Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-613-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-613-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of lateral transport on sedimentary alkenone paleoproxy signals
Geology Department, University of Salamanca, Salamanca, 37008, Spain
Earth Sciences Department, ETH Zurich, 8092 Zurich, Switzerland
Negar Haghipour
Earth Sciences Department, ETH Zurich, 8092 Zurich, Switzerland
Laboratory of Ion Beam Physics, ETH Zurich, 8092 Zurich, Switzerland
Elena Bruni
Earth Sciences Department, ETH Zurich, 8092 Zurich, Switzerland
Timothy Eglinton
Earth Sciences Department, ETH Zurich, 8092 Zurich, Switzerland
Related authors
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Cited articles
Ausín, B., Magill, C., Haghipour, N., Fernández, Á., Wacker,
L., Hodell, D., Baumann, K.-H., and Eglinton, T. I.: Incoherent multiproxy
signals in marine sediments: Implications for high-resolution paleoclimate
reconstruction, Earth Planet. Sc. Lett., 515, 38–46,
https://doi.org/10.1016/j.epsl.2019.03.003, 2019.
Ausín, B., Bruni, E., Haghipour, N., Welte, C., Bernasconi, S. M.,
and Eglinton, T. I.: Controls on the abundance, provenance and age of
organic carbon buried in continental margin sediments, Earth Planet. Sc. Lett., 558, 116759,
https://doi.org/10.1016/j.epsl.2021.116759, 2021.
Ausin, B., Haghipour, N., and Bruni, E.: Alkenone content and radiocarbon age in globally distributed grain-size fractions, Mendeley Data, V1, https://doi.org/10.17632/x4z47fts6x.1, 2022.
Balestra, B., Quintana Krupinski, N. B., Erohina, T., Fessenden-Rahn, J.,
Rahn, T., and Paytan, A.: Bottom-water oxygenation and environmental change
in Santa Monica Basin, Southern California during the last 23 kyr,
Palaeogeogr. Palaeocl., 490, 17–37, https://doi.org/10.1016/j.palaeo.2017.09.002, 2018.
Bao, R., McIntyre, C., Zhao, M., Zhu, C., Kao, S.-J., and Eglinton, T. I.:
Widespread dispersal and aging of organic carbon in shallow marginal seas,
Geology, 44, 791–794, https://doi.org/10.1130/g37948.1, 2016.
Bao, R., Uchida, M., Zhao, M., Haghipour, N., Montlucon, D., McNichol, A.,
Wacker, L., Hayes, J. M., and Eglinton, T. I.: Organic Carbon Aging During
Across-Shelf Transport, Geophys. Res. Lett., 45, 8425–8434,
https://doi.org/10.1029/2018GL078904, 2018a.
Bao, R., van der Voort, T. S., Zhao, M., Guo, X., Montluçon, D. B.,
McIntyre, C., and Eglinton, T. I.: Influence of Hydrodynamic Processes on
the Fate of Sedimentary Organic Matter on Continental Margins, Global Biogeochem. Cy., 32, 1420–1432, https://doi.org/10.1029/2018GB005921, 2018b.
Bendle, J. and Rosell-Melé, A.: Distributions of and in the
surface waters and sediments of the Nordic Seas: Implications for
paleoceanography, Geochem. Geophy. Geosy., 5, Q11013, https://doi.org/10.1029/2004GC000741, 2004.
Benthien, A. and Müller, P. J.: Anomalously low alkenone temperatures
caused by lateral particle and sediment transport in the Malvinas Current
region, western Argentine Basin, Deep-Sea Res. Pt. I, 47, 2369–2393,
https://doi.org/10.1016/S0967-0637(00)00030-3, 2000.
Boon, J. J., van der Meer, F. W., Schuyl, P. J. W., de Leeuw, J. W., Schenck, P. A., and Burlingame, A. L.: Organic geochemical analyses of core samples from Site 362, Walvis Ridge, DSDP Leg 40. Initial reports of the Deep Sea Drilling Project; Supplement to volumes XXXVIII, XXXIX, XL, and XLI 1978, Vol. 38, 627 pp., https://doi.org/10.2973/dsdp.proc.38394041s.301.1978, 1978.
Bothner, M. H., Spiker, E. C., Johnson, P. P., Rendigs, R. R., and
Aruscavage, P. J.: Geochemical evidence for modern sediment accumulation on
the continental shelf off southern New England, J. Sediment. Res., 51, 281–292,
https://doi.org/10.1306/212F7C70-2B24-11D7-8648000102C1865D, 1981.
