Articles | Volume 19, issue 23
https://doi.org/10.5194/bg-19-5521-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5521-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A coupled ground heat flux–surface energy balance model of evaporation using thermal remote sensing observations
Bimal K. Bhattacharya
CORRESPONDING AUTHOR
Biological and Planetary Sciences and Applications Group, Space Applications Center, ISRO, Ahmedabad, India
Kaniska Mallick
CORRESPONDING AUTHOR
Remote Sensing and Natural Resources Modeling, Department ERIN,
Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
Environmental Science Policy and Management, University of California, Berkeley, California, United States
Devansh Desai
Biological and Planetary Sciences and Applications Group, Space Applications Center, ISRO, Ahmedabad, India
Department of Physics, Electronics & Space Sciences, Gujarat
University, Ahmedabad, India
Department of Physics, Institute of Science, Silver Oak University,
Ahmedabad, Gujarat, India
Ganapati S. Bhat
Centre for Atmosphere and Oceanic Studies, Indian Institute of
Sciences, Bengaluru, India
Ross Morrison
Centre for Ecology and Hydrology, Lancaster, UK
Jamie R. Clevery
Terrestrial Ecosystem Research Network, College of Science and
Engineering, James Cook University, Cairns, Queensland, Australia
William Woodgate
CSIRO Land and Water, Floreat 6913, Western Australia, Australia
Jason Beringer
School of Earth and Environment, University of Western Australia, Western Australia, 6009, Australia
Kerry Cawse-Nicholson
Earth Science Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States
Siyan Ma
Environmental Science Policy and Management, University of California, Berkeley, California, United States
Joseph Verfaillie
Environmental Science Policy and Management, University of California, Berkeley, California, United States
Dennis Baldocchi
Environmental Science Policy and Management, University of California, Berkeley, California, United States
Related authors
No articles found.
Erin F. Katz, Caleb M. Arata, Eva Y. Pfannerstill, Robert J. Weber, Darian Ng, Michael J. Milazzo, Haley Byrne, Hui Wang, Alex B. Guenther, Camilo Rey-Sanchez, Joshua Apte, Dennis D. Baldocchi, and Allen H. Goldstein
EGUsphere, https://doi.org/10.5194/egusphere-2025-2682, https://doi.org/10.5194/egusphere-2025-2682, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Terpenoids are organic gases that can originate from natural and human-caused sources, and their fast reactions in the atmosphere can cause air pollution. Emissions of organic gases in an urban environment were measured. For some terpenoids, human-caused sources were responsible for about a quarter of the emissions, while others were likely to be entirely from vegetation. The terpenoids contributed substantially to the potential to form secondary pollutants.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Juliëtte C. S. Anema, Klaas Folkert Boersma, Piet Stammes, Gerbrand Koren, William Woodgate, Philipp Köhler, Christian Frankenberg, and Jacqui Stol
Biogeosciences, 21, 2297–2311, https://doi.org/10.5194/bg-21-2297-2024, https://doi.org/10.5194/bg-21-2297-2024, 2024
Short summary
Short summary
To keep the Paris agreement goals within reach, negative emissions are necessary. They can be achieved with mitigation techniques, such as reforestation, which remove CO2 from the atmosphere. While governments have pinned their hopes on them, there is not yet a good set of tools to objectively determine whether negative emissions do what they promise. Here we show how satellite measurements of plant fluorescence are useful in detecting carbon uptake due to reforestation and vegetation regrowth.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022, https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Short summary
Transpiration fluxes by vegetation are reduced under heat stress to conserve water. However, in situ observations over northern India show that the strength of the inverse association between transpiration and atmospheric vapor pressure deficit is weakening in the presence of heavy aerosol loading. This finding not only implicates the significant role of aerosols in modifying the evaporative fraction (EF) but also warrants an in-depth analysis of the aerosol–plant–temperature–EF continuum.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Geosci. Model Dev., 15, 883–900, https://doi.org/10.5194/gmd-15-883-2022, https://doi.org/10.5194/gmd-15-883-2022, 2022
Short summary
Short summary
The Vegetation Optimality Model (VOM) is a coupled water–vegetation model that predicts vegetation properties rather than determines them based on observations. A range of updates to previous applications of the VOM has been made for increased generality and improved comparability with conventional models. This showed that there is a large effect on the simulated water and carbon fluxes caused by the assumption of deep groundwater tables and updated soil profiles in the model.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Atbin Mahabbati, Jason Beringer, Matthias Leopold, Ian McHugh, James Cleverly, Peter Isaac, and Azizallah Izady
Geosci. Instrum. Method. Data Syst., 10, 123–140, https://doi.org/10.5194/gi-10-123-2021, https://doi.org/10.5194/gi-10-123-2021, 2021
Short summary
Short summary
We reviewed eight algorithms to estimate missing values of environmental drivers and three major fluxes in eddy covariance time series. Overall, machine-learning algorithms showed superiority over the rest. Among the top three models (feed-forward neural networks, eXtreme Gradient Boost, and random forest algorithms), the latter showed the most solid performance in different scenarios.
