Articles | Volume 20, issue 15
https://doi.org/10.5194/bg-20-3367-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3367-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mammalian bioturbation amplifies rates of both hillslope sediment erosion and accumulation along the Chilean climate gradient
Paulina Grigusova
CORRESPONDING AUTHOR
Laboratory for Climatology and Remote Sensing, Department of
Geography, University of Marburg, 35037 Marburg, Germany
Annegret Larsen
Soil Geography and Landscape, Department of Environmental Sciences,
Wageningen University and Research, 6700 AA Wageningen, the Netherlands
Roland Brandl
Animal Ecology, Department of Biology, University of Marburg, 35032
Marburg, Germany
Camilo del Río
Facultad de Historia, Geografía y Ciencia Política,
Instituto de Geografía, Pontificia Universidad Católica de Chile,
782-0436 Santiago, Chile
Centro UC Desierto de Atacama, Pontificia Universidad Católica de
Chile, 782-0436 Santiago, Chile
Nina Farwig
Conservation Ecology, Department of Biology, University of Marburg,
35047 Marburg, Germany
Diana Kraus
Conservation Ecology, Department of Biology, University of Marburg,
35047 Marburg, Germany
Leandro Paulino
Facultad de Agronomía, Universidad de Concepción, 3780000
Chillán, Chile
Patricio Pliscoff
Facultad de Historia, Geografía y Ciencia Política,
Instituto de Geografía, Pontificia Universidad Católica de Chile,
782-0436 Santiago, Chile
Facultad de Ciencias Biológicas, Departamento de Ecología,
Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
Center of Applied Ecology and Sustainability (CAPES), Pontificia
Universidad Católica de Chile, 8331150 Santiago, Chile
Jörg Bendix
Laboratory for Climatology and Remote Sensing, Department of
Geography, University of Marburg, 35037 Marburg, Germany
Related authors
Paulina Grigusova, Annegret Larsen, Sebastian Achilles, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, Kirstin Übernickel, and Jörg Bendix
Earth Surf. Dynam., 10, 1273–1301, https://doi.org/10.5194/esurf-10-1273-2022, https://doi.org/10.5194/esurf-10-1273-2022, 2022
Short summary
Short summary
In our study, we developed, tested, and applied a cost-effective time-of-flight camera to autonomously monitor rainfall-driven and animal-driven sediment redistribution in areas affected by burrowing animals with high temporal (four times a day) and spatial (6 mm) resolution. We estimated the sediment redistribution rates on a burrow scale and then upscaled the redistribution rates to entire hillslopes. Our findings can be implemented into long-term soil erosion models.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo de Rio
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-110, https://doi.org/10.5194/hess-2024-110, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water resources are fundamental for social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligates us to find new water resources. Fog harvesting emerges as a complementary one in regions where it is abundant but untapped. This research proposes a model to estimate fog harvesting potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where fog harvesting could be a viable water source.
Juliane Röder, Tim Appelhans, Marcell K. Peters, Thomas Nauss, and Roland Brandl
Web Ecol., 24, 11–33, https://doi.org/10.5194/we-24-11-2024, https://doi.org/10.5194/we-24-11-2024, 2024
Short summary
Short summary
We studied rates of litter decomposition in natural and disturbed vegetation on elevation gradients of Mount Kilimanjaro to disentangle effects of climate and disturbance. Decomposition was slower in disturbed than in natural forests, but we did not find a negative effect of disturbance for non-forest vegetation. Decomposition slowed down with increasing land-use intensity, but only in the warm wet season. Temperature and humidity were the most important drivers of decomposition in all analyses.
Bikem Ekberzade, A. Rita Carrasco, Adam Izdebski, Adriano Sofo, Annegret Larsen, Felicia O. Akinyemi, Viktor J. Bruckman, Noel Baker, Simon Clark, and Chloe Hill
Geosci. Commun., 7, 57–61, https://doi.org/10.5194/gc-7-57-2024, https://doi.org/10.5194/gc-7-57-2024, 2024
Short summary
Short summary
The world is facing a critical issue of biodiversity loss and ecosystem degradation, despite efforts to address it. While positive steps are being taken in the adoption of comprehensive conservation policies, more effective science-for-policy approaches are necessary to foster connectivity, engage communities, and promote transformative change. This study outlines how scientists can drive impactful change within and beyond their communities to contribute to meeting global biodiversity targets.
Diana Kraus, Roland Brandl, Jörg Bendix, Paulina Grigusova, Sabrina Köhler, Annegret Larsen, Patricio Pliscoff, Kirstin Übernickel, and Nina Farwig
EGUsphere, https://doi.org/10.5194/egusphere-2022-1427, https://doi.org/10.5194/egusphere-2022-1427, 2023
Preprint archived
Short summary
Short summary
We investigate the effect of bioturbators on near-surface soil by measuring the physical properties clay, silt and sand and the chemical macronutrients C, N and P for soil samples taken from mounds created via bioturbation and soil samples from surrounding soil as controls in three different climatic regions (arid, semi-arid and Mediterranean) in coastal Chile. Our findings show that already minor input of especially C and N by bioturbators in arid climates can impact ecosystem functioning.
Paulina Grigusova, Annegret Larsen, Sebastian Achilles, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, Kirstin Übernickel, and Jörg Bendix
Earth Surf. Dynam., 10, 1273–1301, https://doi.org/10.5194/esurf-10-1273-2022, https://doi.org/10.5194/esurf-10-1273-2022, 2022
Short summary
Short summary
In our study, we developed, tested, and applied a cost-effective time-of-flight camera to autonomously monitor rainfall-driven and animal-driven sediment redistribution in areas affected by burrowing animals with high temporal (four times a day) and spatial (6 mm) resolution. We estimated the sediment redistribution rates on a burrow scale and then upscaled the redistribution rates to entire hillslopes. Our findings can be implemented into long-term soil erosion models.
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary
Short summary
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
Kirstin Übernickel, Jaime Pizarro-Araya, Susila Bhagavathula, Leandro Paulino, and Todd A. Ehlers
Biogeosciences, 18, 5573–5594, https://doi.org/10.5194/bg-18-5573-2021, https://doi.org/10.5194/bg-18-5573-2021, 2021
Short summary
Short summary
Animal burrowing is important because it impacts the physical and chemical evolution of Earth’s surface. However, most studies are species specific, and compilations of animal community effects are missing. We present an inventory of the currently known 390 burrowing species for all of Chile along its climate gradient. We observed increasing amounts of excavated material from an area with dry conditions along a gradient towards more humid conditions.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-551, https://doi.org/10.5194/hess-2019-551, 2019
Revised manuscript not accepted
Short summary
Short summary
We explored what genetic material collected from water (eDNA) tells us about the flow of mountain streams, which are particularly valuable for habitat and water resources, but highly variable. We saw that when flow increased, more diverse eDNA was transported, especially in the main channel and tributaries. Whereas in the springs, we saw more diverse eDNA when the electrical conductivity of the water increased, likely indicating more underground surface contact.
