Articles | Volume 20, issue 6
https://doi.org/10.5194/bg-20-1113-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1113-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Jitse Bijlmakers
CORRESPONDING AUTHOR
Department of Physical Geography, Faculty of Geosciences, Utrecht
University, Utrecht, the Netherlands
Jasper Griffioen
Copernicus Institute of Sustainable Development, Faculty of
Geosciences, Utrecht University, Utrecht, the Netherlands
TNO Geological Survey of the Netherland, Utrecht, the Netherlands
Derek Karssenberg
Department of Physical Geography, Faculty of Geosciences, Utrecht
University, Utrecht, the Netherlands
Related authors
No articles found.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
M. Lu, L. Groeneveld, D. Karssenberg, S. Ji, R. Jentink, E. Paree, and E. Addink
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 75–80, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-75-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-75-2021, 2021
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.
Yasmina Loozen, Karin T. Rebel, Derek Karssenberg, Martin J. Wassen, Jordi Sardans, Josep Peñuelas, and Steven M. De Jong
Biogeosciences, 15, 2723–2742, https://doi.org/10.5194/bg-15-2723-2018, https://doi.org/10.5194/bg-15-2723-2018, 2018
Short summary
Short summary
Nitrogen (N) is an essential nutrient for plant growth. It would be interesting to detect it using satellite data. The goal was to investigate if it is possible to remotely sense the canopy nitrogen concentration and content of Mediterranean trees using a product calculated from satellite reflectance data, the MERIS Terrestrial Chlorophyll Index (MTCI). The tree plots were located in Catalonia, NE Spain. The relationship between MTCI and canopy N was present but dependent on the type of trees.
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
L. V. Babel and D. Karssenberg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10535-2013, https://doi.org/10.5194/hessd-10-10535-2013, 2013
Manuscript not accepted for further review
E. Vannametee, D. Karssenberg, M. R. Hendriks, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 17, 2981–3004, https://doi.org/10.5194/hess-17-2981-2013, https://doi.org/10.5194/hess-17-2981-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Alaibakhsh, M., Emelyanova, I., Barron, O., Sims, N., Khiadani, M., and
Mohyeddin, A.: Delineation of riparian vegetation from Landsat
multi-temporal imagery using PCA, Hydrol. Process., 31, 800–810, 2017.
Allred, B. W., Fuhlendorf, S. D., Engle, D. M., and Elmore, R. D.: Ungulate
preference for burned patches reveals strength of fire-grazing interaction,
Ecol. Evol., 1, 132–144, https://doi.org/10.1002/ece3.12, 2011.
Arieira, J., Karssenberg, D., de Jong, S. M., Addink, E. A., Couto, E. G., Nunes da Cunha, C., and Skøien, J. O.: Integrating field sampling, geostatistics and remote sensing to map wetland vegetation in the Pantanal, Brazil, Biogeosciences, 8, 667–686, https://doi.org/10.5194/bg-8-667-2011, 2011.
Arscott, D. B., Tockner, K., Van Der Nat, D., and Ward, J. V.: Aquatic
habitat dynamics along a braided alpine river ecosystem (Tagliamento River,
Northeast Italy), Ecosystem, 5, 802–814, https://doi.org/10.1007/s10021-002-0192-7,
2002.
Banfai, D. S. and Bowman, D. M. J. S.: Forty years of lowland monsoon rainforest expansion
in Kakadu National Park, Northern Australia, Biol. Conserv., 131, 553–565,
https://doi.org/10.1016/j.biocon.2006.03.002, 2006.
Basumatary, H., Devi, H. S., Borah, S. B., and Das, A. K.: Land cover
dynamics and their driving factors in a protected floodplain ecosystem,
River Res. Appl., 37, 627–643, https://doi.org/10.1002/rra.3775, 2021.
Beeri, O., Phillips, R., Hendrickson, J., Frank, A. B., and Kronberg, S.:
Estimating forage quantity and quality using aerial hyperspectral imagery
for northern mixed-grass prairie, Remote Sens. Environ., 110, 216–225,
https://doi.org/10.1016/j.rse.2007.02.027, 2007.
Belgiu, M. and Drăgu, L.: Random forest in remote sensing: A review of
applications and future directions, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 114, 24–31, ISSN:
0924-2716,
https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.
Bhatta, S., Joshi, L. R., and Shrestha, B. B.: Distribution and impact of
invasive alien plant species in Bardia National Park, western Nepal,
Environ. Conserv., 47, 197–205, https://doi.org/10.1017/S0376892920000223,
2020.
Bhatta, S. R.: Status paper of Royal Bardia National Park, Grassl. Ecol.
Manag. Prot. areas Nepal, Kathmandu ICIMOD, 122–127, 2000.
Bhattarai, B. P. and Kindlmann, P.: Habitat heterogeneity as the key
determinant of the abundance and habitat preference of prey species of tiger
in the Chitwan National Park, Nepal, Acta Theriol. (Warsz), 57, 89–97,
https://doi.org/10.1007/s13364-011-0047-8, 2012.
Bhattarai, B. R., Wright, W., Poudel, B. S., Aryal, A., Yadav, B. P., and
Wagle, R.: Shifting paradigms for Nepal's protected areas: history,
challenges and relationships, J. Mt. Sci., 14, 964–979,
https://doi.org/10.1007/s11629-016-3980-9, 2017.
