Articles | Volume 20, issue 18
https://doi.org/10.5194/bg-20-3981-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3981-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London SW7 2BW, UK
Georgina Mace Centre for the Living Planet, Department of Life
Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road,
Ascot SL5 7PY, UK
Iain Colin Prentice
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London SW7 2BW, UK
Georgina Mace Centre for the Living Planet, Department of Life
Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road,
Ascot SL5 7PY, UK
Sandy P. Harrison
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London SW7 2BW, UK
Geography & Environmental Science, University of Reading,
Whiteknights, Reading RG6 6AH, UK
Related authors
Oliver Perkins, Olivia Haas, Matthew Kasoar, Apostolos Voulgarakis, and James D. A. Millington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3728, https://doi.org/10.5194/egusphere-2025-3728, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Humans impact fire indirectly through climate change, but also directly through land use and different fire management strategies. We compare two recently-developed models of global burned area with very different assumptions about the role of direct human impacts on fire. We contrast their future projections and explore the implications of differences between them for climate change adaptation and fire science more broadly.
Oliver Perkins, Olivia Haas, Matthew Kasoar, Apostolos Voulgarakis, and James D. A. Millington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3728, https://doi.org/10.5194/egusphere-2025-3728, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Humans impact fire indirectly through climate change, but also directly through land use and different fire management strategies. We compare two recently-developed models of global burned area with very different assumptions about the role of direct human impacts on fire. We contrast their future projections and explore the implications of differences between them for climate change adaptation and fire science more broadly.
Joseph Ovwemuvwose, Ian Colin Prentice, and Heather Graven
EGUsphere, https://doi.org/10.5194/egusphere-2025-3785, https://doi.org/10.5194/egusphere-2025-3785, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This work examines the role of cropland representation and the treatment of photosynthetic pathways in the uncertainties in the carbon flux simulations in Earth System Models (ESMs). Our results show that reducing these uncertainties will require improvement of the representation of C3 and C4 crops and natural vegetation area coverage as well as the theories underpinning the simulation of their carbon uptake and storage processes.
Amin Hassan, Iain Colin Prentice, and Xu Liang
EGUsphere, https://doi.org/10.5194/egusphere-2025-622, https://doi.org/10.5194/egusphere-2025-622, 2025
Short summary
Short summary
Evapotranspiration (ET) is the evaporation occurring from plants, soil, and water bodies. Separating these components is challenging due to the lack of measurements and uncertainty of existing ET partitioning methods. We propose a method that utilizes hydrological measurements such as streamflow to determine the ratio of transpiration (evaporation from plants) to evapotranspiration. The results provide a better understanding of plant-water interactions and new perspective on a challenging topic.
Kieran M. R. Hunt and Sandy P. Harrison
Clim. Past, 21, 1–26, https://doi.org/10.5194/cp-21-1-2025, https://doi.org/10.5194/cp-21-1-2025, 2025
Short summary
Short summary
In this study, we train machine learning models on tree rings, speleothems, and instrumental rainfall to estimate seasonal monsoon rainfall over India over the last 500 years. Our models highlight multidecadal droughts in the mid-17th and 19th centuries, and we link these to historical famines. Using techniques from explainable AI (artificial intelligence), we show that our models use known relationships between local hydroclimate and the monsoon circulation.
Jierong Zhao, Boya Zhou, Sandy P. Harrison, and I. Colin Prentice
EGUsphere, https://doi.org/10.5194/egusphere-2024-3897, https://doi.org/10.5194/egusphere-2024-3897, 2025
Short summary
Short summary
We used eco-evolutionary optimality modelling to examine how climate and CO2 impacted vegetation at the Last Glacial Maximum (LGM, 21,000 years ago) and the mid-Holocene (MH, 6,000 years ago). Low CO2 at the LGM was as important as climate in reducing tree cover and productivity, and increasing C4 plant abundance. Climate had positive effects on MH vegetation, but the low CO2 was a constraint on plant growth. These results show it is important to consider changing CO2 to model ecosystem changes.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Luke Fionn Sweeney, Sandy P. Harrison, and Marc Vander Linden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1523, https://doi.org/10.5194/egusphere-2024-1523, 2024
Short summary
Short summary
Changes in tree cover across Europe during the Holocene are reconstructed from fossil pollen data using a model developed with modern observations of tree cover and modern pollen assemblages. There is a rapid increase in tree cover after the last glacial with maximum cover during the mid-Holocene and a decline thereafter; the timing of the maximum and the speed of the increase and subsequent decrease vary regionally likely reflecting differences in climate trajectories and human influence.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Mengmeng Liu, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-12, https://doi.org/10.5194/cp-2024-12, 2024
Preprint under review for CP
Short summary
Short summary
Dansgaard-Oeschger events were large and rapid warming events that occurred multiple times during the last ice age. We show that changes in the northern extratropics and the southern extratropics were anti-phased, with warming over most of the north and cooling in the south. The reconstructions do not provide evidence for a change in seasonality in temperature. However, they do indicate that warming was generally accompanied by wetter conditions and cooling by drier conditions.