Daniel Acquah-Lamptey and Roland Brandl
Web Ecol., 18, 81–89, https://doi.org/10.5194/we-18-81-2018, https://doi.org/10.5194/we-18-81-2018, 2018
Short summary
Short summary
In the absence of mosquitoes, diseases such as Malaria and Yellow fever will not exist. Although mosquito larvae have been identified to be a non-selective food to dragonfly larvae, it is unclear if the two naturally co-exist, hence reported as a non-viable strategy for controlling mosquito populations. However, a simple experiment in tropical Africa has shown a significant reduction in mosquitoes following colonization of mosquito larvae habitats by the dragonfly, Bradinopyga strachani.
Jutta Stadler, Stefan Klotz, Roland Brandl, and Sonja Knapp
Web Ecol., 17, 37–46, https://doi.org/10.5194/we-17-37-2017, https://doi.org/10.5194/we-17-37-2017, 2017
Short summary
Short summary
During early succession plant communities show a decrease in the initial species richness and a change in the phylogenetic structure from random or clustered to overdispersion. We tested this general model in two regional distinct sites. In one region we found the expected trajectory of species richness while phylogenetic structure did not follow the expected trend. In the other region species richness did not follow the expected trajectory and phylogenetic structure remained clustered.
Martin Brändle, Jan Sauer, Lars Opgenoorth, and Roland Brandl
Web Ecol., 17, 29–35, https://doi.org/10.5194/we-17-29-2017, https://doi.org/10.5194/we-17-29-2017, 2017
N. Wolf, A. Siegmund, C. del Río, P. Osses, and J. L. García
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B2, 251–256, https://doi.org/10.5194/isprs-archives-XLI-B2-251-2016, https://doi.org/10.5194/isprs-archives-XLI-B2-251-2016, 2016
G. H. Kagezi, M. Kaib, P. Nyeko, C. Bakuneeta, M. Schädler, J. Stadler, and R. Brandl
Web Ecol., 16, 51–58, https://doi.org/10.5194/we-16-51-2016, https://doi.org/10.5194/we-16-51-2016, 2016
Short summary
Short summary
Tropical forests are faced with a loss of forest cover with effects on ecosystem processes. We quantified decomposition within forest fragments and sites affected by increasing levels of agricultural land-use intensity. Mass loss increased with the area of forest fragments and decreased with land-use intensification. Fragmentation has negative effects on litter decomposition. However, the magnitude of this negative effect was not as large as expected.
H. Ruhnke, D. Matthies, and R. Brandl
Web Ecol., 13, 79–84, https://doi.org/10.5194/we-13-79-2013, https://doi.org/10.5194/we-13-79-2013, 2013
Related subject area
Biogeophysics: Bioturbation
Bottom fishery impact generates tracer peaks easily confused with bioturbation traces in marine sediments
Reviews and syntheses: Composition and characteristics of burrowing animals along a climate and ecological gradient, Chile
Macrofaunal burrowing enhances deep-sea carbonate lithification on the Southwest Indian Ridge
The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau
Fossilized bioelectric wire – the trace fossil Trichichnus
Thin terrestrial sediment deposits on intertidal sandflats: effects on pore-water solutes and juvenile bivalve burial behaviour
Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications
Coupling bioturbation activity to metal (Fe and Mn) profiles in situ
Stefan Forster, Claudia Runkel, Josephin Lemke, Laura Pülm, and Martin Powilleit
Biogeosciences, 21, 1973–1984, https://doi.org/10.5194/bg-21-1973-2024, https://doi.org/10.5194/bg-21-1973-2024, 2024
Short summary
Short summary
During an investigation on the effects of bottom trawling, we found that otter boards which keep nets open bury surface sediment at a few centimeters of sediment depth. This is also done by animals living in the sediment (bioturbation), a process that is considered very important for sediment ecosystem integrity. We try to differentiate between the two and estimate that natural bioturbation is much more likely than otter board sediment reversal in our investigation area.
Kirstin Übernickel, Jaime Pizarro-Araya, Susila Bhagavathula, Leandro Paulino, and Todd A. Ehlers
Biogeosciences, 18, 5573–5594, https://doi.org/10.5194/bg-18-5573-2021, https://doi.org/10.5194/bg-18-5573-2021, 2021
Short summary
Short summary
Animal burrowing is important because it impacts the physical and chemical evolution of Earth’s surface. However, most studies are species specific, and compilations of animal community effects are missing. We present an inventory of the currently known 390 burrowing species for all of Chile along its climate gradient. We observed increasing amounts of excavated material from an area with dry conditions along a gradient towards more humid conditions.
Hengchao Xu, Xiaotong Peng, Shun Chen, Jiwei Li, Shamik Dasgupta, Kaiwen Ta, and Mengran Du
Biogeosciences, 15, 6387–6397, https://doi.org/10.5194/bg-15-6387-2018, https://doi.org/10.5194/bg-15-6387-2018, 2018
Short summary
Short summary
Processes involved in the formation of deep-sea carbonate rocks remain controversial. It is reported in present study that macrofaunal burrowing may trigger the dissolution of the original calcite above the saturation horizon and thus drive deep-sea carbonate lithification on mid-ocean ridges. The novel mechanism proposed here for nonburial carbonate lithification at the deep-sea seafloor sheds light on the potential interactions between deep-sea biota and sedimentary rocks.
Shuhua Yi, Jianjun Chen, Yu Qin, and Gaowei Xu
Biogeosciences, 13, 6273–6284, https://doi.org/10.5194/bg-13-6273-2016, https://doi.org/10.5194/bg-13-6273-2016, 2016
Short summary
Short summary
Plateau pika is common on the Qinghai-Tibet Plateau (QTP). Since pika dig burrows and graze on grassland to compete with yaks and sheep, they are believed to be a pest. They have been killed by humans since the 1950s. However, there are no serious studies that quantitatively evaluate the grazing and excavating effects of pika on grassland. With the advancement of UAV technology, we did a pilot study to evaluate the grazing and burying effects of pika.
