenness recovery
in temperate and boreal North America, Remote Sens. Environ., 199, 277–290,
https://doi.org/10.1016/j.rse.2017.07.022, 2017.
Ye, N., Walker, J. P., Guerschman, J., Ryu, D., and Gurney, R. J.: Standing
water effect on soil moisture retrieval from L-band passive microwave
observations, Remote Sens. Environ., 169, 232–242, 2015.
Zhang, H., Hagan, D. F. T., Dalagnol, R., and Liu, Y.: Forest Canopy Changes
in the Southern Amazon during the 2019 Fire Season Based on Passive
Microwave and Optical Satellite Observations, Remote Sens., 13, 2238,
https://doi.org/10.3390/rs13122238, 2021.
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Pre- and post-fire values of four climate variables and four vegetation variables were analysed...
Altmetrics
Final-revised paper
Preprint