Bröder, L., Tesi, T., Andersson, A., Semiletov, I., and Gustafsson,
Ö.: Bounding cross-shelf transport time and degradation in
Siberian-Arctic land-ocean carbon transfer, Nat. Commun., 9, 806,
https://doi.org/10.1038/s41467-018-03192-1, 2018.
Conte, M. H., Sicre, M.-A., Rühlemann, C., Weber, J. C., Schulte, S.,
Schulz-Bull, D., and Blanz, T.: Global temperature calibration of the
alkenone unsaturation index ( ) in surface waters and comparison with
surface sediments, Geochem. Geophy. Geosy., 7, Q02005, https://doi.org/10.1029/2005GC001054, 2006.
Englebrecht, A. C. and Sachs, J. P.: Determination of sediment provenance
at drift sites using hydrogen isotopes and unsaturation ratios in alkenones,
Geochim. Cosmochim. Ac., 69, 4253–4265, https://doi.org/10.1016/j.gca.2005.04.011, 2005.
Epstein, B. L., D'Hondt, S., Quinn, J. G., Zhang, J., and Hargraves, P. E.:
An effect of dissolved nutrient concentrations on alkenone-based temperature
estimates, Paleoceanography, 13, 122–126, https://doi.org/10.1029/97pa03358, 1998.
Filippova, A., Kienast, M., Frank, M., and Schneider, R. R.: Alkenone
paleothermometry in the North Atlantic: A review and synthesis of surface
sediment data and calibrations, Geochem. Geophy. Geosy., 17, 1370–1382, https://doi.org/10.1002/2015gc006106, 2016.
Fischer, G., Karakas, G., Blaas, M., Ratmeyer, V., Nowald, N., Schlitzer,
R., Helmke, P., Davenport, R., Donner, B., Neuer, S., and Wefer, G.: Mineral
ballast and particle settling rates in the coastal upwelling system off NW
Africa and the South Atlantic, Int. J. Earth Sci., 98, 281–298, https://doi.org/10.1007/s00531-007-0234-7, 2009.
Flores, J. A. and Sierro, F. J.: Paleoceanography, biological proxies:
Coccoliths, in: Encyclopedia of Quaternary Science, edied by: Scott, E. A., Amsterdam, Eselvier, 1634–1647, ISBN 9780444536433, 2007.
Goff, J. A., Reed, A. H., Gawarkiewicz, G., Wilson, P. S., and Knobles, D.
P.: Stratigraphic analysis of a sediment pond within the New England Mud
Patch: New constraints from high-resolution chirp acoustic reflection data,
Mar. Geol., 412, 81–94, https://doi.org/10.1016/j.margeo.2019.03.010, 2019.
Gong, C. and Hollander, D. J.: Differential contribution of bacteria to
sedimentary organic matter in oxic and anoxic environments, Santa Monica
Basin, California, Org. Geochem., 26, 545–563,
https://doi.org/10.1016/S0146-6380(97)00018-1, 1997.
Gong, C. and Hollander, D. J.: Evidence for differential degradation of
alkenones under contrasting bottom water oxygen conditions: implication for
paleotemperature reconstruction, Geochim. Cosmochim. Ac., 63, 405–411,
https://doi.org/10.1016/S0016-7037(98)00283-X, 1999.
Goñi, M. A., Hartz, D. M., Thunell, R. C., and Tappa, E.: Oceanographic
considerations for the application of the alkenone-based paleotemperature
index in the Gulf of California, Geochim. Cosmochim. Ac., 65, 545–557,
https://doi.org/10.1016/S0016-7037(00)00559-7, 2001.
Grice, K., Klein Breteler, W. C. M., Schouten, S., Grossi, V., de Leeuw, J.
W., and Damsté, J. S. S.: Effects of zooplankton herbivory on biomarker
proxy records, Paleoceanography, 13, 686–693, https://doi.org/10.1029/98pa01871, 1998.
Grimalt, J. O., Rullkötter, J., Sicre, M.-A., Summons, R., Farrington,
J., Harvey, H. R., Goñi, M., and Sawada, K.: Modifications of the C37
alkenone and alkenoate composition in the water column and sediment:
Possible implications for sea surface temperature estimates in
paleoceanography, Geochem. Geophy. Geosy., 1, 1031, https://doi.org/10.1029/2000GC000053, 2000.