M. Kędzierski, A. Uchman, Z. Sawlowicz, and A. Briguglio
Biogeosciences, 12, 2301–2309, https://doi.org/10.5194/bg-12-2301-2015, https://doi.org/10.5194/bg-12-2301-2015, 2015
Short summary
Short summary
In our study we propose new interpretation of commonly found trace fossil of genus Trichichnus which can be regarded as a fossilised bacterial mat system produced by giant sulphur bacteria related to genus Thioploca. We suggest that the bioelectrical processes may occur during some stages of live and/or post-mortem history of Thioploca-housed bacterial consortium. This greatly improves our understaniding of initial colonization of the marine sea floor after improvements of oxygenation.
A. Hohaia, K. Vopel, and C. A. Pilditch
Biogeosciences, 11, 2225–2235, https://doi.org/10.5194/bg-11-2225-2014, https://doi.org/10.5194/bg-11-2225-2014, 2014
P. Stief
Biogeosciences, 10, 7829–7846, https://doi.org/10.5194/bg-10-7829-2013, https://doi.org/10.5194/bg-10-7829-2013, 2013
L. R. Teal, E. R. Parker, and M. Solan
Biogeosciences, 10, 2365–2378, https://doi.org/10.5194/bg-10-2365-2013, https://doi.org/10.5194/bg-10-2365-2013, 2013
Cited articles
Anderson, R. S., Rajaram, H., and Anderson, S. P.: Climate driven
coevolution of weathering profiles and hillslope topography generates
dramatic differences in critical zone architecture, Hydrol. Process., 33,
4–19, https://doi.org/10.1002/hyp.13307, 2019.
Beasley, D. B., Huggins, L. F., and Monke, E. J.: ANSWERS: A Model for
Watershed Planning, T. ASAE, 23, 938–944,
https://doi.org/10.13031/2013.34692, 1980.
Bernhard, N., Moskwa, L.-M., Schmidt, K., Oeser, R. A., Aburto, F., Bader,
M. Y., Baumann, K., Blanckenburg, F. von, Boy, J., van den Brink, L.,
Brucker, E., Büdel, B., Canessa, R., Dippold, M. A., Ehlers, T. A.,
Fuentes, J. P., Godoy, R., Jung, P., Karsten, U., Köster, M., Kuzyakov,
Y., Leinweber, P., Neidhardt, H., Matus, F., Mueller, C. W., Oelmann, Y.,
Oses, R., Osses, P., Paulino, L., Samolov, E., Schaller, M., Schmid, M.,
Spielvogel, S., Spohn, M., Stock, S., Stroncik, N., Tielbörger, K.,
Übernickel, K., Scholten, T., Seguel, O., Wagner, D., and Kühn, P.:
Pedogenic and microbial interrelations to regional climate and local
topography: New insights from a climate gradient (arid to humid) along the
Coastal Cordillera of Chile, CATENA, 170, 335–355,
https://doi.org/10.1016/j.catena.2018.06.018, 2018.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology/Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci.
Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Black, T. A. and Montgomery, D. R.: Sediment transport by burrowing mammals,
Marin County, California, Earth Surf. Proc. Land., 16, 163–172,
https://doi.org/10.1002/esp.3290160207, 1991.
Boudreau, B. P.: Mathematics of tracer mixing in sediments; I,
Spatially-dependent, diffusive mixing, Am. J. Sci., 286,
161–198, https://doi.org/10.2475/ajs.286.3.161, 1986.
Boudreau, B. P.: The diffusion and telegraph equations in diagenetic
modelling, Geochim. Cosmochim. Ac., 53, 1857–1866,
https://doi.org/10.1016/0016-7037(89)90306-2, 1989.
Braun, J., Mercier, J., Guillocheau, F., and Robin, C.: A simple model for
regolith formation by chemical weathering, J. Geophys. Res.-Earth,
121, 2140–2171, https://doi.org/10.1002/2016JF003914, 2016.
Brosens, L., Campforts, B., Robinet, J., Vanacker, V., Opfergelt, S.,
Ameijeiras-Mariño, Y., Minella, J. P. G., and Govers, G.: Slope Gradient
Controls Soil Thickness and Chemical Weathering in Subtropical Brazil:
Understanding Rates and Timescales of Regional Soilscape Evolution Through a
Combination of Field Data and Modeling, J. Geophys. Res.-Earth, 125, 5, https://doi.org/10.1029/2019JF005321, 2020.
Carretier, S., Goddéris, Y., Delannoy, T., and Rouby, D.: Mean
bedrock-to-saprolite conversion and erosion rates during mountain growth and
decline, Geomorphology, 209, 39–52,
https://doi.org/10.1016/j.geomorph.2013.11.025, 2014.
Cerqueira, R.: The Distribution of Didelphis in South America
(Polyprotodontia, Didelphidae), J. Biogeogr., 12, 135–145,
https://doi.org/10.2307/2844837, 1985.
Chen, M., Ma, L., Shao, M.'a., Wei, X., Jia, Y., Sun, S., Zhang, Q., Li, T.,
Yang, X., and Gan, M.: Chinese zokor (Myospalax fontanierii) excavating
activities lessen runoff but facilitate soil erosion – A simulation
experiment, CATENA, 202, 105248,
https://doi.org/10.1016/j.catena.2021.105248, 2021.
Choi, K., Arnhold, S., Huwe, B., and Reineking, B.: Daily Based
Morgan–Morgan–Finney (DMMF) Model: A Spatially Distributed Conceptual Soil
Erosion Model to Simulate Complex Soil Surface Configurations, Water, 9,
278, https://doi.org/10.3390/w9040278, 2017.
Cohen, S., Willgoose, G., and Hancock, G.: The mARM3D spatially distributed
soil evolution model: Three-dimensional model framework and analysis of
hillslope and landform responses, J. Geophys. Res., 115, 191,
https://doi.org/10.1029/2009JF001536, 2010.
Cohen, S., Willgoose, G., Svoray, T., Hancock, G., and Sela, S.: The effects
of sediment transport, weathering, and aeolian mechanisms on soil evolution,
J. Geophys. Res.-Earth, 120, 260–274,
https://doi.org/10.1002/2014JF003186, 2015.
Coombes, M. A.: Biogeomorphology: diverse, integrative and useful, Earth
Surf. Proc. Land., 41, 2296–2300, https://doi.org/10.1002/esp.4055,
2016.
