Articles | Volume 21, issue 15
https://doi.org/10.5194/bg-21-3537-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-3537-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration
Alexander Wachholz
CORRESPONDING AUTHOR
Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
James W. Jawitz
Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
Dietrich Borchardt
Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
Related authors
Alexander Wachholz, Susanne Isabel Schmidt, Jens Arle, and Jeanette Völker
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-563, https://doi.org/10.5194/essd-2024-563, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Small lakes and ponds are provide many functions for the environment. Because of their size they are often not considered in scientific studies. We collected all the information on those lakes and ponds for Germany and combined it to a database. We described the ponds in detail, for example how deep they might by, how much water they can store or if they are connected to rivers. We found more than 260.000 lakes and ponds in Germany.
Jingshui Huang, Dietrich Borchardt, and Michael Rode
EGUsphere, https://doi.org/10.5194/egusphere-2025-656, https://doi.org/10.5194/egusphere-2025-656, 2025
Short summary
Short summary
Climate change is increasing low flows, yet how streams respond remains poorly understood. Using sensors in a German stream during the extreme 2018 drought, we found hotter water, more algae, and lower oxygen and nitrate levels. Daily oxygen swings intensified, and algae on the riverbed boosted gross primary productivity. Nitrate removal got more efficient. These changes highlight risks to water quality and ecosystems as droughts worsen, aiding efforts to protect rivers in a warming world.
Alexander Wachholz, Susanne Isabel Schmidt, Jens Arle, and Jeanette Völker
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-563, https://doi.org/10.5194/essd-2024-563, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Small lakes and ponds are provide many functions for the environment. Because of their size they are often not considered in scientific studies. We collected all the information on those lakes and ponds for Germany and combined it to a database. We described the ponds in detail, for example how deep they might by, how much water they can store or if they are connected to rivers. We found more than 260.000 lakes and ponds in Germany.
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022, https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Short summary
In this study, we set up a water quality model using a 5-year paired high-frequency water quality dataset from a large agricultural stream. The simulations were compared with the 15 min interval measurements and showed very good fits. Based on these, we quantified the N uptake pathway rates and efficiencies at daily, seasonal, and yearly scales. This study offers an overarching understanding of N processing in large agricultural streams across different temporal scales.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci., 26, 1507–1525, https://doi.org/10.5194/hess-26-1507-2022, https://doi.org/10.5194/hess-26-1507-2022, 2022
Short summary
Short summary
The Budyko curve emerges globally from the behavior of multiple catchments. Single-parameter Budyko equations extrapolate the curve concept to individual catchments, interpreting curves and parameters as representing climatic and biophysical impacts on water availability, respectively. We tested these two key components theoretically and empirically, finding that catchments are not required to follow Budyko curves and usually do not, implying the parametric framework lacks predictive ability.
Kathryn L. McCurley Pisarello and James W. Jawitz
Hydrol. Earth Syst. Sci., 25, 6173–6183, https://doi.org/10.5194/hess-25-6173-2021, https://doi.org/10.5194/hess-25-6173-2021, 2021
Short summary
Short summary
Climate classification systems divide the Earth into zones of similar climates. We compared the within-zone hydroclimate similarity and zone shape complexity of a suite of climate classification systems, including new ones formed in this study. The most frequently used system had high similarity but high complexity. We propose the Water-Energy Clustering framework, which also had high similarity but lower complexity. This new system is therefore proposed for future hydroclimate assessments.
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-585, https://doi.org/10.5194/hess-2020-585, 2020
Manuscript not accepted for further review
Short summary
Short summary
The parametric Budyko equations contain a single parameter (n or w), interpreted as depending on biophysical features, however, these relationships have remained elusive. We analytically invert the parametric Budyko equations, expressing n and w only in terms of the mean values of potential (E0) and actual evapotranspiration (E) and precipitation (P). These expressions allow n and w to be explicitly related to biophysical features through the dependence of P, E0, and E on those same features.
Cited articles
Aberle, J., Nikora, V., Henning, M., Ettmer, B., and Hentschel, B.: Statistical characterization of bed roughness due to bed forms: A field study in the Elbe River at Aken, Germany, Water Resour. Res., 46, W03521, https://doi.org/10.1029/2008WR007406, 2010.
Adams, M. S., Ballin, U., Gaumert, T., Hale, B. W., Kausch, H., and Kruse, R.: Monitoring selected indicators of ecological change in the Elbe River since the fall of the iron curtain, Environ. Conserv., 28, 333–344, https://doi.org/10.1017/S0376892901000364, 2001.