Hollie M. Cooper, Emma Bennett, James Blake, Eleanor Blyth, David Boorman, Elizabeth Cooper, Jonathan Evans, Matthew Fry, Alan Jenkins, Ross Morrison, Daniel Rylett, Simon Stanley, Magdalena Szczykulska, Emily Trill, Vasileios Antoniou, Anne Askquith-Ellis, Lucy Ball, Milo Brooks, Michael A. Clarke, Nicholas Cowan, Alexander Cumming, Philip Farrand, Olivia Hitt, William Lord, Peter Scarlett, Oliver Swain, Jenna Thornton, Alan Warwick, and Ben Winterbourn
Earth Syst. Sci. Data, 13, 1737–1757, https://doi.org/10.5194/essd-13-1737-2021, https://doi.org/10.5194/essd-13-1737-2021, 2021
Short summary
Short summary
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring field-scale soil moisture. Each site includes soil and hydrometeorological sensors providing data including air temperature, humidity, net radiation, neutron counts, snow water equivalent, and potential evaporation. These data can provide information for science, industry, and agriculture by improving existing understanding and data products in fields such as water resources, space sciences, and biodiversity.
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Short summary
Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts at the Earth's surface. We show that the hydrological predictions, in particular soil moisture, of these models can be improved by combining them with satellite observations from the NASA SMAP mission to update uncertain parameters. We find a 22 % reduction in error at a network of in situ soil moisture sensors after combining model predictions with satellite observations.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Anne J. Hoek van Dijke, Kaniska Mallick, Martin Schlerf, Miriam Machwitz, Martin Herold, and Adriaan J. Teuling
Biogeosciences, 17, 4443–4457, https://doi.org/10.5194/bg-17-4443-2020, https://doi.org/10.5194/bg-17-4443-2020, 2020
Short summary
Short summary
We investigated the link between the vegetation leaf area index (LAI) and the land–atmosphere exchange of water, energy, and carbon fluxes. We show that the correlation between the LAI and water and energy fluxes depends on the vegetation type and aridity. For carbon fluxes, however, the correlation with the LAI was strong and independent of vegetation and aridity. This study provides insight into when the vegetation LAI can be used to model or extrapolate land–atmosphere fluxes.
Cited articles
Anderson, M., Norman, J., Mecikalski, J., Torn, R., Kustas, W., and Basara,
J.: A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to
Micrometeorological Scales, J. Hydrometeorol., 5, 343–363, https://doi.org/10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2, 2004.
Anderson, M., Norman, J., Kustas, W., Li, F., Prueger, J., and Mecikalski,
J.: Effects of Vegetation Clumping on Two–Source Model Estimates of Surface
Energy Fluxes from an Agricultural Landscape during SMACEX, J.
Hydrometeorol., 6, 892–909, https://doi.org/10.1175/JHM465.1, 2005.
Anderson, M., Norman, J., Mecikalski, J., Otkin, J., and Kustas, W.: A
climatological study of evapotranspiration and moisture stress across the
continental United States based on thermal remote sensing: 1. Model
formulation, J. Geophys. Res.-Atmos., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007.
Anderson, M., Kustas, W., Alfieri, J., Gao, F., Hain, C., Prueger, J.,
Evett, S., Colaizzi, P., Howell, T., and Chávez, J.: Mapping daily
evapotranspiration at Landsat spatial scales during the BEAREX'08 field
campaign, Adv. Water Resour., 50, 162–177, https://doi.org/10.1016/j.advwatres.2012.06.005, 2012.