Biswas, T.: A spatio-temporal analysis of landscape change within the
Eastern Terai, India: linking grassland and forest loss to change in river
course and land use, PhD thesis, Utah State University, 2010.
Biswas, T., Ramsey, R. D., Bissonette, J. A., and Symanzik, J.: Integration
of two spectral indices to monitor loss of moist grasslands within the
Jaldapara Wildlife Sanctuary, India, Int. J. Remote Sens., 35, 1038–1063,
https://doi.org/10.1080/01431161.2013.875631, 2014.
Bolton, M.: Royal Karnali Wildlife Reserve Management Plan, National P.,
FAO/UNDP, Rome, 70 pp., 1976.
Bond, W. J.: What limits trees in C4 grasslands and savannas?, Annu. Rev. Ecol. Evol. Syst.,
39, 641–659, https://doi.org/10.1146/annurev.ecolsys.39.110707.173411, 2008.
Bond, W. J. and Parr, C. L.: Beyond the forest edge: Ecology, diversity and
conservation of the grassy biomes, Biol. Conserv., 143, 2395–2404,
https://doi.org/10.1016/j.biocon.2009.12.012, 2010.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Brown, D. E. and Makings, E.: A guide to North American grasslands,
University of Arizona for the Boyce Thompson Southwestern Arboretum, Desert Plants, 29, 1–160, 2014.
Brown, K.: Plain tales from the grasslands: extraction, value and utilization of biomass in
Royal BardiaNational Park, Nepal, Biodivers. Conserv., 6, 59–74, 1997.
Brown, K.: The political ecology of biodiversity, conservation and
development in Nepal's Terai: Confused meanings, means and ends, Ecol.
Econ., 24, 73–87, 1998.
Buisson, E., Le Stradic, S., Silveira, F. A. O., Durigan, G., Overbeck, G.
E., Fidelis, A., Fernandes, G. W., Bond, W. J., Hermann, J. M., Mahy, G.,
Alvarado, S. T., Zaloumis, N. P., and Veldman, J. W.: Resilience and
restoration of tropical and subtropical grasslands, savannas, and grassy
woodlands, Biol. Rev., 94, 590–609, https://doi.org/10.1111/brv.12470,
2019.
Chetri, M., Odden, M., and Wegge, P.: Snow leopard and Himalayan wolf: Food
habits and prey selection in the central Himalayas, Nepal, PLoS One, 12, e0170549,
https://doi.org/10.1371/journal.pone.0170549, 2017.
Chhetri, T. B., Dhital, Y. P., Tandong, Y., Devkota, L. P., and Dawadi, B.:
Observations of heavy rainfall and extreme flood events over Banke-Bardiya
districts of Nepal in 2016–2017, Prog. Disaster Sci., 6, 100074,
https://doi.org/10.1016/j.pdisas.2020.100074, 2020.
Clements, F. E.: Plant succession; an analysis of the development of
vegetation, Plant succession; an analysis of the development of vegetation,
Carnegie Institution of Washington, 1–512,
https://doi.org/10.5962/bhl.title.56234, 1916.
Corenblit, D., Tabacchi, E., Steiger, J., and Gurnell, A. M.: Reciprocal
interactions and adjustments between fluvial landforms and vegetation
dynamics in river corridors: A review of complementary approaches,
Earth-Sci. Rev., 84, 56–86,
https://doi.org/10.1016/j.earscirev.2007.05.004, 2007.
Corenblit, D., Steiger, J., and Tabacchi, E.: Biogeomorphologic succession
dynamics in a Mediterranean river system, Ecography, 33, 1136–1148,
https://doi.org/10.1111/j.1600-0587.2010.05894.x, 2010.
Crist, E. P. and Cicone, R. C.: Application of the Tasseled Cap concept to
simulated Thematic Mapper data, Photogramm. Eng. Remote Sens., 50,
343–352, 1984.
Dahal, P., Shrestha, M. L., Panthi, J., and Pradhananga, D.: Modeling the
future impacts of climate change on water availability in the Karnali River
Basin of Nepal Himalaya, Environ. Res., 185, 109430,
https://doi.org/10.1016/j.envres.2020.109430, 2020.
Dhakal, M., Karki, M., Jnawali, S. R., Subedi, N., Pradhan, N. M. B., Malla,
S., Lamichhane, B. R., Pokheral, C. P., Thapa, G. J., and Oglethorpe, J.:
Status of tigers and prey in Nepal, Dep. Natl. Park. Wildl. Conserv.
Kathmandu, Nepal, 2014.
DHM: Observed climate trend analysis of Nepal in the districts and
physiographic regions of Nepal (1971–2014), Department of Hydrology and Meteorology, Government of Nepal, Kathmandu, 2017.
Dinerstein, E.: An ecological survey of the royal Karnali-Bardia Wildlife
Reserve, Nepal, Part I: Vegetation, modifying factors, and successional
relationships, Biol. Conserv., 15, 127–150,
https://doi.org/10.1016/0006-3207(79)90030-2, 1979a.
Dinerstein, E.: An ecological survey of the royal Karnali-Bardia Wildlife
Reserve, Nepal, Part II: Habitat/Animal Interactions, Biol. Conserv., 15,
127–150, https://doi.org/10.1016/0006-3207(79)90030-2, 1979b.