Hanke, U. M., Wacker, L., Haghipour, N., Schmidt, M. W. I., Eglinton, T. I.,
and McIntyre, C. P.: Comprehensive radiocarbon analysis of benzene
polycarboxylic acids (BPCAs) derived from pyrogenic carbon in environmental
samples, Radiocarbon, 59, 1103–1116, https://doi.org/10.1017/RDC.2017.44, 2017.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115,
https://doi.org/10.1016/0304-4203(95)00008-F,
1995.
Hoefs, M. J. L., Versteegh, G. J. M., Rijpstra, W. I. C., de Leeuw, J. W.,
and Damsté, J. S. S.: Postdepositional oxic degradation of alkenones:
Implications for the measurement of palaeo sea surface temperatures,
Paleoceanography, 13, 42–49, https://doi.org/10.1029/97pa02893, 1998.
Hwang, J., Manganini, S. J., Montluçon, D. B., and Eglinton, T. I.:
Dynamics of particle export on the Northwest Atlantic margin, Deep-Sea Res. Pt. I, 56, 1792–1803,
https://doi.org/10.1016/j.dsr.2009.05.007, 2009.
Hwang, J., Kim, M., Park, J., Manganini, S. J., Montluçon, D. B., and
Eglinton, T. I.: Alkenones as tracers of surface ocean temperature and
biological pump processes on the Northwest Atlantic margin, Deep-Sea Res. Pt. I, 83, 115–123,
https://doi.org/10.1016/j.dsr.2013.10.003, 2014.
Hwang, J., Blusztajn, J., Giosan, L., Kim, M., Manganini, S. J.,
Montluçon, D., Toole, J. M., and Eglinton, T. I.: Lithogenic Particle
Transport Trajectories on the Northwest Atlantic Margin, J. Geophys. Res.-Ocean., 126, e2020JC016802,
https://doi.org/10.1029/2020JC016802, 2021.
Inthorn, M., Mohrholz, V., and Zabel, M.: Nepheloid layer distribution in
the Benguela upwelling area offshore Namibia, Deep-Sea Res. Pt. I, 53, 1423–1438,
https://doi.org/10.1016/j.dsr.2006.06.004, 2006a.
Inthorn, M., Wagner, T., Scheeder, G., and Zabel, M.: Lateral transport
controls distribution, quality, and burial of organic matter along
continental slopes in high-productivity areas, Geology, 34, 205–208, https://doi.org/10.1130/g22153.1, 2006b.
Jaeschke, A., Wengler, M., Hefter, J., Ronge, T. A., Geibert, W.,
Mollenhauer, G., Gersonde, R., and Lamy, F.: A biomarker perspective on
dust, productivity, and sea surface temperature in the Pacific sector of the
Southern Ocean, Geochim. Cosmochim. Ac., 204, 120–139,
https://doi.org/10.1016/j.gca.2017.01.045, 2017.
Keil, R. G. and Mayer, L. M.: Mineral matrices and organic matter, in:
Treatise on Geochemistry, 2nd Edn., Elservier, 337–359, ISBN 9780080959757, 2014.
Keil, R. G., Montlucon, D. B., Prahl, F. G., and Hedges, J. I.: Sorptive
preservation of labile organic matter in marine sediments, Nature, 370, 549–552,
https://doi.org/10.1038/370549a0, 1994a.
Keil, R. G., Tsamakis, E., Fuh, C. B., Giddings, J. C., and Hedges, J. I.:
Mineralogical and textural controls on the organic composition of coastal
marine sediments: Hydrodynamic separation using SPLITT-fractionation,
Geochim. Cosmochim. Ac., 58, 879–893, https://doi.org/10.1016/0016-7037(94)90512-6, 1994b.
Kienast, M., MacIntyre, G., Dubois, N., Higginson, S., Normandeau, C.,
Chazen, C., and Herbert, T. D.: Alkenone unsaturation in surface sediments
from the eastern equatorial Pacific: Implications for SST reconstructions,
Paleoceanography, 27, PA1210, https://doi.org/10.1029/2011PA002254, 2012.
Kusch, S., Eglinton, T. I., Mix, A. C., and Mollenhauer, G.: Timescales of
lateral sediment transport in the Panama Basin as revealed by radiocarbon
ages of alkenones, total organic carbon and foraminifera, Earth Planet. Sc. Lett., 290, 340–350,
https://doi.org/10.1016/j.epsl.2009.12.030, 2010.