Allesson, L., Ström, L., and Berggren, M.: Impact of photochemical processing of DOC on the bacterioplankton respiratory quotient in aquatic ecosystems, Geophys. Res. Lett., 43, 7538–7545, https://doi.org/10.1002/2016GL069621, 2016.
Amann, T., Weiss, A., and Hartmann, J.: Carbon dynamics in the freshwater part of the Elbe estuary, Germany: Implications of improving water quality, Estuarine, Coast. Shelf Sci., 107, 112–121, https://doi.org/10.1016/j.ecss.2012.05.012, 2012.
Aristi, I., Arroita, M., Larrañaga, A., Ponsatí, L., Sabater, S., Von Schiller, D., Elosegi, A., and Acuña, V.: Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers, Freshwater Biol., 59, 1816–1829, https://doi.org/10.1111/fwb.12385, 2014.
Arroita, M., Elosegi, A., and Hall Jr., R. O.: Twenty years of daily metabolism show riverine recovery following sewage abatement, Limnol. Oceanogr., 64, S77–S92, https://doi.org/10.1002/lno.11053, 2019.
Attermeyer, K., Casas-Ruiz, J. P., Fuss, T., Pastor, A., Cauvy-Fraunié, S., Sheath, D., Nydahl, A. C., Doretto, A., Portela, A. P., Doyle, B. C., Simov, N., Gutmann Roberts, C., Niedrist, G. H., Timoner, X., Evtimova, V., Barral-Fraga, L., Bašić, T., Audet, J., Deininger, A., Busst, G., Fenoglio, S., Catalán, N., de Eyto, E., Pilotto, F., Mor, J.-R., Monteiro, J., Fletcher, D., Noss, C., Colls, M., Nagler, M., Liu, L., Romero González-Quijano, C., Romero, F., Pansch, N., Ledesma, J. L. J., Pegg, J., Klaus, M., Freixa, A., Herrero Ortega, S., Mendoza-Lera, C., Bednařík, A., Fonvielle, J. A., Gilbert, P. J., Kenderov, L. A., Rulík, M., and Bodmer, P.: Carbon dioxide fluxes increase from day to night across European streams, Commun. Earth Environ., 2, 1–8, https://doi.org/10.1038/s43247-021-00192-w, 2021.
Ballard, T. C., Sinha, E., and Michalak, A. M.: Long-Term Changes in Precipitation and Temperature Have Already Impacted Nitrogen Loading, Environ. Sci. Technol., 53, 5080–5090, https://doi.org/10.1021/acs.est.8b06898, 2019.
Bauerkaemper, A.: The industrialization of agriculture and its consequences for the natural environment: an inter-German comparative perspective, Hist. Soc. Res., 29, 124–149, 2004.
Bergbusch, N. T., Hayes, N. M., Simpson, G. L., and Leavitt, P. R.: Unexpected shift from phytoplankton to periphyton in eutrophic streams due to wastewater influx, Limnol. Oceanogr., 66, 2745–2761, https://doi.org/10.1002/lno.11786, 2021.
Berggren, M., Lapierre, J.-F., and del Giorgio, P. A.: Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients, ISME J., 6, 984–993, https://doi.org/10.1038/ismej.2011.157, 2012.
Bernhardt, E. S., Savoy, P., Vlah, M. J., Appling, A. P., Koenig, L. E., Hall, R. O., Arroita, M., Blaszczak, J. R., Carter, A. M., Cohen, M., Harvey, J. W., Heffernan, J. B., Helton, A. M., Hosen, J. D., Kirk, L., McDowell, W. H., Stanley, E. H., Yackulic, C. B., and Grimm, N. B.: Light and flow regimes regulate the metabolism of rivers, P. Natl. Acad. Sci. USA, 119, e2121976119, https://doi.org/10.1073/pnas.2121976119, 2022.
Bertuzzo, E., Helton, A. M., Hall, R. O., and Battin, T. J.: Scaling of dissolved organic carbon removal in river networks, Adv. Water Res., 110, 136–146, https://doi.org/10.1016/j.advwatres.2017.10.009, 2017.
Bianchi, T. S., DiMarco, S. F., Cowan, J. H., Hetland, R. D., Chapman, P., Day, J. W., and Allison, M. A.: The science of hypoxia in the Northern Gulf of Mexico: A review, Sci. Total Environ., 408, 1471–1484, https://doi.org/10.1016/j.scitotenv.2009.11.047, 2010.