Dinerstein, E.: An ecological survey of the Royal Karnali-Bardia Wildlife
Reserve, Nepal, Part III: Ungulate populations, Biol. Conserv., 18, 5–37,
https://doi.org/10.1016/0006-3207(80)90063-4, 1980.
Dinerstein, E.: Effects of Rhinoceros unicornis on Riverine Forest Structure in Lowland Nepal,
Ecology, 73, 701–704, 1992.
Dingle, E., Attal, M., and Sinclair, H. D.: Abrasion-set limits on Himalayan
gravel flux, Nature, 544, 471–474, https://doi.org/10.1038/nature22039, 2017.
Dingle, E. H., Creed, M. J., Sinclair, H. D., Gautam, D., Gourmelen, N.,
Borthwick, A. G. L., and Attal, M.: Dynamic flood topographies in the Terai
region of Nepal, Earth Surf. Process. Land., 45, 3092–3102,
https://doi.org/10.1002/esp.4953, 2020a.
Dingle, E. H., Sinclair, H. D., Venditti, J. G., Attal, M., Kinnaird, T. C.,
Creed, M., Quick, L., Nittrouer, J. A., and Gautam, D.: Sediment dynamics
across gravel-sand transitions: Implications for river stability and
floodplain recycling, Geology, 48, 468–472,
https://doi.org/10.1130/G46909.1, 2020b.
DNPWC and DFSC: Status of Tigers and Prey in Nepal, Department of National
Parks and Wildlife Conservation & Department of Forests and Soil
Conservation, Ministry of Forests and Environment, 2018.
DNPWC and DFSC: Status of Tigers and Prey in Nepal. Department of National
Parks and Wildlife Conservation & Department of Forests and Soil
Conservation, Ministry of Forests and Environment, 2022.
Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., and Van
De Giesen, N.: Earth's surface water change over the past 30 years, Nature Climate Change, Nature, 6, 810–813,
https://doi.org/10.1038/nclimate3111, 2016.
Dufour, S., Rinaldi, M., Piégay, H., and Michalon, A.: How do river
dynamics and human influences affect the landscape pattern of fluvial
corridors? Lessons from the Magra River, Central-Northern Italy, Landsc.
Urban Plan., 134, 107–118,
https://doi.org/10.1016/j.landurbplan.2014.10.007, 2015.
Dufour, S., Rodríguez-González, P. M., and Laslier, M.: Tracing the
scientific trajectory of riparian vegetation studies: Main topics,
approaches and needs in a globally changing world, Sci. Total Environ., 653,
1168–1185, https://doi.org/10.1016/j.scitotenv.2018.10.383, 2019.
DNPWC: Grassland habitat mapping in
Chitwan National Park, Department of National Parks and Wildlife
Conservation, Chitwan National Park Office, Kasara, Chitwan, Nepal, 2016.
FAO: Map accuracy assessment and area estimation: a practical guide, National forest
Monitoring Assessment Working Paper, No. 46, Food and Agriculture Organization of the United
Nations, Rome, 2016.
Filla, M., Lama, R. P., Ghale, T. R., Signer, J., Filla, T., Aryal, R. R.,
Heurich, M., Waltert, M., Balkenhol, N., and Khorozyan, I.: In the shadows
of snow leopards and the Himalayas: density and habitat selection of blue
sheep in Manang, Nepal, Ecol. Evol., 11, 108–122,
https://doi.org/10.1002/ece3.6959, 2021.
Flannigan, M. D. and Wotton, B. M.: Climate, weather, and area burned, in:
Forest Fires, Elsevier, 351–373,
https://doi.org/10.1016/b978-012386660-8/50012-x, 2001.
Ghimire, B., Bhujel, K., and Rijal, K.: Fire hazard zonation of Bardia
National Park, Nepal: A disaster preparedness approach, Nepal J. Environ.
Sci., 2, 27–33, https://doi.org/10.3126/njes.v2i0.22738, 2014.
Gómez, C., White, J. C., and Wulder, M. A.: Optical remotely sensed time
series data for land cover classification: A review, ISPRS J. Photogramm.
Remote Sens., 116, 55–72, https://doi.org/10.1016/j.isprsjprs.2016.03.008,
2016.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Gu, Y., Brown, J. F., Verdin, J. P., and Wardlow, B.: A five-year analysis
of MODIS NDVI and NDWI for grassland drought assessment over the central
Great Plains of the United States, Geophys. Res. Lett., 34,
https://doi.org/10.1029/2006GL029127, 2007.
Gumbel, E. J.: Statistics of extremes, Columbia university press, 1958.
Gunderson, L. H.: Panarchy: understanding transformations in human and
natural systems, Island press, 2002.
Hansen, M. C. and Loveland, T. R.: A review of large area monitoring of land
cover change using Landsat data, Remote Sens. Environ., 122, 66–74,
https://doi.org/10.1016/j.rse.2011.08.024, 2012.
Harezlak, V., Geerling, G. W., Rogers, C. K., Penning, W. E., Augustijn, D.
C. M., and Hulscher, S. J. M. H.: Revealing 35 years of land cover dynamics
in floodplains of trained lowland rivers using satellite data, River Res.
Appl., 36, 1213–1221, https://doi.org/10.1002/rra.3633, 2020.
Harihar, A., Pandav, B., and MacMillan, D. C.: Identifying realistic
recovery targets and conservation actions for tigers in a human-dominated
landscape using spatially explicit densities of wild prey and their
determinants, Divers. Distrib., 20, 567–578,
https://doi.org/10.1111/ddi.12174, 2014.