Laine, E. P. and Hollister, C. D.: Geological effects of the Gulf Stream
System on the northern Bermuda Rise, Mar. Geol., 39, 277–310,
https://doi.org/10.1016/0025-3227(81)90076-1, 1981.
Laine, E. P., Gardner, W. D., Jo Richardson, M., and Kominz, M.: Abyssal
currents and advection of resuspended sediment along the northeastern
Bermuda Rise, Mar. Geol., 119, 159–171,
https://doi.org/10.1016/0025-3227(94)90146-5, 1994.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M.
M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R.,
and Smolyar, I. V.: World Ocean Atlas 2018, Vol. 1, Temperature, edited by:
Mishonov, A., Technical Editor, NOAA Atlas NESDIS 81, 52 pp., 2019.
Magill, C. R., Ausín, B., Wenk, P., McIntyre, C., Skinner, L.,
Martínez-García, A., Hodell, D. A., Haug, G. H., Kenney, W., and
Eglinton, T. I.: Transient hydrodynamic effects influence organic carbon
signatures in marine sediments, Nat. Commun., 9, 4690, https://doi.org/10.1038/s41467-018-06973-w, 2018.
Mayer, L. M.: Relationships between mineral surfaces and organic carbon
concentrations in soils and sediments, Chem. Geol., 114, 347–363,
https://doi.org/10.1016/0009-2541(94)90063-9, 1994a.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Ac., 58, 1271–1284,
https://doi.org/10.1016/0016-7037(94)90381-6, 1994b.
McCave, I. N. and Hall, I. R.: Size sorting in marine muds: Processes,
pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophy. Geosy., 7, Q10N05, https://doi.org/10.1029/2006GC001284, 2006a.
McCave, I. N. and Hall, I. R.: Size sorting in marine muds: Processes,
pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophy. Geosy., 7, Q10N05, https://doi.org/10.1029/2006gc001284, 2006b.
McCave, I. N., Manighetti, B., and Robinson, S. G.: Sortable silt and fine
sediment size/composition slicing: Parameters for palaeocurrent speed and
palaeoceanography, Paleoceanography, 10, 593–610, https://doi.org/10.1029/94PA03039, 1995.
McIntyre, C. P., Wacker, L., Haghipour, N., Blattmann, T. M., Fahrni, S.,
Usman, M., Eglinton, T. I., and Synal, H.-A.: Online 13C and 14C Gas
Measurements by EA-IRMS–AMS at ETH Zürich, Radiocarbon, 59, 893–903, https://doi.org/10.1017/RDC.2016.68, 2016.
Mollenhauer, G. and Eglinton, T. I.: Diagenetic and sedimentological
controls on the composition of organic matter preserved in California
Borderland Basin sediments, Limnol. Oceanogr., 52, 558–576, https://doi.org/10.4319/lo.2007.52.2.0558,
2007.
Mollenhauer, G., Eglinton, T. I., Ohkouchi, N., Schneider, R. R.,
Müller, P. J., Grootes, P. M., and Rullkötter, J.: Asynchronous
alkenone and foraminifera records from the Benguela Upwelling System,
Geochim. Cosmochim. Ac., 67, 2157–2171, https://doi.org/10.1016/S0016-7037(03)00168-6, 2003.
Mollenhauer, G., Kienast, M., Lamy, F., Meggers, H., Schneider, R. R.,
Hayes, J. M., and Eglinton, T. I. C. P. A.: An evaluation of 14C age
relationships between co-occurring foraminifera, alkenones, and total
organic carbon in continental margin sedimentsm, Paleoceanography, 20, PA1016, https://doi.org/10.1029/2004pa001103, 2005.
Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J.
S., and Eglinton, T. I. C. Q.: Aging of marine organic matter during
cross-shelf lateral transport in the Benguela upwelling system revealed by
compound-specific radiocarbon dating, Geochem. Geophy. Geosy., 8, Q09004, https://doi.org/10.1029/2007gc001603, 2007.
Mollenhauer, G., Eglinton, T. I., Hopmans, E. C., and Sinninghe Damsté,
J. S.: A radiocarbon-based assessment of the preservation characteristics of
crenarchaeol and alkenones from continental margin sediments, Org. Geochem., 39, 1039–1045,
https://doi.org/10.1016/j.orggeochem.2008.02.006, 2008.