Corenblit, D., Corbara, B., and Steiger, J.: Biogeomorphological
eco-evolutionary feedback between life and geomorphology: a theoretical
framework using fossorial mammals, Naturwissenschaften, 108, 55
https://doi.org/10.1007/s00114-021-01760-y, 2021.
Debruyn, L. A. L. and Conacher, A. J.: The bioturbation activity of ants in
agricultural and naturally vegetated habitats in semiarid environments, Soil
Res., 32, 555–570, https://doi.org/10.1071/SR9940555, 1994.
Devia, G. K., Ganasri, B. P., and Dwarakish, G. S.: A Review on Hydrological
Models, Aquat. Pr., 4, 1001–1007,
https://doi.org/10.1016/j.aqpro.2015.02.126, 2015.
Durner, W., Iden, S. C., and von Unold, G.: The integral suspension pressure
method (ISP) for precise particle-size analysis by gravitational
sedimentation, Water Resour. Res., 53, 33–48,
https://doi.org/10.1002/2016WR019830, 2017.
Eccard, J. A. and Herde, A.: Seasonal variation in the behaviour of a
short-lived rodent, BMC Ecol., 13, 43,
https://doi.org/10.1186/1472-6785-13-43, 2013.
Ferro, L. I. and Barquez, R. M.: Species Richness of Nonvolant Small Mammals
Along Elevational Gradients in Northwestern Argentina, Biotropica, 41,
759–767, https://doi.org/10.1111/j.1744-7429.2009.00522.x, 2009.
Foster, D. W.: BIOTURB: A FORTRAN program to simulate the effects of
bioturbation on the vertical distribution of sediment, Comput.
Geosci., 11, 39–54, https://doi.org/10.1016/0098-3004(85)90037-8, 1985.
François, F., Poggiale, J.-C., Durbec, J.-P., and Stora, G.: A New
Approach for the Modelling of Sediment Reworking Induced by a Macrobenthic
Community, Acta Biotheor., 45, 295–319,
https://doi.org/10.1023/A:1000636109604, 1997.
Gabet, E. J.: Gopher bioturbation: field evidence for non-linear hillslope
diffusion, Earth Surf. Proc. Land., 25, 1419–1428, 2000.
Gabet, E. J., Reichman, O. J., and Seabloom, E. W.: The Effects of
Bioturbation on Soil Processes and Sediment Transport, Annu. Rev. Earth
Pl. Sci., 31, 249–273,
https://doi.org/10.1146/annurev.earth.31.100901.141314, 2003.
Gabet, E. J., Perron, J. T., and Johnson, D. L.: Biotic origin for Mima
mounds supported by numerical modeling, Geomorphology, 206, 58–66,
https://doi.org/10.1016/j.geomorph.2013.09.018, 2014.
Goslee, S. C.: Topographic Corrections of Satellite Data for Regional Monitoring, Photogr. Remote Sens., 78, 973–981, https://doi.org/10.14358/PERS.78.9.973, 2012.
Gray, H. J., Keen-Zebert, A., Furbish, D. J., Tucker, G. E., and Mahan, S.
A.: Depth-dependent soil mixing persists across climate zones, P. Natl. Acad. Sci. USA, 117,
8750–8756, https://doi.org/10.1073/pnas.1914140117., 2020.
Grigusova, P.: Soil properties along Chilean climate gradient, [data set], https://doi.org/10.5678/wsrb-9f70, https://vhrz669.hrz.uni-marburg.de/lcrs/data_pre.do?citid=523, last access: 3 August 2023a.
Grigusova, P.: Modelled sediment redistribution along climate gradient, [data set], https://doi.org/10.5678/32wa-d179, https://lcrs.geographie.uni-marburg.de/lcrs/data_pre.do;jsessionid=22F870744C71E3DAB58C6201A5026656?citid=521, last access: 3 August 2023b.
Grigusova, P.: Model sediment redistribution caused by bioturbating animals, [code], https://gitlab.uni-marburg.de/fb19/ag-bendix/model-sediment-redistribution-caused-by-bioturbating-animals, last access: 3 August 2023c.
Grigusova, P., Larsen, A., Achilles, S., Klug, A., Fischer, R., Kraus, D.,
Übernickel, K., Paulino, L., Pliscoff, P., Brandl, R., Farwig, N., and
Bendix, J.: Area-Wide Prediction of Vertebrate and Invertebrate Hole Density
and Depth across a Climate Gradient in Chile Based on UAV and Machine
Learning, Drones, 5, 86, https://doi.org/10.3390/drones5030086, 2021.
Grigusova, P., Larsen, A., Achilles, S., Brandl, R., del Río, C.,
Farwig, N., Kraus, D., Paulino, L., Pliscoff, P., Übernickel, K., and
Bendix, J.: Higher sediment redistribution rates related to burrowing
animals than previously assumed as revealed by time-of-flight-based
monitoring, Earth Surf. Dynam., 10, 1273–1301,
https://doi.org/10.5194/esurf-10-1273-2022, 2022.
Hakonson, T. E.: The Effects of Pocket Gopher Burrowing on Water Balance and
Erosion from Landfill Covers, J. Environ. Qual., 28, 659–665,
https://doi.org/10.2134/jeq1999.00472425002800020033x, 1999.
Hall, K., Boelhouwers, J., and Driscoll, K.: Animals as Erosion Agents in
the Alpine Zone: Some Data and Observations from Canada, Lesotho, and Tibet,
Arct. Antarct. Alp. Res., 31, 436–446,
https://doi.org/10.1080/15230430.1999.12003328, 1999.
Hancock, G. and Lowry, J.: Quantifying the influence of rainfall, vegetation
and animals on soil erosion and hillslope connectivity in the monsoonal
tropics of northern Australia, Earth Surf. Proc. Land., 46,
2110–2123, https://doi.org/10.1002/esp.5147, 2021.
Hazelhoff, L., van Hoof, P., Imeson, A. C., and Kwaad, F. J. P. M.: The
exposure of forest soil to erosion by earthworms, Earth Surf. Proc.
Land., 6, 235–250, https://doi.org/10.1002/esp.3290060305, 1981.
Horn, B. K. P.: Hill shading and the reflectance map, Proc. IEEE, 69, 14–47,
https://doi.org/10.1109/PROC.1981.11918, 1981.
Imeson, A. C. and Kwaad, F. J. P. M.: Some Effects of Burrowing Animals on
Slope Processes in the Luxembourg Ardennes, Geografiska Annaler: Series A,
Phys. Geogr., 58, 317–328,
https://doi.org/10.1080/04353676.1976.11879941, 1976.