Huiying Xu, Han Wang, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 4511–4525, https://doi.org/10.5194/bg-20-4511-2023, https://doi.org/10.5194/bg-20-4511-2023, 2023
Short summary
Short summary
Leaf carbon (C) and nitrogen (N) are crucial elements in leaf construction and physiological processes. This study reconciled the roles of phylogeny, species identity, and climate in stoichiometric traits at individual and community levels. The variations in community-level leaf N and C : N ratio were captured by optimality-based models using climate data. Our results provide an approach to improve the representation of leaf stoichiometry in vegetation models to better couple N with C cycling.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Giulia Mengoli, Sandy P. Harrison, and I. Colin Prentice
EGUsphere, https://doi.org/10.5194/egusphere-2023-1261, https://doi.org/10.5194/egusphere-2023-1261, 2023
Preprint archived
Short summary
Short summary
Soil water availability affects plant carbon uptake by reducing leaf area and/or by closing stomata, which reduces its efficiency. We present a new formulation of how climatic dryness reduces both maximum carbon uptake and the soil-moisture threshold below which it declines further. This formulation illustrates how plants adapt their water conservation strategy to thrive in dry climates, and is step towards a better representation of soil-moisture effects in climate models.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Sarah E. Parker, Sandy P. Harrison, Laia Comas-Bru, Nikita Kaushal, Allegra N. LeGrande, and Martin Werner
Clim. Past, 17, 1119–1138, https://doi.org/10.5194/cp-17-1119-2021, https://doi.org/10.5194/cp-17-1119-2021, 2021
Short summary
Short summary
Regional trends in the oxygen isotope (δ18O) composition of stalagmites reflect several climate processes. We compare stalagmite δ18O records from monsoon regions and model simulations to identify the causes of δ18O variability over the last 12 000 years, and between glacial and interglacial states. Precipitation changes explain the glacial–interglacial δ18O changes in all monsoon regions; Holocene trends are due to a combination of precipitation, atmospheric circulation and temperature changes.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Cited articles
Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global emergence of
anthropogenic climate change in fire weather indices, Geophys. Res. Lett., 46, 326–336,
https://doi.org/10.1029/2018GL080959, 2019.
Albani, S., Balkanski, Y., Mahowald, N., Winckler, G., Maggi, V., and
Delmonte, B.: Aerosol-climate interactions during the Last Glacial Maximum,
Current Climate Change Reports, 4, 99–114, https://doi.org/10.1007/s40641-018-0100-7, 2018.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S.,
DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., and Bachelet, D.: A human-driven
decline in global burned area, Science, 356, 1356–1362,
https://doi.org/10.1126/science.aal4108, 2017.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L., and Bradstock, R.
A.: Defining pyromes and global syndromes of fire regimes, P. Natl. Acad. Sci. USA, 110,
6442–6447, https://doi.org/10.1073/pnas.1211466110, 2013.
Balch, J. K., Abatzoglou, J. T., Joseph, M. B., Koontz, M. J., Mahood, A. L.,
McGlinchy, J., Cattau, M. E., and Williams, A. P.: Warming weakens the
night-time barrier to global fire, Nature, 602, 442–448,
https://doi.org/10.1038/s41586-021-04325-1, 2022.
Betts, R. A., Golding, N., Gonzalez, P., Gornall, J., Kahana, R., Kay, G., Mitchell, L., and Wiltshire, A.: Climate and land use change impacts on global terrestrial ecosystems and river flows in the HadGEM2-ES Earth system model using the representative concentration pathways, Biogeosciences, 12, 1317–1338, https://doi.org/10.5194/bg-12-1317-2015, 2015.
Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C.: Causal relationships versus emergent patterns in the global controls of fire frequency, Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, 2014.
Black, M. P., Mooney, S. D., and Haberle, S. G.: The fire, human and climate
nexus in the Sydney Basin, eastern Australia, Holocene, 17, 469–480,
https://doi.org/10.1177/0959683607077024, 2007.
