Articles | Volume 19, issue 1
https://doi.org/10.5194/bg-19-93-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-93-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Derivation of seawater pCO2 from net community production identifies the South Atlantic Ocean as a CO2 source
Daniel J. Ford
CORRESPONDING AUTHOR
Plymouth Marine Laboratory, Plymouth, UK
College of Life and Environmental Sciences, University of Exeter, Penryn, UK
Gavin H. Tilstone
Plymouth Marine Laboratory, Plymouth, UK
Jamie D. Shutler
College of Life and Environmental Sciences, University of Exeter, Penryn, UK
Vassilis Kitidis
Plymouth Marine Laboratory, Plymouth, UK
Related authors
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Daniel J. Ford, Jamie D. Shutler, Katy L. Sheen, Gavin H. Tilstone, and Vassilis Kitidis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-463, https://doi.org/10.5194/essd-2025-463, 2025
Preprint under review for ESSD
Short summary
Short summary
Mesoscale eddies are abundant in the global oceans affect the physical, chemical and biological properties of the ocean. These changes can modify the air-sea CO2 fluxes. Here, we present a dataset of air-sea CO2 fluxes for 5996 long lived mesoscale eddies trajectories in the global ocean between 1993 to 2022. These trajectories can be used to understand the processes modifying and controlling the air-sea CO2 fluxes in mesoscale eddies which are supported by a comprehensive uncertainty budget.
Daniel J. Ford, Gemma Kulk, Shubha Sathyendranath, and Jamie D. Shutler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-389, https://doi.org/10.5194/essd-2025-389, 2025
Preprint under review for ESSD
Short summary
Short summary
Chlorophyll-a is routinely monitored using ocean colour satellites, however, these data records have gaps. Here we present a methodology to provide a spatially and temporally complete chlorophyll-a record, using Biogeochemical Argo floats as a constraint on wintertime chlorophyll-a, and a statistical kriging approach to fill cloud gaps. Thereby, providing a complete record at monthly 0.25° resolution between 1997 and 2023, consistent to the underlying climate data record.
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data, 17, 493–516, https://doi.org/10.5194/essd-17-493-2025, https://doi.org/10.5194/essd-17-493-2025, 2025
Short summary
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009 and 2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and other pigments. The dataset will be useful to researchers in ocean optics, remote sensing, ecology, and biogeochemistry.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Short summary
Eddy covariance (EC) is the most direct method for measuring air–sea CO2 flux from ships. However, uncertainty in EC air–sea CO2 fluxes has not been well quantified. Here we show that with the state-of-the-art gas analysers, instrumental noise no longer contributes significantly to the CO2 flux uncertainty. Applying an appropriate averaging timescale (1–3 h) and suitable air–sea CO2 fugacity threshold (at least 20 µatm) to EC flux data enables an optimal analysis of the gas transfer velocity.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cited articles
Amari, S. I., Murata, N., Müller, K. R., Finke, M., and Yang, H. H.:
Asymptotic statistical theory of overtraining and cross-validation,
I T. Neural Networ.,
8, 985–996, https://doi.org/10.1109/72.623200, 1997.
Arnone, V., González-Dávila, M., and Magdalena Santana-Casiano, J.:
CO2 fluxes in the South African coastal region,
Mar. Chem.,
195, 41–49, https://doi.org/10.1016/j.marchem.2017.07.008, 2017.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Banks, A. C., Vendt, R., Alikas, K., Bialek, A., Kuusk, J., Lerebourg, C., Ruddick, K., Tilstone, G., Vabson, V., Donlon, C., and Casal, T.:
Fiducial reference measurements for satellite ocean colour (FRM4SOC),
Remote Sens.-basel,
12, 1322, https://doi.org/10.3390/RS12081322, 2020.
Behrenfeld, M. J. and Falkowski, P. G.:
Photosynthetic rates derived from satellite-based chlorophyll concentration,
Limnol. Oceanogr.,
42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997.