Booker, D. J. and Dunbar, M. J.: Predicting river width, depth and velocity at ungauged sites in England and Wales using multilevel models, Hydrol. Process., 22, 4049–4057, https://doi.org/10.1002/hyp.7007, 2008.
Cavaliere, E. and Baulch, H. M.: Winter nitrification in ice-covered lakes, PLOS ONE, 14, e0224864, https://doi.org/10.1371/journal.pone.0224864, 2019.
Cejudo, E., Taylor, W., and Schiff, S.: Epilithic algae from an urban river preferentially use ammonium over nitrate, Int. Aquat. Res., 12, 30–39, https://doi.org/10.22034/iar(20).2020.671068, 2020.
Collos, Y. and Harrison, P. J.: Acclimation and toxicity of high ammonium concentrations to unicellular algae, Mar. Pollut. Bull., 80, 8–23, https://doi.org/10.1016/j.marpolbul.2014.01.006, 2014.
del Giorgio, P. A., Cole, J. J., and Cimbleris, A.: Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems, Nature, 385, 148–151, https://doi.org/10.1038/385148a0, 1997.
del Giorgio, P. A. and Cole, J. J.: Bacterial Growth Efficiency in Natural Aquatic Systems, Annu. Rev. Ecol. Syst., 29, 503–541, https://doi.org/10.1146/annurev.ecolsys.29.1.503, 1998.
Deutsch, B., Voss, M., and Fischer, H.: Nitrogen transformation processes in the Elbe River: Distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate, Aquat. Sci., 71, 228–237, https://doi.org/10.1007/s00027-009-9147-9, 2009.
Diamond, J. S., Moatar, F., Cohen, M. J., Poirel, A., Martinet, C., Maire, A., and Pinay, G.: Metabolic regime shifts and ecosystem state changes are decoupled in a large river, Limnol. Oceanogr., 67, S54–S70, https://doi.org/10.1002/lno.11789, 2022.
Doretto, A., Piano, E., and Larson, C. E.: The River Continuum Concept: lessons from the past and perspectives for the future, Can. J. Fish. Aquat. Sci., 77, 1853–1864, https://doi.org/10.1139/cjfas-2020-0039, 2020.
Duffie, J. A. and Beckman, W. A.: Solar Engineering of Thermal Processes, John Wiley & Sons, 936 pp., https://doi.org/10.1002/9781118671603, 2013.
Dupas, R., Minaudo, C., Gruau, G., Ruiz, L., and Gascuel‐Odoux, C.: Multidecadal Trajectory of Riverine Nitrogen and Phosphorus Dynamics in Rural Catchments, Water Resour. Res., 54, 5327–5340, https://doi.org/10.1029/2018WR022905, 2018.
Ehrhardt, S., Kumar, R., Fleckenstein, J. H., Attinger, S., and Musolff, A.: Trajectories of nitrate input and output in three nested catchments along a land use gradient, Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, 2019.
Flussgebietsgemeinschaft Elbe: Fachinformationssystem der FGG Elbe, Elbe Daten Portal [data set], https://www.elbedatenportal.de/FisFggElbe/, last access: 26 November 2022.
Godwin, C. M. and Cotner, J. B.: What intrinsic and extrinsic factors explain the stoichiometric diversity of aquatic heterotrophic bacteria?, ISME J., 12, 598–609, https://doi.org/10.1038/ismej.2017.195, 2018.
Hall Jr., R. O. and Tank, J. L.: Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming, Limnol. Oceanogr., 48, 1120–1128, https://doi.org/10.4319/lo.2003.48.3.1120, 2003.
Hall, R. O., Tank, J. L., Baker, M. A., Rosi-Marshall, E. J., and Hotchkiss, E. R.: Metabolism, Gas Exchange, and Carbon Spiraling in Rivers, Ecosystems, 19, 73–86, https://doi.org/10.1007/s10021-015-9918-1, 2016.
Hardenbicker, P., Rolinski, S., Weitere, M., and Fischer, H.: Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers, Int. Rev. Hydrobiol., 99, 287–299, https://doi.org/10.1002/iroh.201301680, 2014.
Heffernan, J. B. and Cohen, M. J.: Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river, Limnol. Oceanogr., 55, 677–688, https://doi.org/10.4319/lo.2010.55.2.0677, 2010.
Hillebrand, G., Hardenbicker, P., Fischer, H., Otto, W., and Vollmer, S.: Dynamics of total suspended matter and phytoplankton loads in the river Elbe, J. Soil. Sediment., 18, 3104–3113, https://doi.org/10.1007/s11368-018-1943-1, 2018.