Bai, Y., Zhang, S., Bhattarai, N., Mallick, K., Liu, Q., Tang, L., Im, J.,
Guo, L., and Zhang, J.: On the use of machine learning based ensemble
approaches to improve evapotranspiration estimates from croplands across a
wide environmental gradient, Agr. Forest Meteorol., 298–299, 108308,
https://doi.org/10.1016/j.agrformet.2020.108308, 2021.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A
remote sensing surface energy balance algorithm for land (SEBAL). 1.
Formulation, J. Hydrol., 198–212, https://doi.org/10.1016/S0022-1694(98)00253-4,1998.
Bennett, W., Wang, J., and Bras, R.: Estimation of Global Ground Heat
Flux, J. Hydrometeorol., 9, 744–759, https://doi.org/10.1175/2008JHM940.1, 2008.
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network – OzFlux, Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, 2016.
Bhat, G., Morrison, R., Taylor, C., Bhattacharya, B., Paleri, S., Desai, D.,
Evans, J., Pattnaik, S., Sekhar, M., Nigam, R., Sattar, A., Angadi, S.,
Kancha, D., Patidar, A., Tripathi, S., Krishnan, K., and Sisodiya, A.:
Spatial and temporal variability in energy and water vapor fluxes observed
at seven sites on the Indian subcontinent during 2017, Q. J. Roy. Meteor.
Soc., 146, 2853–2866, https://doi.org/10.1002/qj.3688,
2019.
Bhattarai, N., Mallick, K., Brunsell, N. A., Sun, G., and Jain, M.: Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US, Hydrol. Earth Syst. Sci., 22, 2311–2341, https://doi.org/10.5194/hess-22-2311-2018, 2018.
Bhattarai, N., Mallick, K., Stuart, J., Vishwakarma, B., Niraula, R., Sen,
S., and Jain, M.: An automated multi-model evapotranspiration mapping
framework using remotely sensed and reanalysis data, Remote Sens. Environ.,
229, 69–92, https://doi.org/10.1016/j.rse.2019.04.026, 2019.
Boegh, E., Soegaard, H., Christensen, J. H., Hasager, C. B., Jensen, N. O.,
and Nielsen, N. W.: Combining weather prediction and remote sensing data for
the calculation of evapotranspiration rates: application to Denmark, Int. J.
Remote Sens., 25, 2553–2574, https://doi.org/10.1080/01431160310001647984, 2004.
Cammalleri, C. and Vogt, J.: On the Role of Land Surface Temperature as
Proxy of Soil Moisture Status for Drought Monitoring in Europe, Remote
Sens., 7, 16849–16864, https://doi.org/10.3390/rs71215857, 2015.
Cano, D., Monget, J., Albuisson, M., Guillard, H., Regas, N., and Wald, L.: A
method for the determination of the global solar radiation from
meteorological satellite data, Solar Energy, 37, 840, 31–39,
https://doi.org/10.1016/0038-092X(86)90104-0, 1986.
Castelli, F., Entekhabi, D., and Caporali, E.: Estimation of surface heat
flux and an index of soil moisture using adjoint-state surface energy
balance, Water Resour. Res., 35, 3115–3125, https://doi.org/10.1029/1999WR900140, 1999.
Dare-Idowu, O., Brut, A., Cuxart, J., Tallec, T., Rivalland, V., Zawilski,
B., Ceschia, E., and
Jarlan, L.: Surface energy balance and flux partitioning of annual crops in
south-western France, Agr. Forest Meteorol., 308–309, 108529, https://doi.org/10.1016/j.agrformet.2021.108529, 2021.
Desai, D., Mallick, K., Bhattacharya, B. K., Bhat, G. S., Morrison, R., Clevery, J., Woodgate, W., Beringer, J., Cawse-Nicholson, K., Ma, S., Varfaillie, J., and Baldocchi, D.: Data set for A Coupled Ground Heat Flux-Surface Energy Balance Model of Evaporation Using Thermal Remote Sensing Observations, Zenodo [data set], https://doi.org/10.5281/zenodo.5806501, 2022.
Didan, K.: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN
Grid V006, NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015.
Donohue, R. J., Hume, I. H., Roderick, M. L., McVicar, T. R., Beringer, J.,
Hutley, L. B., and Arndt, S. K.: Evaluation of the remote-sensing-based DIFFUSE
model for estimating photosynthesis of vegetation, Remote Sens. Environ.,
155, 349–365, https://doi.org/10.1016/j.rse.2014.09.007, 2014.