Müller, P. J., Kirst, G., Ruhland, G., von Storch, I., and
Rosell-Melé, A.: Calibration of the alkenone paleotemperature index
based on core-tops from the eastern South Atlantic and the global ocean
(60∘ N–60∘ S), Geochim. Cosmochim. Ac., 62, 1757–1772,
https://doi.org/10.1016/S0016-7037(98)00097-0, 1998.
Ohkouchi, N., Eglinton, T. I., Keigwin, L. D., and Hayes, J. M.: Spatial and
Temporal Offsets Between Proxy Records in a Sediment Drift, Science, 298, 1224–1227, https://doi.org/10.1126/science.1075287, 2002.
Ohkouchi, N., Xu, L., Reddy, C. M., Montluon, D., and linton, T. I.:
Radiocarbon dating of alkenones from marine sediments: I. Isolation Protocol,
Radiocarbon, 47, 401–412, https://doi.org/10.1017/S0033822200035189, 2005.
Pak, H., Codispoti, L. A., and Zaneveld, J. R. V.: On the intermediate
particle maxima associated with oxygen-poor water off western South America,
Deep-Sea Res. Pt. A, 27, 783–797, https://doi.org/10.1016/0198-0149(80)90044-8, 1980.
Pedrosa-Pàmies, R., Sanchez-Vidal, A., Calafat, A., Canals, M., and
Durán, R.: Impact of storm-induced remobilization on grain size
distribution and organic carbon content in sediments from the Blanes Canyon
area, NW Mediterranean Sea, Prog. Oceanogr., 118, 122–136,
https://doi.org/10.1016/j.pocean.2013.07.023, 2013.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in
long-chain ketone compositions for palaeotemperature assessment, Nature, 330, 367–369,
https://doi.org/10.1038/330367a0, 1987.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of
long-chain alkenones as indicators of paleoceanographic conditions,
Geochim. Cosmochim. Ac., 52, 2303–2310, https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Prahl, F. G., Rontani, J. F., Zabeti, N., Walinsky, S. E., and Sparrow, M.
A.: Systematic pattern in – Temperature residuals for surface
sediments from high latitude and other oceanographic settings, Geochim. Cosmochim. Ac., 74, 131–143,
https://doi.org/10.1016/j.gca.2009.09.027, 2010.
Premuzic, E. T., Benkovitz, C. M., Gaffney, J. S., and Walsh, J. J.: The
nature and distribution of organic matter in the surface sediments of world
oceans and seas, Org. Geochem., 4, 63–77,
https://doi.org/10.1016/0146-6380(82)90009-2, 1982.
Raja, M. and Rosell-Melé, A.: Appraisal of sedimentary alkenones for
the quantitative reconstruction of phytoplankton biomass, P. Natl. Acad. Sci. USA, 118, e2014787118, https://doi.org/10.1073/pnas.2014787118, 2021.
Reimers, C. E. and Suess, E.: Spatial and temporal patterns of organic
matter accumulation on the Peru continental margin, in: Coastal upwelling, its sediment record, Part B: sedimentary records of ancient coastal upwelling, edited by: Thiede, J. and
Suess, E., New York, Vol. 10b, 311–345, ISBN 978-0-306-41352-0, 1983.
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., and Dullo,
W.-C.: El Niño variability off Peru during the last 20,000 years,
Paleoceanography, 20, PA4003, https://doi.org/10.1029/2004PA001099, 2005.
Rontani, J. F., Volkman, J. K., Prahl, F. G., and Wakeham, S. G.: Biotic and
abiotic degradation of alkenones and implications for paleoproxy
applications: A review, Org. Geochem., 59, 95–113,
https://doi.org/10.1016/j.orggeochem.2013.04.005, 2013.
Rosell-Melé, A., Eglinton, G., Pflaumann, U., and Sarnthein, M.:
Atlantic core-top calibration of the index as a sea-surface
palaeotemperature indicator, Geochim. Cosmochim. Ac., 59, 3099–3107,
https://doi.org/10.1016/0016-7037(95)00199-A, 1995.
Rosell-Melé, A. and Prahl, F. G.: Seasonality of temperature
estimates as inferred from sediment trap data, Quaternary Sci. Rev., 72, 128–136,
https://doi.org/10.1016/j.quascirev.2013.04.017, 2013.
Rühlemann, C. and Butzin, M.: Alkenone temperature anomalies in the
Brazil-Malvinas Confluence area caused by lateral advection of suspended
particulate material, Geochem. Geophy. Geosy., 7, Q10015, https://doi.org/10.1029/2006gc001251, 2006.
