Articles | Volume 21, issue 21
https://doi.org/10.5194/bg-21-4809-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4809-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Department of Environment and Geography, University of York, York, YO10 5DD, UK
Clare Brewster
UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW, UK
Felicity Hayes
UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, LL57 2UW, UK
Nathan Booth
Department of Environment and Geography, University of York, York, YO10 5DD, UK
Sam Bland
Stockholm Environment Institute, Department of Environment and Geography, University of York, York, YO10 5DD, UK
Pritha Pande
Stockholm Environment Institute, Department of Environment and Geography, University of York, York, YO10 5DD, UK
Samarthia Thankappan
Department of Environment and Geography, University of York, York, YO10 5DD, UK
Håkan Pleijel
Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
Lisa Emberson
Department of Environment and Geography, University of York, York, YO10 5DD, UK
Related authors
Gabriella Everett, Øivind Hodnebrog, Madhoolika Agrawal, Durgesh Singh Yadav, Connie O'Neill, Chubamenla Jamir, Jo Cook, Pritha Pande, Sam Bland, and Lisa Emberson
Biogeosciences, 22, 4203–4219, https://doi.org/10.5194/bg-22-4203-2025, https://doi.org/10.5194/bg-22-4203-2025, 2025
Short summary
Short summary
Ground-level ozone (O3), heat, and water stress (WS) reduce wheat yields, threatening food security in India. O3, heat, and WS interact as stressed plants close stomata, limiting O3 entry and damage. This study models O3 uptake under rainfed (WS) and irrigated conditions for current and future climates. Results show little O3-related yield loss under WS but higher losses with irrigation. Both climate scenarios increase O3-related losses, highlighting risks to India’s wheat productivity.
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
Biogeosciences, 22, 1035–1056, https://doi.org/10.5194/bg-22-1035-2025, https://doi.org/10.5194/bg-22-1035-2025, 2025
Short summary
Short summary
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential for nutrition, like lysine and methionine. Here, we improve the DO3SE-CropN model to simulate wheat’s protective processes against O3 and their impact on protein and amino acid concentrations. While the model captures O3-induced yield losses, it underestimates amino acid reductions. Further research is needed to refine the model, enabling future risk assessments of O3's impact on yields and nutrition.
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025, https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Short summary
The DO3SE-Crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, and it integrates into Earth system models for a comprehensive understanding of agriculture's interaction with global systems.
Gabriella Everett, Øivind Hodnebrog, Madhoolika Agrawal, Durgesh Singh Yadav, Connie O'Neill, Chubamenla Jamir, Jo Cook, Pritha Pande, Sam Bland, and Lisa Emberson
Biogeosciences, 22, 4203–4219, https://doi.org/10.5194/bg-22-4203-2025, https://doi.org/10.5194/bg-22-4203-2025, 2025
Short summary
Short summary
Ground-level ozone (O3), heat, and water stress (WS) reduce wheat yields, threatening food security in India. O3, heat, and WS interact as stressed plants close stomata, limiting O3 entry and damage. This study models O3 uptake under rainfed (WS) and irrigated conditions for current and future climates. Results show little O3-related yield loss under WS but higher losses with irrigation. Both climate scenarios increase O3-related losses, highlighting risks to India’s wheat productivity.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Per Erik Karlsson, Patrick Büker, Sam Bland, David Simpson, Katrina Sharps, Felicity Hayes, and Lisa D. Emberson
Biogeosciences, 22, 3563–3582, https://doi.org/10.5194/bg-22-3563-2025, https://doi.org/10.5194/bg-22-3563-2025, 2025
Short summary
Short summary
Stomatal ozone uptake and the negative impacts on forest growth rates were estimated for European forests. This was translated to annual increments in the forest living biomass carbon stocks, with and without ozone exposure. In the absence of O3 exposure, on average, European forest growth rates would increase by 9%, but the sequestration to the living-biomass carbon stocks would increase by 31% since the sequestration depends on the difference between growth and harvest rates.