Duan, A., Wang, M., Lei, Y., and Cui, Y.: Trends in summer rainfall over
China associated with the Tibetan Plateau sensible heat source during
1980–2008, J. Climate, 26, 261–275, https://doi.org/10.1175/JCLI-D-11-00669.1, 2013.
Duan, S., Li, Z., Cheng, J., and Leng, P.: Cross-satellite comparison of
operational land surface temperature products derived from MODIS and ASTER
data over bare soil surfaces, ISPRS J. Photogramm., 126, 1–10,
https://doi.org/10.1016/j.isprsjprs.2017.02.003, 2017.
Eswar, R., Sekhar, M., Bhattacharya, B., and Bandyopadhyay, S.: Spatial
Disaggregation of Latent Heat Flux Using Contextual Models over
India, Remote Sens., 9, 949, https://doi.org/10.3390/rs9090949, 2017.
Friedl, M., McIver, D., Hodges, J., Zhang, X., Muchoney, D., Strahler, A.,
Woodcock, C., Gopal, S., Schneider, A., Cooper, A., Baccini, A., Gao, F., and
Schaaf, C.: Global land cover mapping from MODIS: algorithms and early
results, Remote Sens. Environ., 83, 287–302, https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Gao, Z., Horton, R., andLiu, H. P.: Impact of wave phase difference between soil
surface heat flux and soil surface temperature on soil surface energy
balance closure, J. Geophys. Res., 115, D16112, https://doi.org/10.1029/2009JD013278, 2010.
Hillel, D.: Introduction to Soil Physics, United States, Elsevier Science, Academic Press, ISBN
9780123485205, 1982.
Hulley, G., Malakar, N., and Freepartner, R.: Moderate Resolution Imaging
Spectroradiometer (MODIS) Land Surface Temperature and Emissivity Product
(MxD21) Algorithm Theoretical Basis Document Collection-6, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
California, https://modis-land.gsfc.nasa.gov/pdf/MOD21_LST&E_user_guide_C6_gch_10252017.pdf (last access: 28 November 2022),
2016.
Isaac, P., Cleverly, J., McHugh, I., van Gorsel, E., Ewenz, C., and Beringer, J.: OzFlux data: network integration from collection to curation, Biogeosciences, 14, 2903–2928, https://doi.org/10.5194/bg-14-2903-2017, 2017.
Jarvis, P. G. and McNaughton, K. G.: Stomatal Control of Transpiration –
Scaling up from Leaf to Region, Adv. Ecol. Res., 15, 1–49, https://doi.org/10.1016/S0065-2504(08)60119-1, 1986.
Johansen, O.: Thermal conductivity of soils, PhD Thesis, University of
Trondheim, Cold Regions Research and Engineering Laboratory, US
Army Corps of Engineers, Hanover, NH, CRREL Draft English translation, https://apps.dtic.mil/sti/pdfs/ADA044002.pdf (last access: 3 December 2022), 1975.
Johnston, M., Andreu, A., Verfaillie, J., Baldocchi, D., and Moorcroft, P.:
What lies beneath: Vertical temperature heterogeneity in a Mediterranean
woodland savanna, Remote Sens. Environ., 274, 112950, https://doi.org/10.1016/j.rse.2022.112950, 2022.
Kiptala, J., Mohamed, Y., Mul, M., and Van der Zaag, P.: Mapping
evapotranspiration trends using MODIS and SEBAL model in a data scarce and
heterogeneous landscape in Eastern Africa, Water Resour. Res., 49, 8495–8510, https://doi.org/10.1002/2013WR014240, 2013.
Kustas, W. and Anderson, M.: Advances in thermal infrared remote sensing for
land surface modeling, Agr. Forest Meteorol., 149, 2071–2081,
https://doi.org/10.1016/j.agrformet.2009.05.016, 2009.