Blinkhorn, J., Timbrell, L., Grove, M., and Scerri, E. M. L.:
Evaluating refugia in recent human evolution in Africa, Philos. T. R. Soc. B,
377, 20200485, https://doi.org/10.1098/rstb.2020.0485, 2022.
Bond, W. J. and Midgley, G. F.: Carbon dioxide and the uneasy interactions
of trees and savannah grasses, Philos. T. R. Soc. B, 367, 601–612,
https://doi.org/10.1098/rstb.2011.0182, 2012.
Bond, W. J., Midgley, G. F., and Woodward, F. I.: The importance of low
atmospheric CO2 and fire in promoting the spread of grasslands and
savannas, Glob. Change Biol., 9, 973–998, https://doi.org/10.1046/j.1365-2486.2003.00577.x,
2003.
Bowman, D. M. J. S.: The impact of Aboriginal landscape burning on the
Australian biota, New Phytol., 140, 385–410,
https://doi.org/10.1046/j.1469-8137.1998.00289.x, 1998.
Bowman, D. M. J. S., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van
der Werf, G. R., and Flannigan, M.: Vegetation fires in the Anthropocene,
Nature Reviews Earth and Environment, 1, 500–515, https://doi.org/10.1038/s43017-020-0085-3, 2020.
Bradstock, R. A.: A biogeographic model of fire regimes in Australia:
current and future implications, Global Ecol. Biogeogr., 19, 145–158,
https://doi.org/10.1111/j.1466-8238.2009.00512.x, 2010.
Bragg, F. J., Prentice, I. C., Harrison, S. P., Eglinton, G., Foster, P. N., Rommerskirchen, F., and Rullkötter, J.: Stable isotope and modelling evidence for CO2 as a driver of glacial–interglacial vegetation shifts in southern Africa, Biogeosciences, 10, 2001–2010, https://doi.org/10.5194/bg-10-2001-2013, 2013.
Buitenwerf, R., Bond, W. J., Stevens, N., and Trollope, W. S. W.: Increased
tree densities in South African savannas: >50 years of data
suggests CO2 as a driver, Glob. Change Biol., 18, 675–684,
https://doi.org/10.1111/j.1365-2486.2011.02561.x, 2012.
Clarke, H., Nolan, R. H., de Dios, V. R., Bradstock, R., Griebel, A.,
Khanal, S., and Boer, M. M.: Forest fire threatens global carbon sinks and
population centres under rising atmospheric water demand, Nat. Commun., 13, 7161,
https://doi.org/10.1038/s41467-022-34966-3, 2022.
Constantine IV, M., Williams, A. N., Francke, A., Cadd, H., Forbes, M.,
Cohen, T. J., Zhu, X., and Mooney, S. D.: Exploration of the burning
question: a long history of fire in eastern Australia with and without
people, Fire, 6, 152, https://doi.org/10.3390/fire6040152, 2023.
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020.
Daniau, A.-L., Bartlein, P. J., Harrison, S. P., Prentice, I. C., Brewer, S.,
Friedlingstein, P., Harrison-Prentice, T. I., Inoue, J., Marlon, J. R.,
Mooney, S., Power, M. J., Stevenson, J., Tinner, W., Andrič, M.,
Atanassova, J., Behling, H., Black, M., Blarquez, O., Brown, K. J.,
Carcaillet, C., Colhoun, E., Colombaroli, D., Davis, B. A. S., D'Costa, D.,
Dodson, J., Dupont, L., Eshetu, Z., Gavin, D. G., Genries, A., Gebru, T.,
Haberle, S., Hallett, D. J., Horn, S., Hope, G., Katamura, F., Kennedy, L.,
Kershaw, P., Krivonogov, S., Long, C., Magri, D., Marinova, E., McKenzie,
G. M., Moreno, P. I., Moss, P., Neumann, F. H., Norström, E., Paitre, C.,
Rius, D., Roberts, N., Robinson, G., Sasaki, N., Scott, L., Takahara, H.,
Terwilliger, V., Thevenon, F., Turner, R. B., Valsecchi, V. G., Vannière,
B., Walsh, M., Williams, N., and Zhang, Y.: Predictability of biomass
burning in response to climate changes, Global Biogeochem. Cy., 26, GB4007,
https://doi.org/10.1029/2011GB004249, 2012.