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
Biogeosciences, 22, 1035–1056, https://doi.org/10.5194/bg-22-1035-2025, https://doi.org/10.5194/bg-22-1035-2025, 2025
Short summary
Short summary
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential for nutrition, like lysine and methionine. Here, we improve the DO3SE-CropN model to simulate wheat’s protective processes against O3 and their impact on protein and amino acid concentrations. While the model captures O3-induced yield losses, it underestimates amino acid reductions. Further research is needed to refine the model, enabling future risk assessments of O3's impact on yields and nutrition.
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
EGUsphere, https://doi.org/10.5194/egusphere-2025-429, https://doi.org/10.5194/egusphere-2025-429, 2025
Short summary
Short summary
The risk of ozone pollution to plants is estimated based on the flux through the plant pores which still has uncertainties. In this study, we estimate this quantity with 9 models at different land types worldwide. The input data stems from a database. The models estimated mostly reasonable summertime ozone deposition. The different results of the models varied by land cover which were mostly related to the moisture deficit. This is an important step for assessing the ozone impact on vegetation.
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025, https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Short summary
The DO3SE-Crop model extends the DO3SE to simulate ozone's impact on crops with modules for ozone uptake, damage, and crop growth from JULES-crop. It's versatile, suits China's varied agriculture, and improves yield predictions under ozone stress. It is essential for policy, water management, and climate response, and it integrates into Earth system models for a comprehensive understanding of agriculture's interaction with global systems.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024, https://doi.org/10.5194/gmd-17-2547-2024, 2024
Short summary
Short summary
The effects of ozone (O3) stress on crop photosynthesis and leaf senescence were added to maize, rice, soybean, and wheat crop models. The modified models reproduced growth and yields under different O3 levels measured in field experiments and reported in the literature. The combined interactions between O3 and additional stresses were reproduced with the new models. These updated crop models can be used to simulate impacts of O3 stress under future climate change and air pollution scenarios.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Håkan Pleijel, Jenny Klingberg, Michelle Nerentorp, Malin C. Broberg, Brigitte Nyirambangutse, John Munthe, and Göran Wallin
Biogeosciences, 18, 6313–6328, https://doi.org/10.5194/bg-18-6313-2021, https://doi.org/10.5194/bg-18-6313-2021, 2021
Short summary
Short summary
Mercury is a problematic metal in the environment. It is crucial to understand the Hg circulation in ecosystems. We explored the mercury concentration in foliage from a diverse set of plants, locations and sampling periods to study the accumulation of Hg in leaves–needles over time. Mercury was always higher in older tissue: in broadleaved trees, conifers and wheat. Specific leaf area, the leaf area per unit leaf mass, turned out to be critical for Hg accumulation in leaves–needles.
Stefanie Falk, Ane V. Vollsnes, Aud B. Eriksen, Lisa Emberson, Connie O'Neill, Frode Stordal, and Terje Koren Berntsen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-260, https://doi.org/10.5194/bg-2021-260, 2021
Revised manuscript not accepted
Short summary
Short summary
Subarctic vegetation is threatened by climate change and ozone. We assess essential climate variables in 2018/19. 2018 was warmer and brighter than usual in Spring with forest fires and elevated ozone in summer. Visible damage was observed on plant species in 2018. We find that generic parameterizations used in modeling ozone dose do not suffice. We propose a method to acclimate these parameterizations and find an ozone-induced biomass loss of 2.5 to 17.4 % (up to 6 % larger than default).
Cited articles
Agathokleous, E., Kitao, M., and Calabrese, E. J.: Hormesis: A Compelling Platform for Sophisticated Plant Science, Trends Plant Sci., 24, 318–327, https://doi.org/10.1016/j.tplants.2019.01.004, 2019.
Baqasi, L. A., Qari, H. A., Al Nahhas, N., Badr, R. H., Taia, W. K., El Dakkak, R., and Hassan, I. A.: Effects of low concentrations of ozone (O3) on metabolic and physiological attributes in wheat (Triticum aestivum L.) pants, Biomed. Pharmacol. J., 11, 929–934, https://doi.org/10.13005/bpj/1450, 2018.