Hirsch, R. M., Moyer, D. L., and Archfield, S. A.: Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs1, JAWRA J. Am. Water Resour. Assoc., 46, 857–880, https://doi.org/10.1111/j.1752-1688.2010.00482.x, 2010.
IKSE: Die Elbe und ihr Einzugsgebiet: Ein geographisch-hydrologischer und wasserwirtschaftlicher Überblick. Internationale Kommission zum Schutz der Elbe (IKSE), https://digital.bibliothek.uni-halle.de/pe/content/titleinfo/1485813 (last access: 12 April 2021), 2005.
IKSE: Abschlussbericht Aktionsprogramm Elbe 1996–2010, Internationale Kommission zum Schutz der Elbe (IKSE), https://www.ikse-mkol.org/fileadmin/media//user_upload/D/06_Publikationen/03_Aktionsprogramme und Bestandsaufnahmen/2010_IKSE-AP-Abschlussbericht.pdf (last access: 12 April 2021), 2010.
Jarvie, H. P., Macrae, M. L., Anderson, M., Celmer-Repin, D., Plach, J., and King, S. M.: River metabolic fingerprints and regimes reveal ecosystem responses to enhanced wastewater treatment, J. Environ. Qual., 51, 811–825, https://doi.org/10.1002/jeq2.20401, 2022.
Kamjunke, N., Rode, M., Baborowski, M., Kunz, J. V., Zehner, J., Borchardt, D., and Weitere, M.: High irradiation and low discharge promote the dominant role of phytoplankton in riverine nutrient dynamics, Limnol. Oceanogr., 66, 2648–2660, https://doi.org/10.1002/lno.11778, 2021.
Kelly, M. C., Zeglin, L. H., Husic, A., and Burgin, A. J.: High Supply, High Demand: A Fertilizer Waste Release Impacts Nitrate Uptake and Metabolism in a Large River, J. Geophys. Res.-Biogeo., 126, e2021JG006469, https://doi.org/10.1029/2021JG006469, 2021.
Lehmann, A. and Rode, M.: Long-term behaviour and cross-correlation water quality analysis of the river Elbe, Germany, Water Res., 35, 2153–2160, https://doi.org/10.1016/S0043-1354(00)00488-7, 2001.
Lutz, S., Ebeling, P., Musolff, A., Nguyen, T., Sarrazin, F., Van Meter, K., Basu, N., Fleckenstein, J., Attinger, S., and Kumar, R.: Pulling the Rabbit out of the Hat: Unravelling Hidden Nitrogen Legacies in Catchment-Scale Water Quality Models, Hydrol. Process., 36, e14682, https://doi.org/10.1002/hyp.14682, 2022.
Mann, R. H. K.: Environmental requirements of European non-salmonid fish in rivers, Hydrobiologia, 323, 223–235, https://doi.org/10.1007/BF00007848, 1996.
Markovic, D., Scharfenberger, U., Schmutz, S., Pletterbauer, F., and Wolter, C.: Variability and alterations of water temperatures across the Elbe and Danube River Basins, Climatic Change, 119, 375–389, https://doi.org/10.1007/s10584-013-0725-4, 2013.
Meybeck, M., Lestel, L., Carré, C., Bouleau, G., Garnier, J., and Mouchel, J. M.: Trajectories of river chemical quality issues over the Longue Durée: the Seine River (1900S–2010), Environ. Sci. Pollut. Res., 25, 23468–23484, https://doi.org/10.1007/s11356-016-7124-0, 2018.
Middelburg, J. and Nieuwenhuize, J.: Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary, Mar. Ecol. Prog. Ser., 203, 13–21, https://doi.org/10.3354/meps203013, 2000.
Minaudo, C., Meybeck, M., Moatar, F., Gassama, N., and Curie, F.: Eutrophication mitigation in rivers: 30 Years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980–2012), Biogeosciences, 12, 2549–2563, https://doi.org/10.5194/bg-12-2549-2015, 2015.
Mudersbach, C., Bender, J., and Netzel, F.: An analysis of changes in flood quantiles at the gauge Neu Darchau (Elbe River) from 1875 to 2013, Proc. IAHS, 373, 193–199, https://doi.org/10.5194/piahs-373-193-2016, 2016.
Netzband, A., Reincke, H., and Bergemann, M.: The river elbe, J. Soil. Sediment., 2, 112–116, https://doi.org/10.1007/BF02988462, 2002.