De Dios, V. R., Hedo, J., Camprubí, À. C., Thapa, P., Del Castillo,
E. M., de Aragón, J. M., Bonet, J. A., Balaguer-Romano, R.,
Díaz-Sierra, R., Yebra, M., and Boer, M. M.: Climate change induced
declines in fuel moisture may turn currently fire-free Pyrenean mountain
forests into fire-prone ecosystems, Sci. Total Environ., 797, 149104,
https://doi.org/10.1016/j.scitotenv.2021.149104, 2021.
De Faria, B. L., Brando, P. M., Macedo, M. N., Panday, P. K., Soares-Filho, B. S.,
and Coe, M. T.: Current and future patterns of fire-induced forest
degradation in Amazonia, Environ. Res. Lett., 12, 095005,
https://doi.org/10.1088/1748-9326/aa69ce, 2017.
Dial, R. J., Maher, C. T., Hewitt, R. E., and Sullivan, P. F.: Sufficient
conditions for rapid range expansion of a boreal conifer, Nature, 608,
546–551, https://doi.org/10.1038/s41586-022-05093-2, 2022.
Diffenbaugh, N. S., Konings, A. G., and Field, C. B.: Atmospheric
variability contributes to increasing wildfire weather but not as much as
global warming, P. Natl. Acad. Sci. USA, 118, e2117876118,
https://doi.org/10.1073/pnas.2117876118, 2021.
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Farquhar, G. D.: Impact
of CO2 fertilization on maximum foliage cover across the globe's warm,
arid environments, Geophys. Res. Lett., 40, 3031–3035. https://doi.org/10.1002/grl.50563, 2013.
Duane, A., Castellnou, M., and Brotons, L.: Towards a comprehensive look at
global drivers of novel extreme wildfire events, Climatic Change, 165, 43,
https://doi.org/10.1007/s10584-021-03066-4, 2021.
Duffin, K. I.: The representation of rainfall and fire intensity in fossil
pollen and charcoal records from a South African savanna, Rev. Palaeobot. Palyno., 151, 59–71,
https://doi.org/10.1016/j.revpalbo.2008.02.004, 2008.
Flannigan, M., Cantin, A. S., De Groot, W. J., Wotton, M., Newbery, A., and
Gowman, L. M.: Global wildland fire season severity in the 21st century,
Forest Ecol. Manage., 294, 54–61, https://doi.org/10.1016/j.foreco.2012.10.022, 2013.
Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., and Arneth, A.: Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models, Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, 2019.
Fuller, D. Q., Denham, T., Arroyo-Kalin, M., Lucas, L., Stevens, C. J., Qin,
L., Allaby, R. G., and Purugganan, M. D.: Convergent evolution and
parallelism in plant domestication revealed by an expanding archaeological
record, P. Natl. Acad. Sci. USA, 111, 6147–6152, https://doi.org/10.1073/pnas.1308937110, 2014.
Gautney, J. R. and Holliday, T. W.: New estimations of habitable land area
and human population size at the Last Glacial Maximum, J. Archaeol. Sci., 58, 103–112,
https://doi.org/10.1016/j.jas.2015.03.028, 2015.
Gonsamo, A., Ciais, P., Miralles, D. G., Sitch, S., Dorigo, W., Lombardozzi,
D., Friedlingstein, P., Nabel, J. E. M. S., Goll, D. S., O'Sullivan, M.,
Arneth, A., Anthoni, P., Jain, A. K., Wiltshire, A., Peylin, P., and Cescatti, A.:
Greening drylands despite warming consistent with carbon dioxide
fertilization effect, Glob. Change Biol., 27, 3336–3349, https://doi.org/10.1111/gcb.15658,
2021.
Gott, B.: Aboriginal fire management in south-eastern Australia: aims and
frequency, J. Biogeogr., 32, 1203–1208, https://www.jstor.org/stable/3566388 (last access: July 2023), 2005.
Grillakis, M., Voulgarakis, A., Rovithakis, A., Seiradakis, K. D.,
Koutroulis, A., Field, R. D., Kasoar, M., Papadopoulos, A., and Lazaridis, M.:
Climate drivers of global wildfire burned area, Environ. Res. Lett., 17, 045021,
https://doi.org/10.1088/1748-9326/ac5fa1, 2022.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T., Sperry, J. S., and McDowell, N. G.: Plant responses to rising
vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020.
Haas, O.: Scripts and input files, figshare [data set], https://doi.org/10.6084/m9.figshare.19071044.v1, 2023a.
Haas, O.: Data for: The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate, figshare [data set], https://doi.org/10.6084/m9.figshare.22285303.v2, 2023b.