Istanbulluoglu, E.: Vegetation-modulated landscape evolution: Effects of
vegetation on landscape processes, drainage density, and topography, J.
Geophys. Res., 110, 11, https://doi.org/10.1029/2004JF000249, 2005.
Jimenez, J. E., Feinsinger, P., and Jaksi, F. M.: Spatiotemporal Patterns of
an Irruption and Decline of Small Mammals in Northcentral Chile, J.
Mammal., 73, 356–364, https://doi.org/10.2307/1382070, 1992.
Jong, S. M. de, Paracchini, M. L., Bertolo, F., Folving, S., Megier, J., and
de Roo, A. P. J.: Regional assessment of soil erosion using the distributed
model SEMMED and remotely sensed data, CATENA, 37, 291–308,
https://doi.org/10.1016/S0341-8162(99)00038-7, 1999.
Jumars, P. A., Nowell, A. R. M., and Self, R. F. L.: A simple model of
flow – Sediment – Organism interaction, Mar. Geol., 42, 155–172,
https://doi.org/10.1016/0025-3227(81)90162-6, 1981.
Kadko, D. and Heath, G. R.: Models of depth-dependent bioturbation at MANOP
Site H in the eastern equatorial Pacific, J. Geophys. Res., 89, 6567,
https://doi.org/10.1029/JC089iC04p06567, 1984.
Katzman, E. A., Zaytseva, E. A., Feoktistova, N. Y., Tovpinetz, N. N.,
Bogomolov, P. L., Potashnikova, E. V., and Surov, A. V.: Seasonal Changes in
Burrowing of the Common Hamster (Cricetus cricetus L., 1758) (Rodentia:
Cricetidae) in the City, Povolzhskiy Journal of Ecology, 17, 251–258,
https://doi.org/10.18500/1684-7318-2018-3-251-258, 2018.
Kinlaw, A. and Grasmueck, M.: Evidence for and geomorphologic consequences
of a reptilian ecosystem engineer: The burrowing cascade initiated by the
Gopher Tortoise, Geomorphology, 157/158, 108–121,
https://doi.org/10.1016/j.geomorph.2011.06.030, 2012.
Kirols, H. S., Kevorkov, D., Uihlein, A., and Medraj, M.: The effect of
initial surface roughness on water droplet erosion behaviour, Wear, 342/343,
198–209, https://doi.org/10.1016/j.wear.2015.08.019, 2015.
Kraus, D., Brandl, R., Achilles, S., Bendix, J., Grigusova, P., Larsen, A.,
Pliscoff, P., Übernickel, K., and Farwig, N.: Vegetation and vertebrate
abundance as drivers of bioturbation patterns along a climate gradient, Plos
One, 17, e0264408, https://doi.org/10.1371/journal.pone.0264408, 2022.
Kuhn, W.: Bioerosion auf Rhyolith im westlichen Mainzer Becken, Mainzer geowissenschaftliche Mitteilungen, 44, 63–72, https://doi.org/10.23689/fidgeo-5495, 2016.
Kügler, M., Hoffmann, T. O., Beer, A. R., Übernickel, K., Ehlers, T.
A., Scherler, D., and Eichel, J.: (LiDAR) 3D Point Clouds and Topographic
Data from the Chilean Coastal Cordillera, https://doi.org/10.5880/fidgeo.2022.002, 2022.
La Croix, A. D., Gingras, M. K., Dashtgard, S. E., and Pemberton, S. G.:
Computer modeling bioturbation: The creation of porous and permeable
fluid-flow pathways, Bulletin, 96, 545–556,
https://doi.org/10.1306/07141111038, 2012.
Larsen, A., Nardin, W., Lageweg, W. I., and Bätz, N.: Biogeomorphology,
quo vadis? On processes, time, and space in biogeomorphology, Earth Surf.
Proc. Land., 46, 12–23, https://doi.org/10.1002/esp.5016, 2021.
Le Hir, P., Monbet, Y., and Orvain, F.: Sediment erodability in sediment
transport modelling: Can we account for biota effects?, Cont. Shelf
Res., 27, 1116–1142, https://doi.org/10.1016/j.csr.2005.11.016, 2007.
Lehnert, L. W., Thies, B., Trachte, K., Achilles, S., Osses, P., Baumann,
K., Schmidt, J., Samolov, E., Jung, P., Leinweber, P., Karsten, U.,
Büdel, B., and Bendix, J.: A Case Study on Fog/Low Stratus Occurrence at
Las Lomitas, Atacama Desert (Chile) as a Water Source for Biological Soil
Crusts, Aerosol Air Qual. Res., 18, 254–269,
https://doi.org/10.4209/aaqr.2017.01.0021, 2018.
Li, G., Li, X., Li, J., Chen, W., Zhu, H., Zhao, J., and Hu, X.: Influences
of Plateau Zokor Burrowing on Soil Erosion and Nutrient Loss in Alpine
Meadows in the Yellow River Source Zone of West China, Water, 11, 2258,
https://doi.org/10.3390/w11112258, 2019.
Li, T., Shao, M.'a., Jia, Y., Jia, X., and Huang, L.: Small-scale
observation on the effects of the burrowing activities of mole crickets on
soil erosion and hydrologic processes, Agriculture, Ecosyst.
Environ., 261, 136–143, https://doi.org/10.1016/j.agee.2018.04.010,
2018.
Li, T. C., Shao, M. A., Jia, Y. H., Jia, X. X., Huang, L. M., and Gan, M.:
Small-scale observation on the effects of burrowing activities of ants on
soil hydraulic processes, Eur. J. Soil Sci., 70, 236–244,
https://doi.org/10.1111/ejss.12748, 2019.
Li, Z. and Zhang, J.: Calculation of Field Manning's Roughness Coefficient,
Agr. Water Manag., 49, 153–161,
https://doi.org/10.1016/S0378-3774(00)00139-6, 2001.
Lilhare, R., Garg, V., and Nikam, B. R.: Application of GIS-Coupled Modified
MMF Model to Estimate Sediment Yield on a Watershed Scale, J. Hydrol. Eng.,
20, 1443–1459, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001063, 2015.
López-Vicente, M., Navas, A., and Machín, J.: Modelling soil
detachment rates in rainfed agrosystems in the south-central Pyrenees,
Agr. Water Manag., 95, 1079–1089,
https://doi.org/10.1016/j.agwat.2008.04.004, 2008.
Malizia, A. I.: Population dynamics of the fossorial rodent Ctenomys talarum
(Rodentia: Octodontidae), J. Zool., 244, 545–551,
https://doi.org/10.1111/j.1469-7998.1998.tb00059.x, 1998.