Odum, H. T.: Primary Production in Flowing Waters1, Limnol. Oceanogr., 1, 102–117, https://doi.org/10.4319/lo.1956.1.2.0102, 1956.
Petersen, W. and Callies, U.: Assessment of Primary Production by Statistical Analysis of Water-quality Data, Acta Hydroch. Hydrob., 30, 34–40, https://doi.org/10.1002/1521-401X(200207)30:1<34::AID-AHEH34>3.0.CO;2-M, 2002.
Powers, S. M., Baulch, H. M., Hampton, S. E., Labou, S. G., Lottig, N. R., and Stanley, E. H.: Nitrification contributes to winter oxygen depletion in seasonally frozen forested lakes, Biogeochemistry, 136, 119–129, https://doi.org/10.1007/s10533-017-0382-1, 2017.
Rasmussen, J. J., Baattrup-Pedersen, A., Riis, T., and Friberg, N.: Stream ecosystem properties and processes along a temperature gradient, Aquat. Ecol., 45, 231–242, https://doi.org/10.1007/s10452-010-9349-1, 2011.
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E., McDowell, W. H., and Newbold, D.: Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers, Limnol. Oceanogr., 2, 41–53, https://doi.org/10.1215/21573689-1597669, 2012.
Rier, S. T. and Stevenson, R. J.: Effects of light, dissolved organic carbon, and inorganic nutrients on the relationship between algae and heterotrophic bacteria in stream periphyton, Hydrobiologia, 489, 179–184, https://doi.org/10.1023/A:1023284821485, 2002.
Ritz, S. and Fischer, H.: A Mass Balance of Nitrogen in a Large Lowland River (Elbe, Germany), Water, 11, 2383, https://doi.org/10.3390/w11112383, 2019.
Ritz, S., Dähnke, K., and Fischer, H.: Open-channel measurement of denitrification in a large lowland river, Aquat. Sci., 80, 11, https://doi.org/10.1007/s00027-017-0560-1, 2017.
Rode, M., Halbedel Née Angelstein, S., Anis, M. R., Borchardt, D., and Weitere, M.: Continuous In-Stream Assimilatory Nitrate Uptake from High-Frequency Sensor Measurements, Environ. Sci. Technol., 50, 5685–5694, https://doi.org/10.1021/acs.est.6b00943, 2016.
Rysgaard, S., Risgaard-Petersen, N., Niels Peter, S., Kim, J., and Lars Peter, N.: Oxygen regulation of nitrification and denitrification in sediments, Limnol. Oceanogr., 39, 1643–1652, https://doi.org/10.4319/lo.1994.39.7.1643, 1994.
Scharfe, M., Callies, U., Blöcker, G., Petersen, W., and Schroeder, F.: A simple Lagrangian model to simulate temporal variability of algae in the Elbe River, Ecol. Model., 220, 2173–2186, https://doi.org/10.1016/j.ecolmodel.2009.04.048, 2009.
Schlesinger, W. H. and Bernhardt, E. S.: The Global Cycles of Nitrogen, Phosphorus and Potassium, Chap. 12, in: Biogeochemistry, 4th Edn., edited by: Schlesinger, W. H. and Bernhardt, E. S., Academic Press, 483–508, https://doi.org/10.1016/B978-0-12-814608-8.00012-8, 2020.
Schulz, G., van Beusekom, J. E. E., Jacob, J., Bold, S., Schöl, A., Ankele, M., Sanders, T., and Dähnke, K.: Low discharge intensifies nitrogen retention in rivers – A case study in the Elbe River, Sci. Total Environ., 904, 166740, https://doi.org/10.1016/j.scitotenv.2023.166740, 2023.
Seitzinger, S. P., Styles, R. V., Boyer, E. W., Alexander, R. B., Billen, G., Howarth, R. W., Mayer, B., and Breemen, N. V.: Nitrogen retention in rivers: Model development and application to watersheds in the northeastern U.S.A., Biogeochemistry, 57, 199–237, https://doi.org/10.1023/A:1015745629794, 2002.
Serra-Llobet, A., Jähnig, S. C., Geist, J., Kondolf, G. M., Damm, C., Scholz, M., Lund, J., Opperman, J. J., Yarnell, S. M., Pawley, A., Shader, E., Cain, J., Zingraff-Hamed, A., Grantham, T. E., Eisenstein, W., and Schmitt, R.: Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management From California and Germany, Front. Environ. Sci., 9, 778568, https://doi.org/10.3389/fenvs.2021.778568, 2022.