Haas, O.: R scripts to run models for: The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate, figshare [code], https://doi.org/10.6084/m9.figshare.22285279.v2, 2023c.
Haas, O., Prentice, I. C., and Harrison, S. P.: Global environmental
controls on wildfire burnt area, size, and intensity, Environ. Res. Lett., 17, 065004,
https://doi.org/10.1088/1748-9326/ac6a69, 2022.
Hantson, S., Kelley, D. I., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Rabin, S. S., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., and Yue, C.: Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project, Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, 2020.
Harrison, S. P. and Prentice, C. I.: Climate and CO2 controls on
global vegetation distribution at the last glacial maximum: analysis based
on palaeovegetation data, biome modelling and palaeoclimate simulations,
Glob. Change Biol., 9, 983–1004, https://doi.org/10.1046/j.1365-2486.2003.00640.x, 2003.
Harrison, S. P., Prentice, I. C., Bloomfield, K. J., Dong, N., Forkel, M.,
Forrest, M., Ningthoujam, R. K., Pellegrini, A., Shen, Y., and Baudena, M.
Cardoso, A. W., Huss, J. C., Joshi J., Oliveras, I., Pausas, J. G., and Simpson,
J. K.: Understanding and modelling wildfire regimes: an ecological
perspective, Environ. Res. Lett., 16, 125008, https://doi.org/10.1088/1748-9326/ac39be, 2021.
Harrison, S. P., Villegas-Diaz, R., Cruz-Silva, E., Gallagher, D., Kesner, D., Lincoln, P., Shen, Y., Sweeney, L., Colombaroli, D., Ali, A., Barhoumi, C., Bergeron, Y., Blyakharchuk, T., Bobek, P., Bradshaw, R., Clear, J. L., Czerwiński, S., Daniau, A.-L., Dodson, J., Edwards, K. J., Edwards, M. E., Feurdean, A., Foster, D., Gajewski, K., Gałka, M., Garneau, M., Giesecke, T., Gil Romera, G., Girardin, M. P., Hoefer, D., Huang, K., Inoue, J., Jamrichová, E., Jasiunas, N., Jiang, W., Jiménez-Moreno, G., Karpińska-Kołaczek, M., Kołaczek, P., Kuosmanen, N., Lamentowicz, M., Lavoie, M., Li, F., Li, J., Lisitsyna, O., López-Sáez, J. A., Luelmo-Lautenschlaeger, R., Magnan, G., Magyari, E. K., Maksims, A., Marcisz, K., Marinova, E., Marlon, J., Mensing, S., Miroslaw-Grabowska, J., Oswald, W., Pérez-Díaz, S., Pérez-Obiol, R., Piilo, S., Poska, A., Qin, X., Remy, C. C., Richard, P. J. H., Salonen, S., Sasaki, N., Schneider, H., Shotyk, W., Stancikaite, M., Šteinberga, D., Stivrins, N., Takahara, H., Tan, Z., Trasune, L., Umbanhowar, C. E., Väliranta, M., Vassiljev, J., Xiao, X., Xu, Q., Xu, X., Zawisza, E., Zhao, Y., Zhou, Z., and Paillard, J.: The Reading Palaeofire Database: an expanded global resource to document changes in fire regimes from sedimentary charcoal records, Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, 2022.
Humber, M. L., Boschetti, L., Giglio, L., and Justice, C. O.: Spatial and
temporal intercomparison of four global burned area products, Int. J. Digit. Earth, 12,
460–484, https://doi.org/10.1080/17538947.2018.1433727, 2019.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J.,
Williamson, G. J., and Bowman, D.: Climate-induced variations in global
wildfire danger from 1979 to 2013, Nat. Commun., 6, 1–11,
https://doi.org/10.1038/ncomms8537, 2015.
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021.
Kaplan, J. O.: jedokaplan/BIOME4: BIOME4 public release (1999) (v4.2.2),
Zenodo [code], https://doi.org/10.5281/zenodo.8368294, 2023.
Kaplan, J. O., Bigelow, N. H., Prentice, I. C., Harrison, S. P., Bartlein, P. J.,
Christensen, T. R., Cramer, W., Matveyeva, N. V., McGuire, A. D., Murray, D. F.,
Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev, A. A.,
Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V.: Climate change and Arctic
ecosystems II: Modeling, palaeodata-model comparisons, and future
projections, J. Geophys. Res.-Atmos., 108, 8171, https://doi.org/10.1029/2002JD002559, 2003.