Henderson-Sellers, A. and Pitman, A. J.: Land-surface schemes for future
climate models: specification, aggregation, and heterogeneity, J. Geophys.
Res., 97, 2687–2696, https://doi.org/10.1029/91JD01697, 1992.
Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., and Hobart, G.
W.: Disturbance-Informed Annual Land Cover Classification Maps of Canada's
Forested Ecosystems for a 29-Year Landsat Time Series, Can. J. Remote Sens.,
44, 67–87, https://doi.org/10.1080/07038992.2018.1437719, 2018.
Hirota, M., Holmgren, M., Van Nes, E. H., and Scheffer, M.: Global
resilience of tropical forest and savanna to critical transitions, New Ser.,
334, 232–235, 2011.
Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F., and Wefer, G.:
The role of fire in Miocene to Pliocene C4 grassland and ecosystem
evolution, Nat. Geosci., 6, 1027–1030, https://doi.org/10.1038/ngeo1984,
2013.
Hupp, C. R. and Osterkamp, W. R.: Riparian vegetation and fluvial geomorphic
processes, Geomorphology, 14, 277–295, https://doi.org/10.1016/0169-555X(95)00042-4, 1996.
Iglesias, V., Whitlock, C., Markgraf, V., and Bianchi, M. M.: Postglacial
history of the Patagonian forest/steppe ecotone (41–43∘ S), Quaternary
Sci. Rev., 94, 120–135, https://doi.org/10.1016/j.quascirev.2014.04.014,
2014.
Irengbam, M., Dobriyal, P., Hussain, S. A., and Badola, R.: Balancing
conservation and development in Nandhaur Wildlife Sanctuary, Uttarakhand,
India, Curr. Sci. India, 112, 1187–1196, 2017.
Jalonen, J., Järvelä, J., Virtanen, J. P., Vaaja, M., Kurkela, M.,
and Hyyppä, H.: Determining characteristic vegetation areas by
terrestrial laser scanning for floodplain flow modeling, Water, 7, 420–437,
https://doi.org/10.3390/w7020420, 2015.
Jnawali, S. R. and Wegge, P. W.: Space and habitat use by a small
re-introduced population of greater one – horned rhinoceros in RBNP – a
preliminary report, 1993.
Jnawali, S. R. and Wegge, P. W.: Importance of tall grasslands in megaherbivore
conservation, in: Grassland ecology and management in protected areas of
Nepal, Proceedings of a Workshop, Royal Bardia National Park, Thakurdwara,
Bardia, Nepal, 15–19 March, 1999, Vol. 2, Terai protected areas, 84–91,
2000.
Junk, W. J., Bayley, P. B., and Sparks, R. E.: The flood pulse concept in
river-floodplain systems, Can. Spec. Publ. Fish. Aquat. Sci., 106, 110–127,
1989.
Karki, J. B., Jhala, Y. V., Pandav, B., Jnawali, S. R., Shrestha, R., Thapa,
K., Thapa, G., Pradhan, N. M. B., Lamichane, B. R., and Barber-Meyer, S. M.:
Estimating tiger and its prey abundance in Bardia National Park, Nepal,
Banko Janakari, 26, 60–69, https://doi.org/10.3126/banko.v26i1.15503, 2016.
Kelley, L. C., Pitcher, L., and Bacon, C.: Using google earth engine to map
complex shade-grown coffee landscapes in northern Nicaragua, Remote Sens.,
10, 952, https://doi.org/10.3390/rs10060952, 2018.
Kollmann, J., Vieli, M., Edwards, P. J., Tockner, K., and Ward, J. V.:
Interactions between vegetation development and island formation in the
Alpine river Tagliamento, Appl. Veg. Sci., 2, 25–36,
https://doi.org/10.2307/1478878, 1999.
Kral, M. J. C., Van Lunenburg, M., and Van Alphen, J. J. M.: The spatial
distribution of ungulates and primates across the vegetation gradient in
Bardiya National Park, West Nepal, Asian J. Conserv. Biol., 6, 38–44, 2017.
Lallias-Tacon, S., Liébault, F., and Piégay, H.: Use of airborne
LiDAR and historical aerial photos for characterising the history of braided
river floodplain morphology and vegetation responses, Catena, 149, 742–759,
https://doi.org/10.1016/j.catena.2016.07.038, 2017.
Lawrence, R. L., Wood, S. D., and Sheley, R. L.: Mapping invasive plants
using hyperspectral imagery and Breiman Cutler classifications
(RandomForest), Remote Sens. Environ., 100, 356–362,
https://doi.org/10.1016/j.rse.2005.10.014, 2006.
Lehmann, C. E. R., Anderson, T. M., Sankaran, M., Higgins, S. I., Archibald,
S., Hoffmann, W. A., Hanan, N. P., Williams, R. J., Fensham, R. J., Felfili,
J., Hutley, L. B., Ratnam, J., San Jose, J., Montes, R., Franklin, D.,
Russell-Smith, J., Ryan, C. M., Durigan, G., Hiernaux, P., Haidar, R.,
Bowman, D. M. J. S., and Bond, W. J.: Savanna vegetation-fire-climate
relationships differ among continents, Science, 343, 548–552,
https://doi.org/10.1126/science.1247355, 2014.