Sherman, E., Moore, J. K., Primeau, F., and Tanouye, D.: Temperature influence on phytoplankton community growth rates, Global Biogeochem. Cy., 30, 550–559, https://doi.org/10.1002/2015GB005272, 2016.
Smith, E. M. and Prairie, Y. T.: Bacterial metabolism and growth efficiency in lakes: The importance of phosphorus availability, Limnol. Oceanogr., 49, 137–147, https://doi.org/10.4319/lo.2004.49.1.0137, 2004.
Snell, M. A., Barker, P. A., surridge, B. W. J., Benskin, C. H. M., Barber, N., Reaney, M., tych, W., Mindham, D., Large, A. R. G., Burke, S., and Haygarth, M.: Strong and recurring seasonality revealed within stream diatom assemblages, Sci. Rep., 9, 3313, https://doi.org/10.1038/s41598-018-37831-w, 2019.
Stream Solute Workshop: Concepts and Methods for Assessing Solute Dynamics in Stream Ecosystems, J. North Am. Benthol. Soc., 9, 95–119, https://doi.org/10.2307/1467445, 1990.
Trentman, M. T., Tank, J. L., Davis, R. T., Hanrahan, B. R., Mahl, U. H., and Roley, S. S.: Watershed-scale Land Use Change Increases Ecosystem Metabolism in an Agricultural Stream, Ecosystems, 25, 441–456, https://doi.org/10.1007/s10021-021-00664-2, 2022.
Triska, F. J., Jackman, A. P., Duff, J. H., and Avanzino, R. J.: Ammonium sorption to channel and riparian sediments: A transient storage pool for dissolved inorganic nitrogen, Biogeochemistry, 26, 67–83, https://doi.org/10.1007/BF02182880, 1994.
Van de Bogert, M. C., Carpenter, S. R., Cole, J. J., and Pace, M. L.: Assessing pelagic and benthic metabolism using free water measurements, Limnol. Oceanogr.-Meth., 5, 145–155, https://doi.org/10.4319/lom.2007.5.145, 2007.
Van Meter, K. J., Basu, N. B., and Cappellen, P. V.: Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins, Global Biogeochem. Cy., 31, 2–23, https://doi.org/10.1002/2016gb005498, 2017.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Method., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Vörösmarty, C. J., Meybeck, M., and Pastore, C. L.: Impair-then-Repair: A Brief History and Global-Scale Hypothesis Regarding Human-Water Interactions in the Anthropocene, Daedalus, 144, 94–109, https://doi.org/10.1162/DAED_a_00345, 2015.
Wachholz, A.: Long-term metabolism model for the Elbe, Zenodo [Code], https://doi.org/10.5281/zenodo.13209788, 2024.
Wachholz, A., Jawitz, J. W., Büttner, O., Jomaa, S., Merz, R., Yang, S., and Borchardt, D.: Drivers of multi-decadal nitrate regime shifts in a large European catchment, Environ. Res. Lett., 17, 064039, https://doi.org/10.1088/1748-9326/ac6f6a, 2022.
Wachholz, A., Borchardt, D: Vom Eisernen Vorhang zum grünen Band, Korrespondenz Wasserwirtschaft, 4, 245–251, https://doi.org/10.3243/kwe2024.04.002, 2024.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res.-Ocean., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and seawater, Deep-Sea Res. Oceanogr. Abstr., 17, 721–735, https://doi.org/10.1016/0011-7471(70)90037-9, 1970.
Westphal, K., Graeber, D., Musolff, A., Fang, Y., Jawitz, J. W., and Borchardt, D.: Multi-decadal trajectories of phosphorus loading, export, and instream retention along a catchment gradient, Sci. Total Environ., 667, 769–779, https://doi.org/10.1016/j.scitotenv.2019.02.428, 2019.
Zhang, X., Yang, X., Hensley, R., Lorke, A., and Rode, M.: Disentangling In-Stream Nitrate Uptake Pathways Based on Two-Station High-Frequency Monitoring in High-Order Streams, Water Resour. Res., 59, e2022WR032329, https://doi.org/10.1029/2022WR032329, 2023.
Zill, J., Siebert, C., Rödiger, T., Schmidt, A., Gilfedder, B. S., Frei, S., Schubert, M., Weitere, M., and Mallast, U.: A way to determine groundwater contributions to large river systems: The Elbe River during drought conditions, J. Hydrol., 50, 101595, https://doi.org/10.1016/j.ejrh.2023.101595, 2023.
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards....
Altmetrics
Final-revised paper
Preprint