Barraclough, P. B., Lopez-Bellido, R., and Hawkesford, M. J.: Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat, Field Crop. Res., 156, 242–248, https://doi.org/10.1016/j.fcr.2013.10.004, 2014.
Ben Mariem, S., Soba, D., Zhou, B., Loladze, I., Morales, F., and Aranjuelo, I.: Climate Change, Crop Yields, and Grain Quality of C3 Cereals: A Meta-Analysis of [CO2], Temperature, and Drought Effects, Plants, 10, 1–19, https://doi.org/10.3390/plants10061052, 2021.
Bertheloot, J., Andrieu, B., Fournier, C., and Martre, P.: A process-based model to simulate nitrogen distribution in wheat (Triticum aestivum) during grain-filling, Funct. Plant Biol., 35, 781–796, https://doi.org/10.1071/FP08064, 2008.
Bielenberg, D. G., Lynch, J. P., and Pell, E. J.: Nitrogen dynamics during O3-induced accelerated senescence in hybrid poplar, Plant Cell Environ., 25, 501–512, https://doi.org/10.1046/j.1365-3040.2002.00828.x, 2002.
Bland, S.: SEI-DO3SE/pyDO3SE-open: V4.39.11 (v4.39.11), Zenodo [code], https://doi.org/10.5281/zenodo.11620482, 2024.
Bogard, M., Jourdan, M., Allard, V., Martre, P., Perretant, M. R., Ravel, C., Heumez, E., Orford, S., Snape, J., Griffiths, S., Gaju, O., Foulkes, J., and Le Gouis, J.: Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs, J. Exp. Bot., 62, 3621–3636, https://doi.org/10.1093/jxb/err061, 2011.
Brewster, C.: Ground level ozone and wheat: an exploration of effects on yield, interactions with nitrogen, and potential sources of sensitivity and tolerance, 170 pp., 2023.
Brewster, C., Fenner, N., and Hayes, F.: Chronic ozone exposure affects nitrogen remobilization in wheat at key growth stages, Sci. Total Environ., 908, 168288, https://doi.org/10.1016/j.scitotenv.2023.168288, 2024.
Broberg, M. C., Feng, Z., Xin, Y., and Pleijel, H.: Ozone effects on wheat grain quality – A summary, Environ. Pollut., 197, 203–213, https://doi.org/10.1016/j.envpol.2014.12.009, 2015.
Broberg, M. C., Uddling, J., Mills, G., and Pleijel, H.: Fertilizer efficiency in wheat is reduced by ozone pollution, Sci. Total Environ., 607–608, 876–880, https://doi.org/10.1016/j.scitotenv.2017.07.069, 2017.
Broberg, M. C., Högy, P., Feng, Z., and Pleijel, H.: Effects of elevated CO2 on wheat yield: Non-linear response and relation to site productivity, Agronomy, 9, 1–18, https://doi.org/10.3390/agronomy9050243, 2019.
Broberg, M. C., Xu, Y., Feng, Z., and Pleijel, H.: Harvest index and remobilization of 13 elements during wheat grain filling: Experiences from ozone experiments in China and Sweden, Field Crop. Res., 271, 108259, https://doi.org/10.1016/j.fcr.2021.108259, 2021.
Broberg, M. C., Hayes, F., Harmens, H., Uddling, J., Mills, G., and Pleijel, H.: Effects of ozone, drought and heat stress on wheat yield and grain quality, Agr. Ecosyst. Environ., 352, 108505, https://doi.org/10.1016/j.agee.2023.108505, 2023.
Büker, P., Morrissey, T., Briolat, A., Falk, R., Simpson, D., Tuovinen, J.-P., Alonso, R., Barth, S., Baumgarten, M., Grulke, N., Karlsson, P. E., King, J., Lagergren, F., Matyssek, R., Nunn, A., Ogaya, R., Peñuelas, J., Rhea, L., Schaub, M., Uddling, J., Werner, W., and Emberson, L. D.: DO3SE modelling of soil moisture to determine ozone flux to forest trees, Atmos. Chem. Phys., 12, 5537–5562, https://doi.org/10.5194/acp-12-5537-2012, 2012.
