Articles | Volume 20, issue 7
https://doi.org/10.5194/bg-20-1405-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-20-1405-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
Alexandre Mignot
CORRESPONDING AUTHOR
Mercator Ocean International, 31400 Toulouse, France
Hervé Claustre
Laboratoire d'Océanographie de Villefranche, CNRS, Sorbonne Université, 06230
Villefranche-sur-Mer, France
Institut de la Mer de Villefranche, CNRS, Sorbonne Université,
06230 Villefranche-sur-Mer, France
Gianpiero Cossarini
National Institute of Oceanography and Applied Geophysics – OGS,
34010 Trieste, Italy
Fabrizio D'Ortenzio
Laboratoire d'Océanographie de Villefranche, CNRS, Sorbonne Université, 06230
Villefranche-sur-Mer, France
Institut de la Mer de Villefranche, CNRS, Sorbonne Université,
06230 Villefranche-sur-Mer, France
Elodie Gutknecht
Mercator Ocean International, 31400 Toulouse, France
Julien Lamouroux
Mercator Ocean International, 31400 Toulouse, France
Paolo Lazzari
National Institute of Oceanography and Applied Geophysics – OGS,
34010 Trieste, Italy
Coralie Perruche
Mercator Ocean International, 31400 Toulouse, France
Stefano Salon
National Institute of Oceanography and Applied Geophysics – OGS,
34010 Trieste, Italy
Raphaëlle Sauzède
Institut de la Mer de Villefranche, CNRS, Sorbonne Université,
06230 Villefranche-sur-Mer, France
Vincent Taillandier
Laboratoire d'Océanographie de Villefranche, CNRS, Sorbonne Université, 06230
Villefranche-sur-Mer, France
Institut de la Mer de Villefranche, CNRS, Sorbonne Université,
06230 Villefranche-sur-Mer, France
Anna Teruzzi
National Institute of Oceanography and Applied Geophysics – OGS,
34010 Trieste, Italy
Viewed
Total article views: 4,518 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Jan 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,090 | 1,340 | 88 | 4,518 | 80 | 88 |
- HTML: 3,090
- PDF: 1,340
- XML: 88
- Total: 4,518
- BibTeX: 80
- EndNote: 88
Total article views: 2,566 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 12 Apr 2023)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,967 | 542 | 57 | 2,566 | 56 | 63 |
- HTML: 1,967
- PDF: 542
- XML: 57
- Total: 2,566
- BibTeX: 56
- EndNote: 63
Total article views: 1,952 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 Jan 2021)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,123 | 798 | 31 | 1,952 | 24 | 25 |
- HTML: 1,123
- PDF: 798
- XML: 31
- Total: 1,952
- BibTeX: 24
- EndNote: 25
Viewed (geographical distribution)
Total article views: 4,518 (including HTML, PDF, and XML)
Thereof 4,384 with geography defined
and 134 with unknown origin.
Total article views: 2,566 (including HTML, PDF, and XML)
Thereof 2,547 with geography defined
and 19 with unknown origin.
Total article views: 1,952 (including HTML, PDF, and XML)
Thereof 1,837 with geography defined
and 115 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
8 citations as recorded by crossref.
- Adaptive foraging strategies of Adélie penguins in the Ross Sea Region: balancing chick feeding and body condition in changing marine environments Y. Kim et al. 10.1007/s00227-024-04575-3
- Advancing ocean monitoring and knowledge for societal benefit: the urgency to expand Argo to OneArgo by 2030 V. Thierry et al. 10.3389/fmars.2025.1593904
- Towards a sustained and fit-for-purpose European ocean observing and forecasting system T. Tanhua et al. 10.3389/fmars.2024.1394549
- Biogeochemical and Physical Assessment of CMIP5 and CMIP6 Ocean Components for the Southwest Pacific Ocean G. Rickard et al. 10.1029/2022JG007123
- A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset N. Metzl et al. 10.5194/essd-16-89-2024
- Machine learning for the physics of climate A. Bracco et al. 10.1038/s42254-024-00776-3
- Comparing satellite and BGC-Argo chlorophyll estimation: A phenological study A. Baudena et al. 10.1016/j.rse.2025.114743
- High-Resolution Reanalysis of the Mediterranean Sea Biogeochemistry (1999–2019) G. Cossarini et al. 10.3389/fmars.2021.741486
7 citations as recorded by crossref.
- Adaptive foraging strategies of Adélie penguins in the Ross Sea Region: balancing chick feeding and body condition in changing marine environments Y. Kim et al. 10.1007/s00227-024-04575-3
- Advancing ocean monitoring and knowledge for societal benefit: the urgency to expand Argo to OneArgo by 2030 V. Thierry et al. 10.3389/fmars.2025.1593904
- Towards a sustained and fit-for-purpose European ocean observing and forecasting system T. Tanhua et al. 10.3389/fmars.2024.1394549
- Biogeochemical and Physical Assessment of CMIP5 and CMIP6 Ocean Components for the Southwest Pacific Ocean G. Rickard et al. 10.1029/2022JG007123
- A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset N. Metzl et al. 10.5194/essd-16-89-2024
- Machine learning for the physics of climate A. Bracco et al. 10.1038/s42254-024-00776-3
- Comparing satellite and BGC-Argo chlorophyll estimation: A phenological study A. Baudena et al. 10.1016/j.rse.2025.114743
1 citations as recorded by crossref.
Latest update: 29 Jun 2025
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the...
Altmetrics
Final-revised paper
Preprint