Meserve, P. L.: Trophic Relationships among Small Mammals in a Chilean
Semiarid Thorn Scrub Community, J. Mammal., 62, 304–314,
https://doi.org/10.2307/1380707, 1981.
Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., and Nauss, T.: Improving
performance of spatio-temporal machine learning models using forward feature
selection and target-oriented validation, Environ. Model.
Softw., 101, 1–9, https://doi.org/10.1016/j.envsoft.2017.12.001, 2018.
Meysman, F. J. R., Boudreau, B. P., and Middelburg, J. J.: Relations between
local, nonlocal, discrete and continuous models of bioturbation, J. Mar. Res.,
61, 391–410, https://doi.org/10.1357/002224003322201241, 2003.
Meysman, F. J. R., Boudreau, B. P., und Middelburg, J. J.: Modeling reactive transport in sediments subject to bioturbation and compaction, Geochim. Cosmochim. Ac., 69, 3601–3617, https://doi.org/10.1016/j.gca.2005.01.004, 2005.
Milstead, W. B., Meserve, P. L., Campanella, A., Previtali, M. A., Kelt, D.
A., and Gutiérrez, J. R.: Spatial Ecology of Small Mammals in
North-central Chile: Role of Precipitation and Refuges, J.
Mammal., 88, 1532–1538, https://doi.org/10.1644/16-MAMM-A-407R.1, 2007.
Monteverde, M. J. and Piudo, L.: Activity Patterns of the Culpeo Fox
(Lycalopex Culpaeus Magellanica ) in a Non-Hunting Area of Northwestern
Patagonia, Argentina, Mamm. Study, 36, 119–125,
https://doi.org/10.3106/041.036.0301, 2011.
Morgan, R. P. C. and Duzant, J. H.: Modified MMF (Morgan–Morgan–Finney)
model for evaluating effects of crops and vegetation cover on soil erosion,
Earth Surf. Proc. Land., 33, 90–106,
https://doi.org/10.1002/esp.1530, 2008.
Morgan, R. P. C.: A simple approach to soil loss prediction: a revised
Morgan–Morgan–Finney model, CATENA, 44, 305–322,
https://doi.org/10.1016/S0341-8162(00)00171-5, 2001.
Morgan, R. P. C., Morgan, D. D. V., and Finney, H. J.: A predictive model for
the assessment of soil erosion risk, J. Agr. Eng.
Res., 30, 245–253, https://doi.org/10.1016/S0021-8634(84)80025-6, 1984.
Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W.
A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E.: The European
Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment
transport from fields and small catchments, Earth Surf. Proc. Land.,
23, 527–544, https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527:AID-ESP868>3.0.CO;2-5, 1998.
Morris, J. E., Hampson, G. J., und Johnson, H. D.: A sequence stratigraphic model for an intensely bioturbated shallow-marine sandstone: the Bridport Sand Formation, Wessex Basin, UK, Sedimentology, 53, 1229–1263, https://doi.org/10.1111/j.1365-3091.2006.00811.x, 2006.
Nearing, M. A., Foster, G. R., Lane, L. J., and Finkner, S. C.: A
Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project
Technology, T. ASAE, 32, 1587–1593,
https://doi.org/10.13031/2013.31195, 1989.
Nkem, J. N., Lobry de Bruyn, L. A., Grant, C. D., and Hulugalle, N. R.: The
impact of ant bioturbation and foraging activities on adjacent soil
properties, Pedobiologia, 44, 609–621,
https://doi.org/10.1078/S0031-4056(04)70075-X, 2000.
Oeser, R. A., Stroncik, N., Moskwa, L.-M., Bernhard, N., Schaller, M.,
Canessa, R., van den Brink, L., Köster, M., Brucker, E., Stock, S.,
Fuentes, J. P., Godoy, R., Matus, F. J., Oses Pedraza, R., Osses McIntyre,
P., Paulino, L., Seguel, O., Bader, M. Y., Boy, J., Dippold, M. A., Ehlers,
T. A., Kühn, P., Kuzyakov, Y., Leinweber, P., Scholten, T., Spielvogel,
S., Spohn, M., Übernickel, K., Tielbörger, K., Wagner, D., and
Blanckenburg, F. von: Chemistry and microbiology of the Critical Zone along
a steep climate and vegetation gradient in the Chilean Coastal Cordillera,
CATENA, 170, 183–203, https://doi.org/10.1016/j.catena.2018.06.002, 2018.
Orvain, F.: A model of sediment transport under the influence of surface bioturbation: generalisation to the facultative suspension-feeder Scrobicularia plana, Mar. Ecol. Prog. Ser., 286, 43–56, https://doi.org/10.3354/meps286043, 2005.
Orvain, F., Le Hir, P., und Sauriau, P.-G.: A model of fluff layer erosion and subsequent bed erosion in the presence of the bioturbator, Hydrobia ulvae, J. Mar. Res., 61, 821–849, https://doi.org/10.1357/002224003322981165, 2003.
Orvain, F., Sauriau, P.-G., Bacher, C., and Prineau, M.: The influence of
sediment cohesiveness on bioturbation effects due to Hydrobia ulvae on the
initial erosion of intertidal sediments: A study combining flume and model
approaches, J. Sea Res., 55, 54–73,
https://doi.org/10.1016/j.seares.2005.10.002, 2006.
Pelletier, J. D., Barron-Gafford, G. A., Breshears, D. D., Brooks, P. D.,
Chorover, J., Durcik, M., Harman, C. J., Huxman, T. E., Lohse, K. A.,
Lybrand, R., Meixner, T., McIntosh, J. C., Papuga, S. A., Rasmussen, C.,
Schaap, M., Swetnam, T. L., and Troch, P. A.: Coevolution of nonlinear
trends in vegetation, soils, and topography with elevation and slope aspect:
A case study in the sky islands of southern Arizona, J. Geophys. Res.-Earth, 118, 741–758, https://doi.org/10.1002/jgrf.20046, 2013.
Penman, H.: Natural evaporation from open water, hare soil and grass,
Proc. Roy. Soc. Lond. Ser. A, 193, 120–145, https://doi.org/10.1098/rspa.1948.0037,
1948.
Pollacco, J. A. P.: A generally applicable pedotransfer function that
estimates field capacity and permanent wilting point from soil texture and
bulk density, Can. J. Soil. Sci., 88, 761–774,
https://doi.org/10.4141/CJSS07120, 2008.