Behrenfeld, M. J., O'Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., Halsey, K. H., Milligan, A. J., Siegel, D. A., and Brown, M. B.:
Revaluating ocean warming impacts on global phytoplankton,
Nat. Clim. Change,
6, 323–330, https://doi.org/10.1038/nclimate2838, 2016.
Benallal, M. A., Moussa, H., Lencina-Avila, J. M., Touratier, F., Goyet, C., El Jai, M. C., Poisson, N., and Poisson, A.:
Satellite-derived CO2 flux in the surface seawater of the Austral Ocean south of Australia,
Int. J. Remote Sens.,
38, 1600–1625, https://doi.org/10.1080/01431161.2017.1286054, 2017.
BIPM:
Evaluation of measurement data—Guide to the expression of uncertainty in measurement,
available at: http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (last access: 10 March 2020),
2008.
Bourlès, B., Lumpkin, R., McPhaden, M. J., Hernandez, F., Nobre, P., Campos, E., Yu, L., Planton, S., Busalacchi, A., Moura, A. D., Servain, J., and Trotte, J.:
THE PIRATA PROGRAM,
B. Am. Meteorol. Soc.,
89, 1111–1126, https://doi.org/10.1175/2008BAMS2462.1, 2008.
Brewin, R. J. W., Dall'Olmo, G., Pardo, S., van Dongen-Vogels, V., and Boss, E. S.:
Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals,
Remote Sens. Environ.,
183, 82–97, https://doi.org/10.1016/j.rse.2016.05.005, 2016.
Bruto, L., Araujo, M., Noriega, C., Veleda, D., and Lefèvre, N.:
Variability of CO2 fugacity at the western edge of the tropical Atlantic Ocean from the 8∘ N to 38∘ W PIRATA buoy,
Dynam. Atmos. Oceans,
78, 1–13, https://doi.org/10.1016/j.dynatmoce.2017.01.003, 2017.
Chen, C. T. A., Huang, T. H., Fu, Y. H., Bai, Y., and He, X.:
Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes,
Curr. Opin. Env. Sust.,
4, 179–185, https://doi.org/10.1016/j.cosust.2012.02.003, 2012.
Chierici, M., Signorini, S. R., Mattsdotter-Björk, M., Fransson, A., and Olsen, A.:
Surface water fCO2 algorithms for the high-latitude Pacific sector of the Southern Ocean,
Remote Sens. Environ.,
119, 184–196, https://doi.org/10.1016/j.rse.2011.12.020, 2012.
CMEMS: Copernicus Marine Modelling Service global ocean physics reanalysis product (GLORYS12V1), CMEMS [data set],
https://doi.org/10.48670/moi-00021, 2021.
Coles, V. J., Brooks, M. T., Hopkins, J., Stukel, M. R., Yager, P. L., and Hood, R. R.:
The pathways and properties of the Amazon river plume in the tropical North Atlantic Ocean,
J. Geophys. Res.-Oceans,
118, 6894–6913, https://doi.org/10.1002/2013JC008981, 2013.
Cooley, S. R., Coles, V. J., Subramaniam, A., and Yager, P. L.:
Seasonal variations in the Amazon plume-related atmospheric carbon sink,
Global Biogeochem. Cy.,
21, 1–15, https://doi.org/10.1029/2006GB002831, 2007.
Dai, A. and Trenberth, K. E.:
Estimates of freshwater discharge from continents: Latitudinal and seasonal variations,
J. Hydrometeorol.,
3, 660–687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002.
Demuth, H., Beale, M., and Hagan, M.:
Neural Network Toolbox 6 Users Guide,
The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 2008.
DeVries, T.:
The oceanic anthropogenic CO2 sink: Storage, air–sea fluxes, and transports over the industrial era,
Global Biogeochem. Cy.,
28, 631–647, https://doi.org/10.1002/2013GB004739, 2014.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to Best Practices for Ocean CO2 Measurements, PICES Special Publication, IOCCP Report No. 8, 2007.