Lagouarde, J., Bhattacharya, B., Crébassol, P., Gamet, P., Adlakha, D.,
Murthy, C., Singh, S., Mishra, M., Nigam, R., Raju, P., Babu, S., Shukla,
M., Pandya, M., Boulet, G., Briottet, X., Dadou, I., Dedieu, G., Gouhier,
M., Hagolle, O., Irvine, M., Jacob, F., Kumar, K., Laignel, B.,
Maisongrande, P., Mallick, K., Olioso, A., Ottlé, C., Roujean, J.,
Sobrino, J., Ramakrishnan, R., Sekhar, M., and Sarkar, S.: Indo-French
high-resolution thermal infrared space mission for earth natural resources
assessment and monitoring – concept and definition of TRISHNA, ISPRS –
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-3/W6, 403–407, https://doi.org/10.5194/isprs-archives-XLII-3-W6-403-2019, 2019.
Lagouarde J.-P., Bhattacharya, B. K., Crébassol, P., Gamet, P., Babu, S. S.,
Boulet, G., Briottet, X., Buddhiraju, K. M., Cherchali, S., Dadou, I., Dedieu, G.,
Gouhier, M., Hagolle, O. I. M., Jacob, F., Kumar, A., Kumar, K. K., Laignel, B., Mallick, K., Murthy, C. S., Olioso, A., Ottle, C., Pandya, M. R., Raju, P. V., Roujean,
J.-L., Sekhar, M., Shukla, M. V., Singh, S. K., Sobrino, J., and Ramakrishnan, R.: The
Indian-French Trishna Mission: Earth Observation in the Thermal Infrared
with High Spatio-Temporal Resolution, IGARSS 2018–2018 IEEE International
Geoscience and Remote Sensing Symposium, Institute of Electrical and
Electronics Engineers (IEEE), USA, 4078–4081,
https://doi.org/10.1109/IGARSS.2018.8518720, 2018.
Mallick, K., Bhattacharya, B. K., Chaurasia, S., Dutta, S., Nigam, R.,
Mukherjee J., Banerjee, S., Kar, G., Rao, V., Gadgil, A., and Parihar, J.:
Evapotranspiration using MODIS data and limited ground observations over
selected agroecosystems in India, Int. J. Remote Sens., 28, 2091–2110, https://doi.org/10.1080/01431160600935620, 2007.
Mallick, K., Bhattacharya, B. K., Rao, V. U. M., Reddy, D. R., Banerjee, S.,
Venkatesh, H., Pandey, V., Kar, G., Mukherjee, J., Vyas, S., Gadgil, A. S.,
Patel, N. K.: Latent heat flux estimation in clear sky days over Indian
agroecosystems using noontime satellite remote sensing data, Agr. Forest
Meteorol., 149, 1646–1665, https://doi.org/10.1016/j.agrformet.2009.05.006, 2009.
Mallick, K., Jarvis, A., Boegh, E., Fisher, J., Drewry, D., Tu, K., Hook,
S., Hulley, G., Ardö, J., Beringer, J., Arain, A., and Niyogi, D.: A
Surface Temperature Initiated Closure (STIC) for surface energy balance
fluxes, Remote Sens. Environ., 141, 243–261, https://doi.org/10.1016/j.rse.2013.10.022, 2014.
Mallick, K., Boegh, E., Trebs, I., Alfieri, J., Kustas, W., Prueger, J.,
Niyogi, D., Das, N., Drewry, D., Hoffmann, L., and Jarvis, A.: Reintroducing
radiometric surface temperature into the Penman-Monteith formulation, Water
Resour. Res., 51, 6214–6243, https://doi.org/10.1002/2014WR016106, 2015a.
Mallick, K., Jarvis, A., Wohlfahrt, G., Kiely, G., Hirano, T., Miyata, A., Yamamoto, S., and Hoffmann, L.: Components of near-surface energy balance derived from satellite soundings – Part 1: Noontime net available energy, Biogeosciences, 12, 433–451, https://doi.org/10.5194/bg-12-433-2015, 2015b.
Mallick, K., Trebs, I., Boegh, E., Giustarini, L., Schlerf, M., Drewry, D. T., Hoffmann, L., von Randow, C., Kruijt, B., Araùjo, A., Saleska, S., Ehleringer, J. R., Domingues, T. F., Ometto, J. P. H. B., Nobre, A. D., de Moraes, O. L. L., Hayek, M., Munger, J. W., and Wofsy, S. C.: Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin, Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, 2016.