Kaplan, J. O., Pfeiffer, M., Kolen, J. C. A., and Davis, B. A. S.: Large
scale anthropogenic reduction of forest cover in Last Glacial Maximum
Europe, PLoS One, 11, e0166726, https://doi.org/10.1371/journal.pone.0166726, 2016.
Kgope, B. S., Bond, W. J., and Midgley, G. F.: Growth responses of African
savanna trees implicate atmospheric [CO2] as a driver of past and
current changes in savanna tree cover, Austral Ecol., 35, 451–463,
https://doi.org/10.1111/j.1442-9993.2009.02046.x, 2010.
Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human population density on fire frequency at the global scale, Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, 2014.
Knorr, W., Jiang, L., and Arneth, A.: Climate, CO2 and human population impacts on global wildfire emissions, Biogeosciences, 13, 267–282, https://doi.org/10.5194/bg-13-267-2016, 2016.
Kraaij, T., Engelbrecht, F., Franklin, J., and Cowling, R. M.: A fiery past:
A comparison of glacial and contemporary fire regimes on the Palaeo-Agulhas
Plain, Cape Floristic Region, Quaternary Sci. Rev., 235, 106059,
https://doi.org/10.1016/j.quascirev.2019.106059, 2020.
Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I. C., and Harrison, S. P.: The importance of antecedent vegetation and drought conditions as global drivers of burnt area, Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, 2021.
Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L., and Scheiter, S.: Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia, Biogeosciences, 18, 2957–2979, https://doi.org/10.5194/bg-18-2957-2021, 2021.
Li, F., Levis, S., and Ward, D. S.: Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1), Biogeosciences, 10, 2293–2314, https://doi.org/10.5194/bg-10-2293-2013, 2013.
Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Houghton, R. A., and Peng, S.: Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015), Earth Syst. Sci. Data, 10, 219–234, https://doi.org/10.5194/essd-10-219-2018, 2018.
Liu, L., Bestel, S., Shi, J., Song, Y., and Chen, X.: Paleolithic human
exploitation of plant foods during the last glacial maximum in North China,
P. Natl. Acad. Sci. USA, 110, 5380–5385, https://doi.org/10.1073/pnas.1217864110, 2013.
Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Abrupt
climate and weather changes across time scales, Paleoceanogr. Paleocl., 35, e2019PA003782,
https://doi.org/10.1029/2019PA003782, 2020.
Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S. P.,
Higuera, P. E., Joos, F., Power, M. J., and Prentice, I. C.: Climate and human
influences on global biomass burning over the past two millennia, Nat. Geosci., 1,
697–702, https://doi.org/10.1038/ngeo313, 2008.
Marlon, J. R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M. J., Bartlein, P., Higuera, P., Blarquez, O., Brewer, S., Brücher, T., Feurdean, A., Romera, G. G., Iglesias, V., Maezumi, S. Y., Magi, B., Courtney Mustaphi, C. J., and Zhihai, T.: Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons, Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, 2016.
Martin Calvo, M. and Prentice, I. C.: Effects of fire and CO2 on
biogeography and primary production in glacial and modern climates, New Phytol., 208, 987–994, https://doi.org/10.1111/nph.13485, 2015.
Martin Calvo, M., Prentice, I. C., and Harrison, S. P.: Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial–interglacial contrast, Biogeosciences, 11, 6017–6027, https://doi.org/10.5194/bg-11-6017-2014, 2014.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S.,
Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-Cuesta,
D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D.,
Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz,
U., Modali, K., Möbis, B., Müller, A. W., Julia, E. M. S., Nabel, J. E. M.
S., Nam, C. C. W., Notz, D., Nyawira, S., Paulsen, H., Peters, K., Pincus, R.,
Pohlmann, H., Pongratz, J., Popp, M., Jürgen Raddatz, T., Rast, S.,
Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur,
R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., Storch,
J.-S. V., Tian, F., Voigt, A., Vrese, P., Wieners, K., Wilkenskjeld, S., Winkler,
A., and Roeckner, E.: Developments in the MPI-M Earth System Model version 1.2
(MPI-ESM1.2) and its response to increasing CO2, J. Adv. Model. Earth Sy., 11, 998–1038,
https://doi.org/10.1029/2018MS001400, 2019.
Moreno, P. I., Videla, J., Valero-Garcés, B., Alloway, B. V., and
Heusser, L. E.: A continuous record of vegetation, fire-regime and climatic
changes in northwestern Patagonia spanning the last 25,000 years,
Quaternary Sci. Rev., 198, 15–36, https://doi.org/10.1016/j.quascirev.2018.08.013, 2018.