Dogliotti, A. I., Lutz, V. A., and Segura, V.:
Estimation of primary production in the southern Argentine continental shelf and shelf-break regions using field and remote sensing data,
Remote Sens. Environ.,
140, 497–508, https://doi.org/10.1016/j.rse.2013.09.021, 2014.
Donlon, C. J., Nightingale, T. J., Sheasby, T., Turner, J., Robinson, I. S., and Emergy, W. J.:
Implications of the oceanic thermal skin temperature deviation at high wind speed,
Geophys. Res. Lett.,
26, 2505–2508, https://doi.org/10.1029/1999GL900547, 1999.
Duarte, C. M., Regaudie-de-Gioux, A., Arrieta, J. M., Delgado-Huertas, A., and Agustí, S.:
The Oligotrophic Ocean Is Heterotrophic,
Annu. Rev. Mar. Sci.,
5, 551–569, https://doi.org/10.1146/annurev-marine-121211-172337, 2013.
Ducklow, H. W. and Doney, S. C.:
What Is the Metabolic State of the Oligotrophic Ocean? A Debate,
Annu. Rev. Mar. Sci.,
5, 525–533, https://doi.org/10.1146/annurev-marine-121211-172331, 2013.
Fay, A. R. and McKinley, G. A.:
Global trends in surface ocean pCO2 from in situ data,
Global Biogeochem. Cy.,
27, 541–557, https://doi.org/10.1002/gbc.20051, 2013.
Ford, D., Tilstone, G. H., Shutler, J. D., and Kitidis, V.:
Interpolated surface ocean carbon dioxide partial pressure for the South Atlantic Ocean (2002–2018) using different biological parameters,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.935936, 2021a.
Ford, D., Tilstone, G. H., Shutler, J. D., Kitidis, V., Lobanova, P., Schwarz, J., Poulton, A. J., Serret, P., Lamont, T., Chuqui, M., Barlow, R., Lozano, J., Kampel, M., and Brandini, F.:
Wind speed and mesoscale features drive net autotrophy in the South Atlantic Ocean,
Remote Sens. Environ.,
260, 112435, https://doi.org/10.1016/j.rse.2021.112435, 2021b.
Gist, N., Serret, P., Woodward, E. M. S., Chamberlain, K., and Robinson, C.:
Seasonal and spatial variability in plankton production and respiration in the Subtropical Gyres of the Atlantic Ocean,
Deep-See Res. Pt. II,
56, 931–940, https://doi.org/10.1016/j.dsr2.2008.10.035, 2009.
Goddijn-Murphy, L. M., Woolf, D. K., Land, P. E., Shutler, J. D., and Donlon, C.: The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air–sea gas flux studies, Ocean Sci., 11, 519–541, https://doi.org/10.5194/os-11-519-2015, 2015.
González-Dávila, M., Santana-Casiano, J. M., and Ucha, I. R.:
Seasonal variability of fCO2 in the Angola-Benguela region,
Prog. Oceanogr.,
83, 124–133, https://doi.org/10.1016/j.pocean.2009.07.033, 2009.
Gregor, L. and Monteiro, P. M. S.:
Is the southern benguela a significant regional sink of CO2?,
S. Afr. J. Sci.,
109, 1–5, https://doi.org/10.1590/sajs.2013/20120094, 2013.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2019.
Holding, T., Ashton, I. G., Shutler, J. D., Land, P. E., Nightingale, P. D., Rees, A. P., Brown, I., Piolle, J.-F., Kock, A., Bange, H. W., Woolf, D. K., Goddijn-Murphy, L., Pereira, R., Paul, F., Girard-Ardhuin, F., Chapron, B., Rehder, G., Ardhuin, F., and Donlon, C. J.: The FluxEngine air–sea gas flux toolbox: simplified interface and extensions for in situ analyses and multiple sparingly soluble gases, Ocean Sci., 15, 1707–1728, https://doi.org/10.5194/os-15-1707-2019, 2019.