Mallick, K., Toivonen, E., Trebs, I., Boegh, E., Cleverly, J., Eamus, D.,
Koivusalo, H., Drewry, D., Arndt, S., Griebel, A., Beringer, J., and Garcia,
M.: Bridging thermal infrared sensing and physically-based
evapotranspiration modeling: from theoretical implementation to validation
across an aridity gradient in Australian ecosystems, Water Resour. Res., 54, 3409–3435, https://doi.org/10.1029/2017WR021357, 2018a.
Mallick, K., Wandera, L., Bhattarai, N., Hostache, R., Kleniewska, M., and
Chormanski, J.: A Critical Evaluation on the Role of Aerodynamic and
Canopy–Surface Conductance Parameterization in SEB and SVAT Models for
Simulating Evapotranspiration: A Case Study in the Upper Biebrza National
Park Wetland in Poland, Water, 10, 1753, https://doi.org/10.3390/w10121753, 2018b.
Mallick, K., Baldocchi, D., Jarvis, A., Hu, T., Trebs, I., Sulis, M., Bhattarai, N., Bossung, C., Eid, Y., Cleverly, J., and Beringer, J.: Insights into the aerodynamic versus radiometric surface temperature
debate in thermal-based evaporation modeling, Geophys. Res. Lett., 49,
e2021GL097568, https://doi.org/10.1029/2021GL097568, 2022.
Maltese, A., Bates, P., Capodici, F., Cannarozzo, M., Ciraolo, G., and La
Loggia, G.: Critical analysis of thermal inertia approaches for surface soil
water content retrieval, Hydrolog. Sci. J., 58, 1144–1161, https://doi.org/10.1080/02626667.2013.802322, 2013.
Matheny, A., Bohrer, G., Stoy, P., Baker, I., Black, A., Desai, A., Dietze,
M., Gough, C., Ivanov, V., Jassal, R., Novick, K., Schäfer, K., and
Verbeeck, H.: Characterizing the diurnal patterns of errors in the
prediction of evapotranspiration by several land-surface models: An NACP
analysis, J. Geophys. Res.-Biogeo., 119, 1458–1473, https://doi.org/10.1002/2014JG002623, 2014.
Minasny, B. and Hartemink, A. E.: Predicting soil properties in the tropics,
Earth-Sci. Rev., 1–2, 52–62, https://doi.org/10.1016/j.earscirev.2011.01.005, 2011.
Mihailovic, D. T., Kallos, G., Aresenic, I. D., Lalic, B., Rajkovic, B., and
Papadopoulos, A.: Sensitivity of soil surface temperature in a Force-Restore
Equation to heat fluxes and deep soil temperature, Int. J. Climatol., 19,
1617–1632, 1999.
Monteith, J. and Unsworth, M.: Principles of Environmental Physics: Plants,
Animals, and the Atmosphere, 4th Edn., 1–401, 2013.
Monteith, J. L.: Evaporation and environment in: Symposia of the society for experimental biology, 19, 205–234, Cambridge University Press (CUP), PMID: 5321565, 1965.
Moran, M. S., Jackson, R. D., Raymond, L. H., Gay, L. W., and Slater, P. N.:
Mapping surface energy balance components by combining landsat thematic
mapper and ground-based meteorological data, Remote Sens. Environ., 30, 77–87, https://doi.org/10.1016/0034-4257(89)90049-7, 1989.
Morisson, R., Angadi, S. S., Cooper, H. M., Evans, J., Rees, G., Sekhar, M.,
Taylor, C., Tripathi, S. N., and Turner, A. G.: High temporal resolution
meteorology and soil physics observations from INCOMPASS land surface
stations in India, 2016 to 2018, NERC Environmental Information Data Centre [data set],
https://doi.org/10.5285/c5e72461-c61f-4800-8bbf-95c85f74c416, 2019a.
Morisson, R., Angadi, S. S., Cooper, H. M., Evans, J. G., Rees, G., Sekhar,
M., Taylor, C., Tripathi, S. N., and Turner, A. G.: Energy and carbon
dioxide fluxes, meteorology and soil physics observed at INCOMPASS land
surface stations in India, 2016 to 2017, NERC Environmental Information Data
Centre [data set], https://doi.org/10.5285/78c64025-1f8d-431c-bdeb-e69a5877d2ed, 2019b.
Murray, T. and Verhoef, A.: Moving towards a more mechanistic approach in
the determination of soil heat flux from remote measurements, Agr. Forest
Meteorol., 147, 80–87, https://doi.org/10.1016/j.agrformet.2007.06.009, 2007.