Qin, Y., Yi, S., Ding, Y., Qin, Y., Zhang, W., Sun, Y., Hou, X., Yu, H.,
Meng, B., Zhang, H., Chen, J., and Wang, Z.: Effects of plateau pikas'
foraging and burrowing activities on vegetation biomass and soil organic
carbon of alpine grasslands, Plant Soil, 458, 201–216,
https://doi.org/10.1007/s11104-020-04489-1, 2021.
Rakotomalala, C., Grangeré, K., Ubertini, M., Forêt, M. und Orvain, F.: Modelling the effect of Cerastoderma edule bioturbation on microphytobenthos resuspension towards the planktonic food web of estuarine ecosystem, Ecol. Modell., 316, 155–167, https://doi.org/10.1016/j.ecolmodel.2015.08.010, 2015.
Reichman, O. J. and Seabloom, E. W.: The role of pocket gophers as
subterranean ecosystem engineers, Trend. Ecol. Evol., 17,
44–49, https://doi.org/10.1016/S0169-5347(01)02329-1, 2002.
Renard, K., Foster, G., Weesies, G., and Porter, J.: RUSLE: The Revised
Universal Soil Loss Equation, J. Soil Water Conserv., 46, 30–33,
1991.
Ridd, P. V.: Flow Through Animal Burrows in Mangrove Creeks, Estuar.
Coast. Shelf Sci., 43, 617–625,
https://doi.org/10.1006/ecss.1996.0091, 1996.
Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Afana, A., and
Solé-Benet, A.: Effects of biological soil crusts on surface roughness
and implications for runoff and erosion, Geomorphology, 145/146, 81–89,
https://doi.org/10.1016/j.geomorph.2011.12.042, 2012.
Román-Sánchez, A., Reimann, T., Wallinga, J., and Vanwalleghem, T.:
Bioturbation and erosion rates along the soil-hillslope conveyor belt, part
1: Insights from single-grain feldspar luminescence, Earth Surf. Proc.
Land., 44, 2051–2065, https://doi.org/10.1002/esp.4628, 2019.
Roo, A. P. J. De, Wesseling, C. G., and Ritsema, C. J.: lisem: a
single-event physically based hydrological and soil erosion model for
drainage basins, I: theory, input and output, Hydrol. Process., 10,
1107–1117, https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1107:AID-HYP415>3.0.CO;2-4, 1996.
Rutin, J.: The burrowing activity of scorpions (Scorpio maurus palmatus) and
their potential contribution to the erosion of Hamra soils in Karkur,
central Israel, Geomorphology, 15, 159–168,
https://doi.org/10.1016/0169-555X(95)00120-T, 1996.
Sanford, L. P.: Modeling a dynamically varying mixed sediment bed with
erosion, deposition, bioturbation, consolidation, and armoring, Comput.
Geosci., 34, 1263–1283,
https://doi.org/10.1016/j.cageo.2008.02.011, 2008.
Schiffers, K., Teal, L. R., Travis, J. M. J., and Solan, M.: An open source
simulation model for soil and sediment bioturbation, Plos One, 6, e28028,
https://doi.org/10.1371/journal.pone.0028028, 2011.
Shannon, C. E.: A Mathematical Theory of Communication, Bell Syst.
Tech. J., 27, 379–423,
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948.
Shull, D. H.: Transition-matrix model of bioturbation and radionuclide
diagenesis, Limnol. Oceanogr., 46, 905–916,
https://doi.org/10.4319/lo.2001.46.4.0905, 2001.
Simonetti, J. A.: Microhabitat Use by Small Mammals in Central Chile, Oikos,
56, 309–318, https://doi.org/10.2307/3565615, 1989.
Soetaert, K., Herman, P. M. J., Middelburg, J. J., Heip, C., deStigter, H.
S., van Weering, T. C. E., Epping, E., and Helder, W.: Modeling
210Pb-derived mixing activity in ocean margin sediments: Diffusive
versus nonlocal mixing, J. Mar. Res., 54, 1207–1227,
https://doi.org/10.1357/0022240963213808, 1996.
Taylor, A. R., Lenoir, L., Vegerfors, B., and Persson, T.: Ant and Earthworm
Bioturbation in Cold-Temperate Ecosystems, Ecosystems, 22, 981–994,
https://doi.org/10.1007/s10021-018-0317-2, 2019.
Temme, A. J. A. M. and Vanwalleghem, T.: LORICA – A new model for linking
landscape and soil profile evolution: Development and sensitivity analysis,
Comput. Geosci., 90, 131–143,
https://doi.org/10.1016/j.cageo.2015.08.004, 2016.
Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C.,
Schwager, M., and Jeltsch, F.: Animal species diversity driven by habitat
heterogeneity/diversity: the importance of keystone structures, J.
Biogeogr., 31, 79–92, https://doi.org/10.1046/j.0305-0270.2003.00994.x,
2004.
Tomasella, J., Hodnett, M. G., and Rossato, L.: Pedotransfer Functions for
the Estimation of Soil Water Retention in Brazilian Soils, Soil Sci. Soc.
Am. J., 64, 327–338, https://doi.org/10.2136/sssaj2000.641327x, 2000.
Trauth, M. H.: TURBO: a dynamic-probabilistic simulation to study the
effects of bioturbation on paleoceanographic time series, Comput.
Geosci., 24, 433–441, https://doi.org/10.1016/S0098-3004(98)00019-3,
1998.
Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surf.
Proc. Land., 35, 28–50, https://doi.org/10.1002/esp.1952, 2010.
Übernickel, K., Pizarro-Araya, J., Bhagavathula, S., Paulino, L., and
Ehlers, T. A.: Reviews and syntheses: Composition and characteristics of
burrowing animals along a climate and ecological gradient, Chile,
Biogeosciences, 18, 5573–5594, https://doi.org/10.5194/bg-18-5573-2021,
2021a.
Übernickel, K., Ehlers, T. A., Paulino, L., and Fuentes Espoz, J.-P.:
Time series of meteorological stations on an elevational gradient in
National Park La Campana, Chile, GFZ Data Services, https://doi.org/10.5880/fidgeo.2021.01, 2021b.
Vanwalleghem, T., Stockmann, U., Minasny, B., and McBratney, A. B.: A
quantitative model for integrating landscape evolution and soil formation,
J. Geophys. Res.-Earth, 118, 331–347,
https://doi.org/10.1029/2011JF002296, 2013.