Hu, C., Lee, Z., and Franz, B.:
Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,
J. Geophys. Res.-Oceans,
117, 1–25, https://doi.org/10.1029/2011JC007395, 2012.
Hutchings, L., van der Lingen, C. D., Shannon, L. J., Crawford, R. J. M., Verheye, H. M. S., Bartholomae, C. H., van der Plas, A. K., Louw, D., Kreiner, A., Ostrowski, M., Fidel, Q., Barlow, R. G., Lamont, T., Coetzee, J., Shillington, F., Veitch, J., Currie, J. C., and Monteiro, P. M. S.:
The Benguela Current: An ecosystem of four components,
Prog. Oceanogr.,
83, 15–32, https://doi.org/10.1016/j.pocean.2009.07.046, 2009.
Ibánhez, J. S. P., Diverrès, D., Araujo, M., and Lefèvre, N.:
Seasonal and interannual variability of sea–air CO2 fluxes in the tropical Atlantic affected by the Amazon River plume,
Global Biogeochem. Cy.,
29, 1640–1655, https://doi.org/10.1002/2015GB005110, 2015.
IPCC:
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK, 2013.
Jiang, Z.-P., Cai, W.-J., Lehrter, J., Chen, B., Ouyang, Z., Le, C., Roberts, B. J., Hussain, N., Scaboo, M. K., Zhang, J., and Xu, Y.: Spring net community production and its coupling with the CO2 dynamics in the surface water of the northern Gulf of Mexico, Biogeosciences, 16, 3507–3525, https://doi.org/10.5194/bg-16-3507-2019, 2019.
Kaiser, J., Reuer, M. K., Barnett, B., and Bender, M. L.:
Marine productivity estimates from continuous ratio measurements by membrane inlet mass spectrometry,
Geophys. Res. Lett.,
32, L19605, https://doi.org/10.1029/2005GL023459, 2005.
Kitidis, V., Tilstone, G. H., Serret, P., Smyth, T. J., Torres, R., and Robinson, C.:
Oxygen photolysis in the Mauritanian upwelling: Implications for net community production,
Limnol. Oceanogr.,
59, 299–310, https://doi.org/10.4319/lo.2014.59.2.0299, 2014.
Kitidis, V., Brown, I., Hardman-mountford, N., and Lefèvre, N.:
Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995–2013); evidence of ocean acidification,
Prog. Oceanogr.,
158, 65–75, https://doi.org/10.1016/j.pocean.2016.08.005, 2017.
Koffi, U., Lefèvre, N., Kouadio, G., and Boutin, J.:
Surface CO2 parameters and air–sea CO2 flux distribution in the eastern equatorial Atlantic Ocean,
J. Marine Syst.,
82, 135–144, https://doi.org/10.1016/j.jmarsys.2010.04.010, 2010.
Koffi, U., Kouadio, G., and Kouadio, Y. K.:
Estimates and Variability of the Air-Sea CO2 Fluxes in the Gulf of Guinea during the 2005-2007 Period,
Open Journal of Marine Science,
06, 11–22, https://doi.org/10.4236/ojms.2016.61002, 2016.
Kroopnick, P.:
Isotopic fractionations during oxygen consumption and carbonate dissolution within the North Atlantic Deep Water,
Earth Planet. Sc. Lett.,
49, 485–498, https://doi.org/10.1016/0012-821X(80)90089-8, 1980.
Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman, H. A., Babin, M., Brewin, R. J. W., Doblin, M., Estrada, M., Figueiras, F. G., Furuya, K., González-Benítez, N., Gudfinnsson, H. G., Gudmundsson, K., Huang, B., Isada, T., Kovač, Ž., Lutz, V. A., Marañón, E., Raman, M., Richardson, K., Rozema, P. D., van de Poll, W. H., Segura, V., Tilstone, G. H., Uitz, J., van Dongen-Vogels, V., Yoshikawa, T., and Sathyendranath, S.:
Primary production, an index of climate change in the ocean: Satellite-based estimates over two decades,
Remote Sens.-Basel,
12, 3462, https://doi.org/10.3390/rs12050826, 2020.