Norman, J., Anderson, M., Kustas, W., French, A., Mecikalski, J., Torn, R.,
Diak, G., Schmugge, T., and Tanner, B.: Remote sensing of surface energy
fluxes at 101-m pixel resolutions, Water Resour. Res., 39, 1221, https://doi.org/10.1029/2002WR001775, 2003.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Purdy, A., Fisher, J., Goulden, M., and Famiglietti, J.: Ground heat flux: An
analytical review of 6 models evaluated at 88 sites and globally, J.
Geophys. Res.-Biogeo., 121, 3045–3059, https://doi.org/10.1002/2016JG003591, 2016.
Raja, P., Singh, M., Singh, N., and Sinha, N. K.: Photosynthesis and Biomass
studies in Lasiurussindicus of Chandan Grassland in Thar Desert, XXIII
International Grassland Conference, New Delhi, Volume: IGC 2015, https://uknowledge.uky.edu/igc/23/4-1-3/14 (last access: 29 November 2022), 2015.
Santanello, J. and Friedl, M.: Diurnal Covariation in Soil Heat Flux and Net
Radiation, J. Appl. Meteorol., 42, 851–862, https://doi.org/10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2, 2003.
Schmid, H. P.: Footprint modelling for vegetation atmosphere exchange
studies: a review and perspective, Agr. Forest Meteorol., 113, 159–183,
2002.
Sauer, T. J. and Horton, R.: Soil Heat flux, Micrometeorology in Agricultural
Systems, Agronomy Monograph no. 47, American Society of Agronomy, Crop
Science Society of America, edited by: Hatfield, J. L. and Baker, J. M., Soil Science Society of America, Madison, WI 53711, USA, https://doi.org/10.2134/agronmonogr47.c7, 2005.
Schaaf, C., Gao, F., Strahler, A., Lucht, W., Li, X., Tsang, T.,
Strugnell, N. C., Zhang, X., Jin, Y., Muller, J., Lewis, P., Barnsley, M.,
Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d'Entremont,
R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First operational
BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ.,
83, 135–148, https://doi.org/10.1016/s0034-4257(02)00091-3, 2002.
Schymanski, S. J., Breitenstein, D., and Or, D.: Technical note: An experimental set-up to measure latent and sensible heat fluxes from (artificial) plant leaves, Hydrol. Earth Syst. Sci., 21, 3377–3400, https://doi.org/10.5194/hess-21-3377-2017, 2017.
Sharifnezhadazizi, Z., Nobouzi, H., Prakash, S., Beale, C., and
Khanbilvardi, R.: A global analysis of land surface temperature diurnal
cycle using MODIS observations, J. Appl. Meteorol. Clim., 58, 1279–1291, https://doi.org/10.1175/JAMC-D-18-0256.1, 2019.
Stoy, P., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain,
M., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce,
P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H.,
McCaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M.,
Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F.,
and Varlagin, A.: A data-driven analysis of energy balance closure across
FLUXNET research sites: The role of landscape scale heterogeneity, Agr.
Forest Meteorol., 171–172, 137–152, https://doi.org/10.1016/j.agrformet.2012.11.004, 2013.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Tian, L., Zhang, Y., and Zhu, J.: Decreased surface albedo driven by denser
vegetation on the Tibetan Plateau, Environ. Res. Lett., 9, 104001,
https://doi.org/10.1088/1748-9326/9/10/104001, 2014.
Trebs, I., Mallick, K., Bhattarai, N., Sulis, M., Cleverly, J., Woodgate,
W., Silberstein, R., Najera, H.-N., Beringer, J., Meyer, W. S., Su, Z., and
Boullet, G.: The role of aerodynamic resistance in thermal remote
sensing-based evapotranspiration models, Remote Sens. Environ., 264, 112602,
https://doi.org/10.1016/j.rse.2021.112602, 2021.
Tsuang, B.: Ground Heat Flux Determination according to Land Skin
Temperature Observations from in-situ Stations and Satellites, J. Hydrometeorol.,
6, 371–390, https://doi.org/10.1175/JHM425.1, 2005.