Sachs, J. P. and Anderson, R. F.: Fidelity of alkenone paleotemperatures in
southern Cape Basin sediment drifts, Paleoceanography, 18, 1082, https://doi.org/10.1029/2002pa000862, 2003.
Sachs, J. P., Schneider, R. R., Eglinton, T. I., Freeman, K. H., Ganssen,
G., McManus, J. F., and Oppo, D. W. C.: Alkenones as paleoceanographic
proxies, Geochem. Geophy. Geosy., 1, 1035, https://doi.org/10.1029/2000gc000059, 2000.
Schaaf, M. and Thurow, J.: Late Pleistocene–Holocene climatic cycles
recorded in Santa Barbara Basin sediments: interpretation of color density
logs from Site 893, Proceedings ODP Scientific Results, 146, 31–44, 1995.
Schlitzer, R.: Ocean Data View, available at: http://odv.awi.de, last access: 25 June 2021.
Sikes, E. L., Farrington, J. W., and Keigwin, L. D.: Use of the alkenone
unsaturation ratio to determine past sea surface temperatures: core-top
SST calibrations and methodology considerations, Earth Planet. Sc. Lett., 104, 36–47,
https://doi.org/10.1016/0012-821X(91)90235-A, 1991.
Synal, H.-A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon
AMS system, Nucl. Instrum. Meth. B, 259, 7–13,
https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Teece, M. A., Getliff, J. M., Leftley, J. W., Parkes, R. J., and Maxwell,
J. R.: Microbial degradation of the marine prymnesiophyte Emiliania huxleyi
under oxic and anoxic conditions as a model for early diagenesis: long chain
alkadienes, alkenones and alkyl alkenoates, Org. Geochem., 29, 863–880,
https://doi.org/10.1016/S0146-6380(98)00145-4, 1998.
Tierney, J. E. and Tingley, M. P.: BAYSPLINE: A New Calibration for the
Alkenone Paleothermometer, Paleoceanogr. Paleocl., 33, 281–301, https://doi.org/10.1002/2017PA003201, 2018.
Twichell, D. C., McClennen, C. E., and Butman, B.: Morphology and processes
associated with the accumulation of the fine-grained deposit on the
sourthern New England shelf, J. Sediment. Petrol., 51, 269–280,
https://doi.org/10.1306/212F7C6B-2B24-11D7-8648000102C1865D, 1981.
Tyrrell, T. and Merico, A.: Emiliania huxleyi: bloom observations and the
conditions that induce them, in:
Coccolithophores: From Molecular Processes to Global Impact, edited by: Thierstein, H. R. and Young, J. R., Berlin, Heidelberg, Springer Berlin Heidelberg, 75–97, ISBN 3540219285, 2004.
Volkman, J. K., Eglinton, G., Corner, E. D. S., and Forsberg, T. E. V.:
Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi,
Phytochemistry, 19, 2619–2622, https://doi.org/10.1016/S0031-9422(00)83930-8, 1980.
Wacker, L., Christl, M., and Synal, H. A.: Bats: A new tool for AMS data
reduction, Nucl. Instrum. Meth. B, 268, 976–979,
https://doi.org/10.1016/j.nimb.2009.10.078, 2010.
Wefer, G., Heinze, P., and Suess, E.: Stratigraphy and sedimentation rates from oxygen isotope composition, organic carbon content, and grain-size distribution at the Peru upwelling region; holes 680B and 686B, Proceedings of the Ocean Drilling Program, Peru continental margin; covering Leg 112 of the cruises of the Drilling Vessel JOIDES Resolution, Callao, Peru to Valparaiso, Chile, sites 679–688, 20 October 1986–25 December 1986, Vol. 112, 355 pp., https://doi.org/10.2973/odp.proc.sr.112.164.1990, 1990.
Zabeti, N., Bonin, P., Volkman, J. K., Jameson, I. D., Guasco, S., and
Rontani, J.-F.: Potential alteration of paleothermometer due to
selective degradation of alkenones by marine bacteria isolated from the
haptophyte Emiliania huxleyi, FEMS Microbiol. Ecol., 73, 83–94, https://doi.org/10.1111/j.1574-6941.2010.00885.x, 2010.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and Wakeham, S. G.: Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record, Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
The preservation and distribution of alkenones – organic molecules produced by marine algae – in...
Altmetrics
Final-revised paper
Preprint