Lamont, T., Barlow, R. G., and Kyewalyanga, M. S.:
Physical drivers of phytoplankton production in the southern Benguela upwelling system,
Deep-Sea Res. Pt. I,
90, 1–16, https://doi.org/10.1016/j.dsr.2014.03.003, 2014.
Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink, Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, 2013.
Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.:
Recent variability of the global ocean carbon sink,
Global Biogeochem. Cy.,
28, 927–949, https://doi.org/10.1002/2014GB004853, 2014.
Landschützer, P., Gruber, N., and Bakker, D. C. E.:
Decadal variations and trends of the global ocean carbon sink,
Global Biogeochem. Cy.,
30, 1396–1417, https://doi.org/10.1002/2015GB005359, 2016.
Landschützer, P., Gruber, N., and Bakker, D. C. E.:
An observation-based global monthly gridded sea surface pCO2 product from 1982 onward and its monthly climatology (NCEI Accession 0160558), NOAA Natl. Centers Environ. Information [data set],
https://doi.org/10.7289/v5z899n6, 2017.
Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, 2020.
Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.:
Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas,
Global Biogeochem. Cy.,
28, 1199–1214, https://doi.org/10.1002/2014GB004832, 2014.
Lavender, S. J., Pinkerton, M. H., Froidefond, J.-M., Morales, J., Aiken, J., and Moore, G. F.:
SeaWiFS validation in European coastal waters using optical and bio-geochemical measurements,
Int. J. Remote Sens.,
25, 1481–1488, https://doi.org/10.1080/01431160310001592481, 2004.
Lee, Z., Marra, J., Perry, M. J., and Kahru, M.:
Estimating oceanic primary productivity from ocean color remote sensing: A strategic assessment,
J. Marine Syst.,
149, 50–59, https://doi.org/10.1016/j.jmarsys.2014.11.015, 2015.
Lefèvre, N., Guillot, A., Beaumont, L., and Danguy, T.:
Variability of fCO2 in the Eastern Tropical Atlantic from a moored buoy,
J. Geophys. Res.-Oceans,
113, C01015, https://doi.org/10.1029/2007JC004146, 2008.
Lefèvre, N., Veleda, D., Araujo, M., and Caniaux, G.:
Variability and trends of carbon parameters at a time series in the eastern tropical Atlantic,
Tellus B,
68, 30305, https://doi.org/10.3402/tellusb.v68.30305, 2016.
Lefèvre, N., Montes, M. F., Gaspar, F. L., Rocha, C., Jiang, S., De Araújo, M. C., and Severino Pino Ibánhez, J.:
Net heterotrophy in the Amazon continental shelf changes rapidly to a sink of CO2 in the outer Amazon plume,
Front. Mar. Sci.,
4, 1–16, https://doi.org/10.3389/fmars.2017.00278, 2017.
Lefèvre, N., Tyaquiçã, P., Veleda, D., Perruche, C., and van Gennip, S. J.:
Amazon River propagation evidenced by a CO2 decrease at 8∘ N, 38∘ W in September 2013,
J. Marine Syst.,
211, 103419, https://doi.org/10.1016/j.jmarsys.2020.103419, 2020.
Lencina-Avila, J. M., Ito, R. G., Garcia, C. A. E., and Tavano, V. M.:
Sea–air carbon dioxide fluxes along 35∘ S in the South Atlantic Ocean,
Deep-Sea Res. Pt. I,
115, 175–187, https://doi.org/10.1016/j.dsr.2016.06.004, 2016.
Liu, W. T. and Xie, X.:
Space Observation of Carbon Dioxide Partial Pressure at Ocean Surface,
IEEE J. Sel. Top. Appl.,
10, 5472–5484, https://doi.org/10.1109/JSTARS.2017.2766138, 2017.
Longhurst, A.:
Ecological geography of the sea,
Academic Press, San Diego, 1998.
Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.:
An estimate of global primary production in the ocean from satellite radiometer data,
J. Plankton Res.,
17, 1245–1271, https://doi.org/10.1093/plankt/17.6.1245, 1995.
Luz, B. and Barkan, E.:
Assessment of Oceanic Productivity with the Triple-Isotope Composition of Dissolved Oxygen,
Science,
288, 2028–2031, https://doi.org/10.1126/science.288.5473.2028, 2000.
Marañón, E., Behrenfeld, M. J., González, N., Mouriño, B., and Zubkov, M. V.:
High variability of primary production in oligotrophic waters of the Atlantic Ocean: Uncoupling from phytoplankton biomass and size structure,
Mar. Ecol. Prog. Ser.,
257, 1–11, https://doi.org/10.3354/meps257001, 2003.
Morel, A.:
Light and marine photosynthesis: a spectral model with geochemical and climatological implications,
Prog. Oceanogr.,
26, 263–306, https://doi.org/10.1016/0079-6611(91)90004-6, 1991.
Moussa, H., Benallal, M. A., Goyet, C., and Lefèvre, N.:
Satellite-derived CO2 fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network,
Int. J. Remote Sens.,
37, 580–598, https://doi.org/10.1080/01431161.2015.1131872, 2016.
NASA OBPG: MODIS-Aqua Level 3 Mapped Chlorophyll Data Version R2018.0, NASA Ocean Biology DAAC [data set], https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2018, 2017a.
NASA OBPG: MODIS-Aqua Level 3 Mapped Photosynthetically Available Radiation Data Version R2018.0, NASA Ocean Biology DAAC [data set], https://doi.org/10.5067/AQUA/MODIS/L3M/PAR/2018, 2017b.
NASA OBPG: MODIS Aqua Level 3 SST Thermal IR Daily 4 km Daytime v2014.0, NASA Physical Oceanography DAAC [data set], https://doi.org/10.5067/MODSA-1D4D4, 2015.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.:
In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers,
Global Biogeochem. Cy.,
14, 373–387, https://doi.org/10.1029/1999GB900091, 2000.
O'Reilly, J. E. and Werdell, P. J.:
Chlorophyll algorithms for ocean color sensors – OC4, OC5 & OC6,
Remote Sens. Environ.,
229, 32–47, https://doi.org/10.1016/j.rse.2019.04.021, 2019.
O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and Mcclain, C.:
Ocean color chlorophyll algorithms for SeaWiFS encompassing chlorophyll concentrations between,
J. Geophys. Res.,
103, 24937–24953, 1998.
Parard, G., Lefévre, N., and Boutin, J.:
Sea water fugacity of CO2 at the PIRATA mooring at 6∘ S, 10∘ W,
Tellus B,
62, 636–648, https://doi.org/10.1111/j.1600-0889.2010.00503.x, 2010.
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 5, 125–143, https://doi.org/10.5194/essd-5-125-2013, 2013.
Poulton, A. J., Holligan, P. M., Hickman, A., Kim, Y. N., Adey, T. R., Stinchcombe, M. C., Holeton, C., Root, S., and Woodward, E. M. S.:
Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in the Atlantic Ocean,
Deep-Sea Res. Pt. II,
53, 1593–1610, https://doi.org/10.1016/j.dsr2.2006.05.007, 2006.
Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., and Watson, A.:
Ocean acidification due to increasing atmospheric carbon dioxide,
The Royal Society, London, 2005.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.:
An improved in situ and satellite SST analysis for climate,
J. Climate,
15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Robinson, C., Tilstone, G. H., Rees, A. P., Smyth, T. J., Fishwick, J. R., Tarran, G. A., Luz, B., Barkan, E., and David, E.: Comparison of in vitro and in situ plankton production determinations, Aquat. Microb. Ecol., 54, 13–34, https://doi.org/10.3354/ame01250, 2009.
Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.-H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler, J. D., Valsala, V., Wanninkhof, R., and Zeng, J.: Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM), Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, 2015.
Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R. A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M., Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Marra, J., Mélin, F., Morel, A., O'Reilly, J., Scardi, M., Smith Jr., W. O., Smyth, T. J., Tang, S., Uitz, J., Waters, K., and Westberry, T. K.: An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe, Biogeosciences, 8, 489–503, https://doi.org/10.5194/bg-8-489-2011, 2011.
Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Salisbury, J., Santana-Casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: Surface Ocean CO2 Atlas (SOCAT) gridded data products, Earth Syst. Sci. Data, 5, 145–153, https://doi.org/10.5194/essd-5-145-2013, 2013.
Santana-Casiano, J. M., González-Dávila, M., and Ucha, I. R.:
Carbon dioxide fluxes in the Benguela upwelling system during winter and spring: A comparison between 2005 and 2006,
Deep-Sea Res. Pt. II,
56, 533–541, https://doi.org/10.1016/j.dsr2.2008.12.010, 2009.
Sathyendranath, S., Platt, T., Kovač, Ž., Dingle, J., Jackson, T., Brewin, R. J. W., Franks, P., Marañón, E., Kulk, G., and Bouman, H. A.:
Reconciling models of primary production and photoacclimation [Invited],
Appl. Optics,
59, C100, https://doi.org/10.1364/AO.386252, 2020.
Schloss, I. R., Ferreyra, G. A., Ferrario, M. E., Almandoz, G. O., Codina, R., Bianchi, A. A., Balestrini, C. F., Ochoa, H. A., Pino, D. R., and Poisson, A.:
Role of plankton communities in sea–air variations in pCO2 in the SW Atlantic Ocean,
Mar. Ecol. Prog. Ser.,
332, 93–106, https://doi.org/10.3354/meps332093, 2007.
Serret, P., Robinson, C., Aranguren-Gassis, M., García-Martín, E. E., Gist, N., Kitidis, V., Lozano, J., Stephens, J., Harris, C., and Thomas, R.:
Both respiration and photosynthesis determine the scaling of plankton metabolism in the oligotrophic ocean,
Nat. Commun.,
6, 1–10, https://doi.org/10.1038/ncomms7961, 2015.
Shutler, J. D., Land, P. E., Piolle, J. F., Woolf, D. K., Goddijn-Murphy, L., Paul, F., Girard-Ardhuin, F., Chapron, B., and Donlon, C. J.:
FluxEngine: A flexible processing system for calculating atmosphere-ocean carbon dioxide gas fluxes and climatologies,
J. Atmos. Ocean. Tech.,
33, 741–756, https://doi.org/10.1175/JTECH-D-14-00204.1, 2016.
Shutler, J. D., Wanninkhof, R., Nightingale, P. D., Woolf, D. K., Bakker, D. C., Watson, A., Ashton, I., Holding, T., Chapron, B., Quilfen, Y., Fairall, C., Schuster, U., Nakajima, M., and Donlon, C. J.:
Satellites will address critical science priorities for quantifying ocean carbon,
Front. Ecol. Environ.,
18, 27–35, https://doi.org/10.1002/fee.2129, 2020.
Smith, W. O. and Demaster, D. J.:
Phytoplankton biomass and productivity in the Amazon River plume: Correlation with seasonal river discharge,
Cont. Shelf Res.,
16, 291–319, https://doi.org/10.1016/0278-4343(95)00007-N, 1996.
Smyth, T. J., Tilstone, G. H., and Groom, S. B.:
Integration of radiative transfer into satellite models of ocean primary production,
J. Geophys. Res.-Oceans,
110, 1–11, https://doi.org/10.1029/2004JC002784, 2005.
Stephens, M. P., Samuels, G., Olson, D. B., Fine, R. A., and Takahashi, T.:
Sea–air flux of CO2 in the North Pacific using shipboard and satellite data,
J. Geophys. Res.,
100, 13571, https://doi.org/10.1029/95JC00901, 1995.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans, Deep. Res. Part II Top. Stud. Oceanogr., 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Taylor, J. R.:
An introduction to error analysis,
University Science Books, Sausalito, Calif., 1997.