Cariboni, J., Gatelli, D., Liska, R., and Saltelli, A.: The role of sensitivity analysis in ecological modelling, Ecol. Model., 203, 167–182, https://doi.org/10.1016/j.ecolmodel.2005.10.045, 2007.
Chang-Espino, M., González-Fernández, I., Alonso, R., Araus, J. L., and Bermejo-Bermejo, V.: The effect of increased ozone levels on the stable carbon and nitrogen isotopic signature of wheat cultivars and landraces, Atmosphere-Basel, 12, 1–25, https://doi.org/10.3390/atmos12070883, 2021.
Chenu, K., Porter, J. R., Martre, P., Basso, B., Chapman, S. C., Ewert, F., Bindi, M., and Asseng, S.: Contribution of Crop Models to Adaptation in Wheat, Trends Plant Sci., 22, 472–490, https://doi.org/10.1016/j.tplants.2017.02.003, 2017.
Cho, K., Tiwari, S., Agrawal, S. B., Torres, N. L., Agrawal, M., Sarkar, A., Shibato, J., Agrawal, G. K., Kubo, A., and Rakwal, R.: Tropospheric ozone and plants: Absorption, responses, and consequences, Springer, New York, NY, 61–111, https://doi.org/10.1007/978-1-4419-8453-1_3, 2011.
Cook, J.: JoCook1997/DO3SE-CropN: Initial release (v2.0), Zenodo [code], https://doi.org/10.5281/zenodo.13771475, 2024.
Dai, L., Hayes, F., Sharps, K., Harmens, H., and Mills, G.: Nitrogen availability does not affect ozone flux-effect relationships for biomass in birch (Betula pendula) saplings, Sci. Total Environ., 660, 1038–1046, https://doi.org/10.1016/j.scitotenv.2019.01.092, 2019.
Emberson, L. D., Büker, P., Ashmore, M. R., Mills, G., Jackson, L. S., Agrawal, M., Atikuzzaman, M. D., Cinderby, S., Engardt, M., Jamir, C., Kobayashi, K., Oanh, N. T. K., Quadir, Q. F., and Wahid, A.: A comparison of North American and Asian exposure-response data for ozone effects on crop yields, Atmos. Environ., 43, 1945–1953, https://doi.org/10.1016/j.atmosenv.2009.01.005, 2009.
Emberson, L. D., Pleijel, H., Ainsworth, E. A., van den Berg, M., Ren, W., Osborne, S., Mills, G., Pandey, D., Dentener, F., Büker, P., Ewert, F., Koeble, R., and Van Dingenen, R.: Ozone effects on crops and consideration in crop models, Eur. J. Agron., 100, 19–34, https://doi.org/10.1016/j.eja.2018.06.002, 2018.
Ewert, F. and Porter, J. R.: Ozone effects on wheat in relation to CO2: Modelling short-term and long-term responses of leaf photosynthesis and leaf duration, Glob. Change Biol., 6, 735–750, https://doi.org/10.1046/j.1365-2486.2000.00351.x, 2000.
FAO: The future of food and agriculture: trends and challenges, Rome, ISBN 978-92-5-109551-5, 2017.
FAO, IFAD, UNICEF, WFP, and WHO: The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets, FAO, Rome, 320 pp., ISBN 978-92-5-132901-6, 2020.
Farquhar, G. D., Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, https://doi.org/10.1007/BF00386231, 1980.
Fatima, A., Singh, A. A., Mukherjee, A., Agrawal, M., and Agrawal, S. B.: Variability in defence mechanism operating in three wheat cultivars having different levels of sensitivity against elevated ozone, Environ. Exp. Bot., 155, 66–78, https://doi.org/10.1016/j.envexpbot.2018.06.015, 2018.