Lehmkuhl, J. F.: The ecology of south-Asian tall-grass communities, PhD
dissertation, University of Washington, Seattle, WA, 1989.
Lehmkuhl, J. F.: A classification of subtropical riverine grassland and
forest in Chitwan National Park, Nepal, 111, 29–43,
https://doi.org/10.1007/BF00045575, 1994.
Lehmkuhl, J. F.: The organisation and human use of Terai riverine grasslands
in the Royal Chitwan National Park, Nepal, Grassl. Ecol. Manag. Prot. areas
Nepal. Proc. a Work, R. Bardia Natl. Park, Thakurdwara, Bardia, Nepal, 15–19
March, 1999, Vol. 2, Terai Prot. areas, 37–49, 2000.
Leier, A. L., DeCelles, P. G., and Pelletier, J. D.: Mountains, monsoons,
and megafans, Geology, 33, 289–292, https://doi.org/10.1130/G21228.1, 2005.
Lorenz, C. M., Dijk, G. M. Van, Hattum, A. G. M. Van, and Cofino, W. P.:
Concepts in river ecology: implications for indicator development, Regul.
Rivers Res. Manag., 13, 501–516,
https://doi.org/10.1002/(SICI)1099-1646(199711/12)13:6<501::AID-RRR479>3.0.CO;2-1, 1997.
Louzada, R. O., Bergier, I., and Assine, M. L.: Landscape changes in
avulsive river systems: Case study of Taquari River on Brazilian Pantanal
wetlands, Sci. Total Environ., 723, 138067,
https://doi.org/10.1016/j.scitotenv.2020.138067, 2020.
Lyngdoh, S., Shrotriya, S., Goyal, S. P., Clements, H., Hayward, M. W., and
Habib, B.: Prey preferences of the snow leopard (Panthera uncia): Regional diet
specificity holds global significance for conservation, PLoS One, 9, 2,
https://doi.org/10.1371/journal.pone.0088349, 2014.
Mas, J. F. and Vega, E.: Assessing yearly transition probability matrix for
land use/land cover dynamics, Accuracy 2012 – Proc. 10th Int. Symp. Spat.
Accuracy Assess. Nat. Resour. Environ. Sci., 345–350, 2012.
McGarigal, K., Cushman, S. A., and Ene, E.: FRAGSTATS: Spatial pattern analysis program for
categorical maps, Computer software program produced by the authors at the
University of Massachusetts, Amherst,
http://www.umass.edu/landeco/research/fragstats/fragstats.html (last access: 15 April 2020), 2002.
McGarigal, K. and Marks, B. J.: FRAGSTATS: spatial pattern analysis program
for quantifying landscape structure, General Technical Report – US
Department of Agriculture, Forest Service, 128 pp., 1995.
Meyer, W. B. and Turner, B. L.: Human population growth and global
land-use/cover change, Annu. Rev. Ecol. Syst., 23,
39–61, 1992.
Moe, S. R. and Wegge, P.: Spacing behaviour and habitat use of axis deer
(Axis axis) in lowland Nepal, Can. J. Zool., 72, 1735–1744,
https://doi.org/10.1139/z94-234, 1994.
Myneni, R. B., Hall, F. G., Sellers, P. J., and Marshak, A. L.:
Interpretation of spectral vegetation indexes, IEEE Trans. Geosci. Remote
Sens., 33, 481–486, https://doi.org/10.1109/36.377948, 1995.
Neupane, D., Kwon, Y., Risch, T. S., and Johnson, R. L.: Changes in habitat
suitability over a two decade period before and after Asian elephant
recolonization, Glob. Ecol. Conserv., 22, e01023,
https://doi.org/10.1016/j.gecco.2020.e01023, 2020.
Newbold, C. and Mountford, O.: Water level requirements of wetland plants
and animals, Engl. Nat. Freshw. Ser., 5, 1997.
Odden, M.: Tigers, leopards and their prey in Bardia National Park, Nepal.
PhD thesis, Norwegian University of Life Sciences,
https://doi.org/10.13140/RG.2.2.29496.75527, 2007.
Odden, M. and Wegge, P.: Spacing and activity patterns of leopards Panthera pardus in the
Royal Bardia National Park, Nepal, Wildlife Biol., 11, 145–152,
https://doi.org/10.2981/0909-63962005.
Odden, M., Wegge, P., and Storaas, T.: Hog deer (Axis porcinus) need
threatened tallgrass floodplains: A study of habitat selection in lowland
Nepal, Anim. Conserv., 8, 99–104,
https://doi.org/10.1017/S1367943004001854, 2005.
Oli, M. K.: Seasonal patterns in habitat use of blue sheep Pseudois nayaur (Artiodactyla,
Bovidae) in Nepal, Mammalia, 60, 187–193,
https://doi.org/10.1515/mamm.1996.60.2.187, 1996.
Orem, C. A. and Pelletier, J. D.: Quantifying the time scale of elevated
geomorphic response following wildfires using multi-temporal LiDAR data: An
example from the Las Conchas fire, Jemez Mountains, New Mexico, 232,
224–238, https://doi.org/10.1016/j.geomorph.2015.01.006, 2015.
Owen-Smith, R. N.: Megaherbivores: the influence of very large body size on
ecology, Cambridge university press, 1988.
Pal, M.: Random forest classifier for remote sensing classification, Int. J.