Orme, D. and Marion: ImperialCollegeLondon/pyrealm: v0.10.1 (0.10.1), Zenodo [code], https://doi.org/10.5281/zenodo.8366848, 2023.
Pausas, J. G.: Bark thickness and fire regime, Funct. Ecol., 29, 315–327,
https://doi.org/10.1111/1365-2435.12372, 2014.
Pausas, J. G. and Keeley, J. E.: Wildfires and global change, Front. Ecol. Environ., 19,
387–395, https://doi.org/10.1002/fee.2359, 2021.
Pausas, J. G. and Ribeiro, E.: The global fire–productivity relationship,
Global Ecol. Biogeogr., 22, 728–736, https://doi.org/10.1111/geb.12043, 2013.
Pechony, O. and Shindell, D. T.: Driving forces of global wildfires over
the past millennium and the forthcoming century, P. Natl. Acad. Sci. USA, 107, 19167–19170,
https://doi.org/10.1073/pnas.1003669107, 2010.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model,
J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Piao, S., Wang, X., Park, T., Chen, C., Lian, X. U., He, Y., Bjerke, J. W.,
Chen, A., Ciais, P., Tømmervik, H., Nemani, R. R., and Myneni, R. B.:
Characteristics, drivers and feedbacks of global greening, Nature Reviews Earth and Environment, 1, 14–27,
https://doi.org/10.1038/s43017-019-0001-x, 2020.
Portenga, E. W., Rood, D. H., Bishop, P., and Bierman, P. R.: A late
Holocene onset of Aboriginal burning in southeastern Australia, Geology, 44,
131–134, https://doi.org/10.1130/G37257.1, 2016.
Power, M. J., Ortiz, N., Marlon, J., Bartlein, P. J., Harrison, S. P., Mayle,
F., Ballouche, A., Bradshaw, R., Carcaillet, C., Cordova, C., Mooney, S.,
Moreno, P., Prentice, I. C., Thonicke, K., Tinner, W., Whitlock, C., Zhang,
Y., Zhao, Y., Anderson, R. S., Beer, R., Behling, H., Briles, C., Brown, K.,
Brunelle, A., Bush, M., Clark, J., Colombaroli, D., Chu, C. Q., Daniels, M.,
Dodson, J., Edwards, M. E., Fisinger, W., Gavin, D. G., Gobet, E., Hallett,
D. J., Higuera, P., Horn, S., Inoue, J., Kaltenrieder, P., Kennedy, L., Kong,
Z. C., Long, C., Lynch, J., Lynch, B., McGlone, M., Meeks, S., Meyer, G.,
Minckley, T., Mohr, J., Noti, R., Pierce, J., Richard, P., Shuman, B. J.,
Takahara, H., Toney, J., Turney, C., Umbanhower, C., Vandergoes, M.,
Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst,
J., and Zhang, J. H.: Changes in fire regimes since the Last Glacial
Maximum: an assessment based on a global synthesis and analysis of charcoal
data, Clim. Dynam., 30, 887–907, https://doi.org/10.1007/s00382-007-0334-x, 2008.
Rodrigues, M., Costafreda-Aumedes, S., Comas, C., and Vega-García, C.:
Spatial stratification of wildfire drivers towards enhanced definition of
large-fire regime zoning and fire seasons, Sci. Total Environ., 689, 634–644,
https://doi.org/10.1016/j.scitotenv.2019.06.467, 2019.
Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R., and Turetsky,
M.: Focus on changing fire regimes: interactions with climate, ecosystems,
and society, Environ. Res. Lett., 15, 030201, https://doi.org/10.1088/1748-9326/ab6d3a, 2020.
Rowe, C., Wurster, C. M., Zwart, C., Brand, M., Hutley, L. B., Levchenko,
V., and Bird, M. I.: Vegetation over the last glacial maximum at Girraween
Lagoon, monsoonal northern Australia, Quaternary Res., 102, 39–52,
https://doi.org/10.1017/qua.2020.50, 2021.
Ruan, Y., Mohtadi, M., Dupont, L. M., Hebbeln, D., van der Kaars, S.,
Hopmans, E. C., Schouten, S., Hyer, E. J., and Schefuß, E.: Interaction
of fire, vegetation, and climate in tropical ecosystems: A multiproxy study
over the past 22,000 years, Global Biogeochem. Cy., 34, e2020GB006677, https://doi.org/10.1029/2020GB006677,
2020.