Fatima, A., Singh, A. A., Mukherjee, A., Agrawal, M., and Agrawal, S. B.: Ascorbic acid and thiols as potential biomarkers of ozone tolerance in tropical wheat cultivars, Ecotox. Environ. Safe., 171, 701–708, https://doi.org/10.1016/j.ecoenv.2019.01.030, 2019.
Feller, U. and Fischer, A.: Nitrogen metabolism in senescing leaves, Crit. Rev. Plant Sci., 13, 241–273, https://doi.org/10.1080/07352689409701916, 1994.
Feng, Z., Kobayashi, K., and Ainsworth, E. A.: Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis, Glob. Change Biol., 14, 2696–2708, https://doi.org/10.1111/j.1365-2486.2008.01673.x, 2008.
Fowler, D., Amann, M., Anderson, R., Ashmore, M., Cox, P., Depledge, M., Derwent, D., Grennfelt, P., Hewitt, N., Hov, O., Jenkin, M., Kelly, F., Liss, P., Pilling, M., Pyle, J., Slingo, J., and Stevenson, D.: Ground-level ozone in the 21st century: future trends, impacts and policy implications, The Royal Society, ISBN 978-0-85403-713-1, 134 pp., 2008.
Fu, T. M. and Tian, H.: Climate Change Penalty to Ozone Air Quality: Review of Current Understandings and Knowledge Gaps, Curr. Pollut. Reports, 5, 159–171, https://doi.org/10.1007/s40726-019-00115-6, 2019.
Gaju, O., Allard, V., Martre, P., Le Gouis, J., Moreau, D., Bogard, M., Hubbart, S., and Foulkes, M. J.: Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars, Field Crop. Res., 155, 213–223, https://doi.org/10.1016/j.fcr.2013.09.003, 2014.
Gelang, J., Pleijel, H., Sild, E., Danielsson, H., Younis, S., and Selldén, G.: Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum) exposed to different concentrations of ozone, Physiol. Plantarum, 110, 366–375, https://doi.org/10.1111/j.1399-3054.2000.1100311.x, 2000.
Guarin, J. R., Kassie, B., Mashaheet, A. M., Burkey, K., and Asseng, S.: Modeling the effects of tropospheric ozone on wheat growth and yield, Eur. J. Agron., 105, 13–23, https://doi.org/10.1016/j.eja.2019.02.004, 2019.
Guo, J., Qu, L., Hu, Y., Lu, W., and Lu, D.: Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize, BMC Plant Biol., 21, 1–14, https://doi.org/10.1186/s12870-021-03214-z, 2021.
Havé, M., Marmagne, A., Chardon, F., and Masclaux-Daubresse, C.: Nitrogen remobilization during leaf senescence: Lessons from Arabidopsis to crops, J. Exp. Bot., 68, 2513–2529, https://doi.org/10.1093/jxb/erw365, 2017.
Herman, J. and Usher, W.: SALib Documentation, https://doi.org/10.21105/joss.00097, 2019.
Kamal, N. M., Gorafi, Y. S. A., Abdelrahman, M., Abdellatef, E., and Tsujimoto, H.: Stay-green trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals, Int. J. Mol. Sci., 20, 5837, https://doi.org/10.3390/ijms20235837, 2019.
Kang, J., Chu, Y., Ma, G., Zhang, Y., Zhang, X., Wang, M., Lu, H., Wang, L., Kang, G., Ma, D., Xie, Y., and Wang, C.: Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency, Crop J., 11, 638–650, https://doi.org/10.1016/j.cj.2022.06.010, 2023.
Khanna-Chopra, R.: Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation, Protoplasma, 249, 469–481, https://doi.org/10.1007/s00709-011-0308-z, 2012.
Lawlor, D. W.: Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems, J. Exp. Bot., 53, 773–787, https://doi.org/10.1093/jxb/53.370.773, 2002.
Liu, J., Feng, H., He, J., Chen, H., and Ding, D.: The effects of nitrogen and water stresses on the nitrogen-to-protein conversion factor of winter wheat, Agr. Water Manage., 210, 217–223, https://doi.org/10.1016/j.agwat.2018.07.042, 2018.