Remote Sens., 26, 217–222, https://doi.org/10.1080/01431160412331269698,
2005.
Parr, C. L., Gray, E. F., and Bond, W. J.: Cascading biodiversity and
functional consequences of a global change-induced biome switch, Divers.
Distrib., 18, 493–503, https://doi.org/10.1111/j.1472-4642.2012.00882.x,
2012.
Peet, N. B.: Biodiversity and the management of tall grassland in Nepal, PhD
thesis, University of East Anglia, 1997.
Peet, N. B., Watkinson, A. R., Bell, D. J., and Kattel, B. J.: Plant
diversity in the threatened sub-tropical grasslands of Nepal, Biol.
Conserv., 88, 193–206, https://doi.org/10.1016/S0006-3207(98)00104-9,
1999a.
Peet, N. B., Watkinson, A. R., Bell, D. J., and Sharma, U. R.: The
conservation management of Imperata cylindrica grassland in Nepal with fire
and cutting: An experimental approach, J. Appl. Ecol., 36, 374–387,
https://doi.org/10.1046/j.1365-2664.1999.00405.x, 1999b.
Pickett, S. T. A., Collins, S. L., and Armesto, J. J.: A hierarchical
consideration of causes and mechanisms of succession, in: Theory and models
in vegetation science, Springer, 109–114, 1987.
Plakman, V., Janssen, T., Brouwer, N., and Veraverbeke, S.: Mapping species
at an individual-tree scale in a temperate forest, using Sentinel-2 images,
airborne laser scanning data, and random forest classification, Remote
Sens., 12, 1–25, https://doi.org/10.3390/rs12223710, 2020.
Plexida, S. G., Sfougaris, A. I., Ispikoudis, I. P., and Papanastasis, V.
P.: Selecting landscape metrics as indicators of spatial heterogeneity-A
comparison among Greek landscapes, Int. J. Appl. Earth Obs. Geoinf., 26,
26–35, https://doi.org/10.1016/j.jag.2013.05.001, 2014.
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L.,
Richter, B. D., Sparks, R. E., and Stromberg, J. C.: The natural flow
regime, Bioscience, 47, 769–784, 1997.
Pokheral, S. K.: Floristic composition, biomass production, and biomass
harvest in the grasslands of the Royal Bardia National Park, Bardia, Nepal,
MS thesis, Agric. Univ. Norw., 1993.
Pradhan, N. M. B., Wegge, P., Moe, S. R., and Shrestha, A. K.: Feeding
ecology of two endangered sympatric megaherbivores: Asian elephant Elephas maximus and
greater one-horned rhinoceros Rhinoceros unicornis in lowland Nepal, Wildlife Biol., 14,
147–154, https://doi.org/10.2981/0909-6396(2008)14[147:FEOTES]2.0.CO;2,
2008.
Price, K. P., Guo, X., and Stiles, J. M.: Optimal landsat TM band
combinations and vegetation indices for discrimination of six grassland
types in eastern Kansas, Int. J. Remote Sens., 23, 5031–5042,
https://doi.org/10.1080/01431160210121764, 2002.
Puyravaud, J. P., Dufour, C., and Aravajy, S.: Rain forest expansion mediated by successional
proc esses in vegetation thickets in the Western Ghats of India, J. Biogeogr., 30, 1067–1080,
https://doi.org/10.1046/j.1365 2699.2003.00882.x, 2003.
Rakhal, B., Adhikari, T. R., Sharma, S., and Ghimire, G. R.: Assessment of
channel shifting of Karnali Megafan in Nepal using remote sensing and GIS,
Ann. GIS, 27, 177–188, https://doi.org/10.1080/19475683.2021.1871950, 2021.
Ram, A. K. and Acharya, H.: Status distribution and habitat use by Asian elephants in Nepal. A
Compendium of Conservation Bulletin, Kathmandu: Department of National Parks and Wildlife
Conservation, 155–160, 2020.
Rapinel, S., Mony, C., Lecoq, L., Clément, B., Thomas, A., and
Hubert-Moy, L.: Evaluation of Sentinel-2 time-series for mapping floodplain
grassland plant communities, Remote Sens. Environ., 223, 115–129,
https://doi.org/10.1016/j.rse.2019.01.018, 2019.
Rock, B. N., Vogelmann, J. E., Williams, D. L., Vogelmann, A. F., and
Hoshizaki, T.: Remote Detection of Forest Damage, Bioscience, 36, 439–445,
https://doi.org/10.2307/1310339, 1986.
Rouse, J. W., Hass, R. H., Schell, J. A., and Deering, D. W.: Monitoring vegetation systems in
the Great Plains with ERTS, NASA Spec. Publ., 351, 309,
1974.
Rovero, F., Augugliaro, C., Havmoller, R. W., Groff, C., Zimmermann, F.,
Oberosler, V., and Tenan, S.: Co-occurrence of snow leopard Panthera uncia, Siberian ibex
Capra sibirica and livestock: Potential relationships and effects, Oryx, 54, 118–124,
https://doi.org/10.1017/S0030605317001685, 2020.
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S.
S., and Egorov, A.: Characterization of Landsat-7 to Landsat-8 reflective
wavelength and normalized difference vegetation index continuity, Remote
Sens. Environ., 185, 57–70, https://doi.org/10.1016/j.rse.2015.12.024,
2016.