Rubino, M., D'Onofrio, A., Seki, O., and Bendle, J. A.: Ice-core records of
biomass burning, Anthropocene Review, 3, 140–162, https://doi.org/10.1177/2053019615605117,
2015.
Scheiter, S., Kumar, D., Corlett, R. T., Gaillard, C., Langan, L., Lapuz, R.
S., Martens, C., Pfeiffer, M., and Tomlinson, K. W.: Climate change promotes
transitions to tall evergreen vegetation in tropical Asia, Glob. Change Biol., 26,
5106–5124, https://doi.org/10.1111/gcb.15217, 2020.
Schertzer, E., Staver, A. C., and Levin, S. A.: Implications of the spatial
dynamics of fire spread for the bistability of savanna and forest, J. Math. Biol.,
70, 329–341, https://doi.org/10.1007/s00285-014-0757-z, 2015.
Sedano, F. and Randerson, J. T.: Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems, Biogeosciences, 11, 3739–3755, https://doi.org/10.5194/bg-11-3739-2014, 2014.
Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S.,
Dethloff, K., Dorn, W., Fieg, K., Gößling, H. F., Handorf, D., Harig,
S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D. V., and Wang, Q.:
Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I:
model formulation and mean climate, Clim. Dynam., 44, 757–780,
https://doi.org/10.1007/s00382-014-2290-6, 2015.
Snitker, G.: Identifying natural and anthropogenic drivers of prehistoric
fire regimes through simulated charcoal records, J. Archaeol. Sci., 95, 1–15,
https://doi.org/10.1016/j.jas.2018.04.009, 2018.
Song, M., Dodson, J., Lu, F., Shi, G., and Yan, H.: A continuous paleorecord
of vegetation and environmental change from Erxianyan Wetland over the past
60,000 years in central China, Palaeogeogr. Palaeocl., 613, 111399,
https://doi.org/10.1016/j.palaeo.2023.111399, 2023.
Song, Y., Jiao, W., Wang, J., and Wang, L.: Increased global vegetation
productivity despite rising atmospheric dryness over the last two decades,
Earth's Future, 10, e2021EF002634, https://doi.org/10.1029/2021EF002634, 2022.
Stocker, B. D., Wang, H., Smith, N. G., Harrison, S. P., Keenan, T. F., Sandoval, D., Davis, T., and Prentice, I. C.: P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production, Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, 2020.
Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., and Seppä, H.:
Human population dynamics in Europe over the Last Glacial Maximum,
P. Natl. Acad. Sci. USA, 112, 8232–8237, https://doi.org/10.1073/pnas.1503784112, 2015.
Tierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., and
Poulsen, C. J.: Glacial cooling and climate sensitivity revisited, Nature,
584, 569–573, https://doi.org/10.1038/s41586-020-2617-x, 2020.
Van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A.,
Bongers, F., Pons, T. L., Terburg, G., and Zuidema, P. A.: No growth
stimulation of tropical trees by 150 years of CO2 fertilization but
water-use efficiency increased, Nat. Geosci., 8, 24–28,
https://doi.org/10.1038/ngeo2313, 2015.
Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J.,
Cornwell, W. K., Evans, B. J., and Peng, C.: Towards a universal model for
carbon dioxide uptake by plants, Nature Plants, 3, 734–741,
https://doi.org/10.1038/s41477-017-0006-8, 2017.
Wang, Z., Chappellaz, J., Park, K., and Mak, J. E.: Large variations in Southern
Hemisphere biomass burning during the last 650 years, Science, 330, 1663–1666,
https://doi.org/10.1126/science.1197257, 2010.
WCRP: WCRP Coupled Model Intercomparison Project (Phase 6), WCRP [data set], https://esgf-node.llnl.gov/projects/cmip6/, last access: 26 September 2023.
Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C., and Collard, M.:
Human refugia in Australia during the Last Glacial Maximum and terminal
Pleistocene: A geospatial analysis of the 25–12 ka Australian
archaeological record, J. Archaeol. Sci., 40, 4612–4625,
https://doi.org/10.1016/j.jas.2013.06.015, 2013.
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko,
D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., Dean,
J. S., Cook, E. R., Gangodagamage, C., Cai, M., and McDowell, N. G.: Temperature as
a potent driver of regional forest drought stress and tree mortality,
Nature Climate Change Change, 3, 292–297, https://doi.org/10.1038/nclimate1693, 2013.
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and...
Altmetrics
Final-revised paper
Preprint