Tilstone, G. H., Smyth, T. J., Gowen, R. J., Martinez-Vicente, V., and Groom, S. B.:
Inherent optical properties of the Irish Sea and their effect on satellite primary production algorithms,
J. Plankton Res.,
27, 1127–1148, https://doi.org/10.1093/plankt/fbi075, 2005.
Tilstone, G. H., Smyth, T., Poulton, A., and Hutson, R.:
Measured and remotely sensed estimates of primary production in the Atlantic Ocean from 1998 to 2005,
Deep-Sea Res. Pt. II,
56, 918–930, https://doi.org/10.1016/j.dsr2.2008.10.034, 2009.
Tilstone, G. H., Xie, Y. yuan, Robinson, C., Serret, P., Raitsos, D. E., Powell, T., Aranguren-Gassis, M., Garcia-Martin, E. E., and Kitidis, V.:
Satellite estimates of net community production indicate predominance of net autotrophy in the Atlantic Ocean,
Remote Sens. Environ.,
164, 254–269, https://doi.org/10.1016/j.rse.2015.03.017, 2015.
Tilstone, G. H., Lange, P. K., Misra, A., Brewin, R. J. W., and Cain, T.:
Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean,
Prog. Oceanogr.,
158, 109–129, https://doi.org/10.1016/j.pocean.2017.01.006, 2017.
Valerio, A. M., Kampel, M., Ward, N. D., Sawakuchi, H. O., Cunha, A. C., and Richey, J. E.:
CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data,
Cont. Shelf Res.,
215, 104348, https://doi.org/10.1016/j.csr.2021.104348, 2021.
Varona, H. L., Veleda, D., Silva, M., Cintra, M., and Araujo, M.:
Amazon River plume influence on Western Tropical Atlantic dynamic variability,
Dynam. Atmos. Oceans,
85, 1–15, https://doi.org/10.1016/j.dynatmoce.2018.10.002, 2019.
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.:
Interpolated Global surface ocean carbon dioxide partial pressure and ocean-atmosphere fluxes 1992–2018, corrected for surface temperature deviations,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.922985, 2020a.
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.:
Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory,
Nat. Commun.,
11, 1–6, https://doi.org/10.1038/s41467-020-18203-3, 2020b.
Weiss, R. F.:
Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
Mar. Chem.,
2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Williams, P. J. le B., Quay, P. D., Westberry, T. K., and Behrenfeld, M. J.:
The Oligotrophic Ocean Is Autotrophic,
Annu. Rev. Mar. Sci.,
5, 535–549, https://doi.org/10.1146/annurev-marine-121211-172335, 2013.
Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L. M., and Donlon, C. J.:
On the calculation of air–sea fluxes of CO2 in the presence of temperature and salinity gradients,
J. Geophys. Res.-Oceans,
121, 1229–1248, https://doi.org/10.1002/2015JC011427, 2016.
Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Watson, A. J., Chapron, B., Nightingale, P. D., Donlon, C. J., Piskozub, J., Yelland, M. J., Ashton, I., Holding, T., Schuster, U., Girard-Ardhuin, F., Grouazel, A., Piolle, J. F., Warren, M., Wrobel-Niedzwiecka, I., Land, P. E., Torres, R., Prytherch, J., Moat, B., Hanafin, J., Ardhuin, F., and Paul, F.:
Key Uncertainties in the Recent Air-Sea Flux of CO2,
Global Biogeochem. Cy.,
33, 1548–1563, https://doi.org/10.1029/2018GB006041, 2019.
Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., and Nakaoka, S.:
A global surface ocean fCO2 climatology based on a feed-forward neural network,
J. Atmos. Ocean. Tech.,
31, 1838–1849, https://doi.org/10.1175/JTECH-D-13-00137.1, 2014.
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
This study identifies the most accurate biological proxy for the estimation of seawater pCO2...
Altmetrics
Final-revised paper
Preprint