Vieira, D. C. S., Prats, S. A., Nunes, J. P., Shakesby, R. A., Coelho, C. O. A.,
and Keizer, J. J.: Modelling runoff and erosion, and their mitigation, in
burned Portuguese forest using the revised Morgan–Morgan–Finney model,
Forest Ecol. Manag., 314, 150–165,
https://doi.org/10.1016/j.foreco.2013.12.006, 2014.
Vigiak, O., Okoba, B. O., Sterk, G., and Groenenberg, S.: Modelling
catchment-scale erosion patterns in the East African Highlands, Earth Surf.
Proc. Land., 30, 183–196, https://doi.org/10.1002/esp.1174, 2005.
Voiculescu, M., Ianăş, A.-N., and Germain, D.: Exploring the impact
of snow vole (Chionomys nivalis) burrowing activity in the Făgăra?
Mountains, Southern Carpathians (Romania): Geomorphic characteristics and
sediment budget, CATENA, 181, 104070,
https://doi.org/10.1016/j.catena.2019.05.016, 2019.
Wang, B., Zheng, F., Römkens, M. J.M., and Darboux, F.: Soil erodibility
for water erosion: A perspective and Chinese experiences, Geomorphology,
187, 1–10, https://doi.org/10.1016/j.geomorph.2013.01.018, 2013.
Wei, X., Li, S., Yang, P., and Cheng, H.: Soil erosion and vegetation
succession in alpine Kobresia steppe meadow caused by plateau pika – A case
study of Nagqu County, Tibet, Chin. Geograph. Sc., 17, 75–81,
https://doi.org/10.1007/s11769-007-0075-0, 2007.
Welivitiya, W. D. D. P., Willgoose, G. R., and Hancock, G. R.: A coupled
soilscape–landform evolution model: model formulation and initial results,
Earth Surf. Dynam., 7, 591–607, https://doi.org/10.5194/esurf-7-591-2019,
2019.
Wheatcroft, R. A., Jumars, P. A., Smith, C. R., and Nowell, A. R. M.: A
mechanistic view of the particulate biodiffusion coefficient: Step lengths,
rest periods and transport directions, J. Mar. Res., 48, 177–207,
https://doi.org/10.1357/002224090784984560, 1990.
Whitesides, C. J. and Butler, D. R.: Bioturbation by gophers and marmots and
its effects on conifer germination, Earth Surf. Proc. Land., 41,
2269–2281, https://doi.org/10.1002/esp.4046, 2016.
Wilkinson, M. T., Richards, P. J., and Humphreys, G. S.: Breaking ground:
Pedological, geological, and ecological implications of soil bioturbation,
Earth-Sci. Rev., 97, 257–272,
https://doi.org/10.1016/j.earscirev.2009.09.005, 2009.
Williams, J. R. (Ed.): Sediment-yield prediction with Universal Equation
using runoff energy factor. In Present and prospective technology for
predicting sediment yield and sources: Proceedings of the Sediment-Yield
Workshop, ARS-S-40, United States Department of Agriculture (USDA), New
Orleans, USA, 1975.
Wilson, M. F. J., O'Connell, B., Brown, C., Guinan, J. C., and Grehan, A.
J.: Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat
Mapping on the Continental Slope, Mar. Geod., 30, 3–35,
https://doi.org/10.1080/01490410701295962, 2007.
Wischmeier, W. and Smith, D. D.: Predicting rainfall erosion losses – A
guide to conservation planning, Agriculture Handbook, US Department of Agriculture, 1–58, 1978.
Wood, S. N.: Generalized Additive Models, Chapman and Hall/CRC, ISBN 9781315370279, 2006.
Wösten, J. H. M. (Ed.): Soil Quality for Crop Production and Ecosystem
Health, Developments in Soil Science, Elsevier, ISBN: 9780080541402, 1997.
Wu, C., Wu, H., Liu, D., Han, G., Zhao, P., and Kang, Y.: Crab bioturbation
significantly alters sediment microbial composition and function in an
intertidal marsh, Estuar. Coast. Shelf Sci., 249, 107116,
https://doi.org/10.1016/j.ecss.2020.107116, 2021.
Yair, A.: Short and long term effects of bioturbation on soil erosion, water
resources and soil development in an arid environment, Geomorphology, 13,
87–99, https://doi.org/10.1016/0169-555X(95)00025-Z, 1995.
Yoo, K. and Mudd, S. M.: Toward process-based modeling of geochemical soil
formation across diverse landforms: A new mathematical framework, Geoderma,
146, 248–260, https://doi.org/10.1016/j.geoderma.2008.05.029, 2008.
Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E.: Process-based
model linking pocket gopher (Thomomys bottae) activity to sediment transport
and soil thickness, J. Geophys. Res., 33, 917, https://doi.org/10.1130/G21831.1, 2005.
Yu, C., Zhang, J., Pang, X. P., Wang, Q., Zhou, Y. P., and Guo, Z. G.: Soil
disturbance and disturbance intensity: Response of soil nutrient
concentrations of alpine meadow to plateau pika bioturbation in the
Qinghai-Tibetan Plateau, China, Geoderma, 307, 98–106,
https://doi.org/10.1016/j.geoderma.2017.07.041, 2017.
Zevenbergen, L. W. and Thorne, C. R.: Quantitative analysis of land surface
topography, Earth Surf. Proc. Land., 12, 47–56,
https://doi.org/10.1002/esp.3290120107, 1987.
Zhang, Q., Li, J., Hu, G., and Zhang, Z.: Bioturbation potential of a
macrofaunal community in Bohai Bay, northern China, Mar. Pollut.
Bull., 140, 281–286, https://doi.org/10.1016/j.marpolbul.2019.01.063,
2019.
Zhang, S., Fang, X., Zhang, J., Yin, F., Zhang, H., Wu, L., and Kitazawa,
D.: The Effect of Bioturbation Activity of the Ark Clam Scapharca subcrenata
on the Fluxes of Nutrient Exchange at the Sediment-Water Interface, J. Ocean
Univ. China, 19, 232–240, https://doi.org/10.1007/s11802-020-4112-2, 2020.
Short summary
In our study, we included bioturbation into a soil erosion model and ran the model for several years under two conditions: with and without bioturbation. We validated the model using several sediment fences in the field. We estimated the modeled sediment redistribution and surface runoff and the impact of bioturbation on these along a climate gradient. Lastly, we identified environmental parameters determining the positive or negative impact of bioturbation on sediment redistribution.
In our study, we included bioturbation into a soil erosion model and ran the model for several...
Altmetrics
Final-revised paper
Preprint