Sankaran, M.: Diversity patterns in savanna grassland communities:
Implications for conservation strategies in a biodiversity hotspot,
Biodivers. Conserv., 18, 1099–1115,
https://doi.org/10.1007/s10531-008-9519-9, 2009.
Sarma, P. K., Lahkar, B. P., Ghosh, S., Rabha, A., Das, J. P., Nath, N. K.,
Dey, S., and Brahma, N.: Land-use and land-cover change and future
implication analysis in Manas National Park, India using multi-temporal
satellite data, Curr. Sci., 95, 223–227, 2008.
Seidensticker, J.: Ungulate populations in Chitawan Valley, Nepal, Biol.
Conserv., 10, 183–210, https://doi.org/10.1016/0006-3207(76)90034-3, 1976.
Sertel, E., Topaloğlu, R. H., Şallı, B., Algan, I. Y., and Aksu,
G. A.: Comparison of landscape metrics for three different level land
cover/land use maps, ISPRS Int. J. Geo-Information, 7, 408,
https://doi.org/10.3390/ijgi7100408, 2018.
Sharma, B. K.: Wildlife habitat mapping by using Geographic Information
Systems (GIS) in the Karnali floodplain of Royal Bardia National Park in
lowland Nepal, MS thesis, Norwegian University of Life Sciences, 1999.
Shrestha, S. and Shrestha, J.: Asian elephants and their status in Nepal: a
review, J. Agric. Nat. Resour., 4, 227–237,
https://doi.org/10.3126/janr.v4i2.33828, 2021.
Silva, L. C. R., Sternberg, L., Haridasan, M., Hoffmann, W. A., Miralles-Wilhelm, F., and
Franco, A. C.: Expansion of gallery forests into central Brazilian savannas, Glob. Chang. Biol., 14,
2108–2118, https://doi.org/10.1111/j.1365-2486.2008.01637.x, 2008.
Sinclair, H. D., Brown, S., Adhikari, B. R., Attal, M., Borthwick, A.,
Budimir, M., Creed, M., Dingle, E. H., Dugar, S., Gautam, D., Gourmelen, N.,
Mudd, S. M., Neupane, S., Pedreschi, R., Ruwanpura, K. N., Sharma, J.,
Sneddon, A., and Uprety, M.: Improving understanding of flooding and
resilience in the Terai, Nepal, 1–5, 2017.
Solins, J. P., Thorne, J. H., and Cadenasso, M. L.: Riparian canopy
expansion in an urban landscape: Multiple drivers of vegetation change along
headwater streams near Sacramento, California,
https://doi.org/10.1016/j.landurbplan.2017.12.005, 2017.
Staver, A. C., Archibald, S., and Levin, S. A.: The global extent and
determinants of savanna and forest as alternative biome states, Science, 334, 230–232, https://doi.org/10.1126/science.1210465, 2011.
Straatsma, M. W. and Baptist, M. J.: Floodplain roughness parameterization
using airborne laser scanning and spectral remote sensing, Remote Sens.
Environ., 112, 1062–1080, https://doi.org/10.1016/j.rse.2007.07.012, 2008.
Takahata, C., Amin, R., Sarma, P., Banerjee, G., Oliver, W., and Fa, J. E.:
Remotely-sensed active fire data for protected area management: Eight-year
patterns in the Manas National Park, India, Environ. Manage., 45, 414–423,
https://doi.org/10.1007/s00267-009-9411-8, 2010.
Thapa, K., Nepal, S., Thapa, G., Bhatta, S. R., and Wikramanayake, E.: Past,
present and future conservation of the greater one-horned rhinoceros
Rhinoceros unicornis in Nepal, Oryx, 47, 345–351, https://doi.org/10.1017/S0030605311001670, 2013.
Thapa, S. K., de Jong, J. F., Subedi, N., Hof, A. R., Corradini, G., Basnet,
S., and Prins, H. H. T.: Forage quality in grazing lawns and tall grasslands
in the subtropical region of Nepal and implications for wild herbivores,
Glob. Ecol. Conserv., 30, e01747,
https://doi.org/10.1016/j.gecco.2021.e01747, 2021.
Thapa, T. B.: Habitat Suitability Evaluation for Leopard (Panthera pardus) Using Remote
Sensing and GIS in and Around Chitwan National Park, Nepal, PhD thesis,
Saurashtra University, 2011.
Thing, S. J., Jones, R., and Jones, C. B.: The Politics of Conservation:
Sonaha, Riverscape in the Bardia National Park and Buffer Zone, Nepal,
Conserv. Soc., 15, 292–303, https://doi.org/10.4103/cs.cs_15_2, 2017.
Thorne, C. R., Russell, A. P. G., and Alam, M. K.: Planform pattern and
channel evolution of the Brahmaputra River, Bangladesh, Geol. Soc. Spec.
Publ., 75, 257–276, https://doi.org/10.1144/GSL.SP.1993.075.01.16, 1993.
Tilman, D.: Plant strategies and the dynamics and structure of plant
communities Princeton, New Jersey Princet. Univ. Press, 26–28, 1988.
Trauernicht, C., Murphy, B. P., Tangalin, N., and Bowman, D. M. J. S.:
Cultural legacies, fire ecology, and environmental change in the Stone
Country of Arnhem Land and Kakadu National Park, Australia, Ecol. Evol., 3,
286–297, https://doi.org/10.1002/ece3.460, 2013.