Turner, A., Bhat, G., Martin, G., Parker, D., Taylor, C., Mitra, A.,
Tripathi, S., Milton, S., Rajagopal, E., Evans, J., Morrison, R., Pattnaik,
S., Sekhar, M., Bhattacharya, B., Madan, R., Govindankutty, M., Fletcher,
J., Willetts, P., Menon, A., and Marsham, J.: Interaction of convective
organization with monsoon precipitation, atmosphere, surface and sea: The
2016 INCOMPASS field campaign in India, Q. J. Roy. Meteor. Soc., 146, 2828–2852,
https://doi.org/10.1002/qj.3633, 2019.
Van Dijk, A. I. J. M., Gash, J. H., Gorsel, E. V., Blanken, P. D., Cescatti, A.,
Emmel, C., Gielen, B., Harman, I. N., Kiely, G., Merbold, L., Montagnani, L.,
Moors, E., Sottocornola, M., Varlagin, A., Williams, C. A., and Wohlfahrt, G.:
Rainfall interception and the coupled surface water and energy balance,
Agr. Forest Meteorol., 214–215, 402–415, https://doi.org/10.1016/j.agrformet.2015.09.006, 2015.
Van Genuchten, M.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Venturini, V., Islam, S., and Rodriguez, L.: Estimation of evaporative
fraction and evapotranspiration from MODIS products using a complementary
based model, Remote Sens. Environ., 112, 132–141,
https://doi.org/10.1016/j.rse.2007.04.014, 2008.
Verhoef, A.: Remote estimation of thermal inertia and soil heat flux for
bare soil, Agr. Forest Meteorol., 123, 221–236,
https://doi.org/10.1016/j.agrformet.2003.11.005, 2004.
Verhoef, A., Ottlé, C., Cappelaere, B., Murray, T., Saux-Picart, S.,
Zribi, M., Maignan, F., Boulain, N., Demarty, J., and Ramier, D.:
Spatio-temporal surface soil heat flux estimates from satellite data;
results for the AMMA experiment at the Fakara (Niger) supersite, Agr. Forest
Meteorol., 154–155, 55–66, https://doi.org/10.1016/j.agrformet.2011.08.003, 2012.
Vesala, T., Kljun, N., Rannik, U., Rinne, A. Sogachev, Markkanen, T.,
Sabelfeld, K., Foken, T., and Leclerc, M. Y.: Flux and concentration footprint
modelling: State of the art, Environ. Pollut., 152, 653–666, 2008.
Wan, Z.: New refinements and validation of the collection-6 MODIS
land-surface temperature/emissivity product, Remote Sens. Environ., 140, 36–45, https://doi.org/10.1016/j.rse.2013.08.027, 2014.
Wan, Z. and Li, L. Z.: A physics-based algorithm for retrieving land-surface
emissivity and temperature from EOS/MODIS data, IEEE T. Geosci. Remote Sens.,
35, 980–996, https://doi.org/10.1109/36.602541, 1997.
Wang, S., Yang, Y., Luo, Y., and Rivera, A.: Spatial and seasonal variations in evapotranspiration over Canada's landmass, Hydrol. Earth Syst. Sci., 17, 3561–3575, https://doi.org/10.5194/hess-17-3561-2013, 2013.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier,
P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom,
A., Law, B., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel,
W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at
FLUXNET sites, Agr. Forest Meteorol., 113, 223–243,
https://doi.org/10.1016/S0168-1923(02)00109-0,2002.
Winter, J. and Eltahir, E.: The Sensitivity of Latent Heat Flux to Changes
in the Radiative Forcing: A Framework for Comparing Models and
Observations, J. Climate, 23, 2345–2356, https://doi.org/10.1175/2009JCLI3158.1, 2010.
Zerefos, C. S. and Bais, A. F.: Solar Ultraviolet Radiation: Modelling,
Measurements and Effects, edited by: Zerefos, C. S. and Bais, A. F., Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-662-03375-3, 2013.
Short summary
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of ground heat flux and complex parameterizations of conductances. We developed a parameter-sparse coupled ground heat flux-evaporation model and tested it across different limits of water stress and vegetation fraction in the Northern/Southern Hemisphere. The model performed particularly well in the savannas and showed good potential for evaporative stress monitoring from thermal infrared satellites.
Evaporation retrieval in heterogeneous ecosystems is challenging due to empirical estimation of...
Altmetrics
Final-revised paper
Preprint