Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-2837-2023
https://doi.org/10.5194/bg-20-2837-2023
Research article
 | 
17 Jul 2023
Research article |  | 17 Jul 2023

Simulated methane emissions from Arctic ponds are highly sensitive to warming

Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin

Related authors

Ignoring carbon emissions from thermokarst ponds results in overestimation of tundra net carbon uptake
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244, https://doi.org/10.5194/bg-19-1225-2022,https://doi.org/10.5194/bg-19-1225-2022, 2022
Short summary
Analyzing links between simulated Laptev Sea sea ice and atmospheric conditions over adjoining landmasses using causal-effect networks
Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach
The Cryosphere, 14, 4201–4215, https://doi.org/10.5194/tc-14-4201-2020,https://doi.org/10.5194/tc-14-4201-2020, 2020
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024,https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024,https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024,https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024,https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024,https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary

Cited articles

Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions, Global Biogeochem. Cy., 26, GB2041, https://doi.org/10.1029/2011GB004237, 2012. a, b
Anderson, L., Birks, J., Rover, J., and Guldager, N.: Controls on recent Alaskan lake changes identified from water isotopes and remote sensing, Geophys. Res. Lett., 40, 3413–3418, https://doi.org/10.1002/grl.50672, 2013. a
Andresen, C. G. and Lougheed, V. L.: Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65year period (1948–2013), J. Geophys. Res.-Biogeo., 120, 466–479, https://doi.org/10.1002/2014jg002778, 2015. a, b, c
Andresen, C. G., Lara, M. J., Tweedie, C. E., and Lougheed, V. L.: Rising plant-mediated methane emissions from arctic wetlands, Global Change Biol., 23, 1128–1139, https://doi.org/10.1111/gcb.13469, 2017. a, b, c, d, e
Bazhin, N. M.: Gas transport in a residual layer of a water basin, Chemosphere, 3, 33–40, https://doi.org/10.1016/S1465-9972(00)00041-6, 2001. a
Download
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Altmetrics
Final-revised paper
Preprint