Turner, M. G., Baker, W. L., Peterson, C. J., and Peet, R. K.: Factors
influencing succession: Lessons from large, infrequent natural disturbances, Ecosystems,
1, 511–523, https://doi.org/10.1007/s100219900047, 1998.
USAID: Lower Karnali Watershed Health Report, 1–23, 2018.
Van Iersel, W. K.: A bird's-eye view on river floodplains: Mapping and
monitoring land cover with remote sensing, PhD thesis, Utrecht University,
2020.
Van Iersel, W. K., Addink, E. A., Straatsma, M. W., and Middelkoop, H.:
River floodplain vegetation classification using multi-temporal
high-resolution colour infrared UAV imagery, 2–5,
https://doi.org/10.3990/2.423, 2016.
Van Iersel, W. K., Straatsma, M., Addink, E., and Middelkoop, H.: Monitoring
height and greenness of non-woody floodplain vegetation with UAV time
series, ISPRS J. Photogramm. Remote Sens., 141, 112–123,
https://doi.org/10.1016/j.isprsjprs.2018.04.011, 2018.
Van Langevelde, F., Van De Vijver, C. A. D. M., Kumar, L., Van De Koppel,
J., De Ridder, N., Van Andel, J., Skidmore, A. K., Hearne, J. W.,
Stroosnijder, L., Bond, W. J., Prins, H. H. T., and Rietkerk, M.: Effects of
fire and herbivory on the stability of savanna ecosystems, Ecology, 84,
337–350, 2003.
van Lunenburg, M., Kral, M. J. C., and van Alphen, J. J. M.: Decreased
ungulate density in Bardiya National Park, West Nepal, and the implications
for increasing tiger populations, A comment on Thapa et al. (2015), Ethol. Ecol. Evol., 29, 304–309,
https://doi.org/10.1080/03949370.2016.1145147, 2017.
Veldman, J. W., Buisson, E., Durigan, G., Fernandes, G. W., Le Stradic, S.,
Mahy, G., Negreiros, D., Overbeck, G. E., Veldman, R. G., Zaloumis, N. P.,
Putz, F. E., and Bond, W. J.: Toward an old-growth concept for grasslands,
savannas, and woodlands, Front. Ecol. Environ., 13, 154–162, https://doi.org/10.1890/140270, 2015.
Vesipa, R., Camporeale, C., and Ridolfi, L.: Effect of river flow
fluctuations on riparian vegetation dynamics: Processes and models, Adv.
Water Resour., 110, 29–50, https://doi.org/10.1016/j.advwatres.2017.09.028,
2017.
Wagner-Lücker, I., Lanz, E., Förster, M., Janauer, G. A., and
Reiter, K.: Knowledge-based framework for delineation and classification of
ephemeral plant communities in riverine landscapes to support EC Habitat
Directive assessment, Ecol. Inform., 14, 44–47,
https://doi.org/10.1016/j.ecoinf.2012.11.003, 2013.
Wang, J., Wang, K., Zhang, M., and Zhang, C.: Impacts of climate change and
human activities on vegetation cover in hilly southern China, Ecol. Eng.,
81, 451–461, https://doi.org/10.1016/j.ecoleng.2015.04.022, 2015.
Wegge, P. and Storaas, T.: Sampling tiger ungulate prey by the distance
method: Lessons learned in Bardia National Park, Nepal, Anim. Conserv., 12,
78–84, https://doi.org/10.1111/j.1469-1795.2008.00230.x, 2009.
Wegge, P., Odden, M., and Storaas, T.: No decline in ungulate prey for
tigers in Bardia National Park in Nepal: comments on van Lunenburg et al.
(2017) and Kral et al. (2017), Ethol. Ecol. Evol., 31, 394–398,
https://doi.org/10.1080/03949370.2019.1609094, 2019.
White, P. S.: Natural disturbance and patch dynamics: an introduction, Nat.
Disturb. Patch Dyn., 3–13, 1985.
White, R. P., Murray, S., Rohweder, M., Prince, S. D., and Thompson, K. M.:
Grassland ecosystems, World Resources Institute Washington, DC, USA, 2000.
Wigley, B. J., Cramer, M. D., and Bond, W. J.: Sapling survival in a frequently burnt savanna:
Mobilisation of carbon reserves in Acacia karroo, Plant Ecol., 203, 1–11,
https://doi.org/10.1007/s11258-008-9495-x, 2009.
Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence,
R., and Evangelista, P. H.: A survival guide to Landsat preprocessing,
Ecology, 98, 920–932, https://doi.org/10.1002/ecy.1730, 2017.
Zanter, K.: Landsat Collection 1 Level 1 Product Definition. United States
Geological Survey, United States Geological Survey, 26 pp., 2019.
Zhu, Z., Wang, S., and Woodcock, C. E.: Improvement and expansion of the
Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7,
8, and Sentinel 2 images, Remote Sens. Environ., 159, 269–277,
https://doi.org/10.1016/j.rse.2014.12.014, 2015.
Zurqani, H. A., Post, C. J., Mikhailova, E. A., Schlautman, M. A., and
Sharp, J. L.: Geospatial analysis of land use change in the Savannah River
Basin using Google Earth Engine, Int. J. Appl. Earth Obs. Geoinf., 69,
175–185, https://doi.org/10.1016/j.jag.2017.12.006, 2018.
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers...
Altmetrics
Final-revised paper
Preprint