Liu, J., Feng, H., He, J., Chen, H., Ding, D., Luo, X., and Dong, Q.: Modeling wheat nutritional quality with a modified CERES-wheat model, Eur. J. Agron., 109, 125901, https://doi.org/10.1016/j.eja.2019.03.005, 2019.
Liu, Y., Zhang, P., Li, M., Chang, L., Cheng, H., Chai, S., and Yang, D.: Dynamic responses of accumulation and remobilization of water soluble carbohydrates in wheat stem to drought stress, Plant Physiol. Bioch., 155, 262–270, https://doi.org/10.1016/j.plaphy.2020.07.024, 2020.
Mariotti, F., Tomé, D., and Mirand, P. P.: Converting nitrogen into protein – Beyond 6.25 and Jones' factors, Crit. Rev. Food Sci., 48, 177–184, https://doi.org/10.1080/10408390701279749, 2008.
Martre, P., Jamieson, P. D., Semenov, M. A., Zyskowski, R. F., Porter, J. R., and Triboi, E.: Modelling protein content and composition in relation to crop nitrogen dynamics for wheat, Eur. J. Agron., 25, 138–154, https://doi.org/10.1016/j.eja.2006.04.007, 2006.
Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L., Fernández, I. G., Grünhage, L., Harmens, H., Hayes, F., Karlsson, P. E., and Simpson, D.: New stomatal flux-based critical levels for ozone effects on vegetation, Atmos. Environ., 45, 5064–5068, https://doi.org/10.1016/j.atmosenv.2011.06.009, 2011.
Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.: Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health, Elem. Sci. Anthr., 6, 47, https://doi.org/10.1525/elementa.302, 2018a.
Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., Jaramillo, F., Davies, W. J., Dentener, F., Van den Berg, M., Agrawal, M., Agrawal, S. B., Ainsworth, E. A., Büker, P., Emberson, L., Feng, Z., Harmens, H., Hayes, F., Kobayashi, K., Paoletti, E., and Van Dingenen, R.: Ozone pollution will compromise efforts to increase global wheat production, Glob. Change Biol., 24, 3560–3574, https://doi.org/10.1111/gcb.14157, 2018b.
Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Uddling, J., Broberg, M., Feng, Z., Kobayashi, K., and Agrawal, M.: Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance, Glob. Change Biol., 24, 4869–4893, https://doi.org/10.1111/gcb.14381, 2018c.
Mishra, A. K., Rai, R., and Agrawal, S. B.: Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defence system, Indian J. Biochem. Bio., 50, 139–149, 2013.
Nagarajan, S., Rane, J., Maheswari, M., and Gambhir, N.: Effect of Post-Anthesis Water Stress on Accumulation of Dry Matter, Carbon and Nitrogen and Their Partitioning in Wheat Varieties Differing in Drought Tolerance, J. Agron. Crop Sci., 183, 129–136, https://doi.org/10.1046/j.1439-037x.1999.00326.x, 1999.
Nehe, A. S., Misra, S., Murchie, E. H., Chinnathambi, K., Singh Tyagi, B., and Foulkes, M. J.: Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and protein concentration in Indian wheat cultivars, Field Crop. Res., 251, 107778, https://doi.org/10.1016/j.fcr.2020.107778, 2020.
Nguyen, T. H., Cappelli, G. A., Emberson, L., Ignacio, G. F., Irimescu, A., Francesco, S., Fabrizio, G., Booth, N., Boldeanu, G., Bermejo, V., Bland, S., Frei, M., Ewert, F., and Gaiser, T.: Assessing the spatio-temporal tropospheric ozone and drought impacts on leaf growth and grain yield of wheat across Europe through crop modeling and remote sensing data, Eur. J. Agron., 153, 127052, https://doi.org/10.1016/j.eja.2023.127052, 2024.
Osborne, S., Pandey, D., Mills, G., Hayes, F., Harmens, H., Gillies, D., Büker, P., and Emberson, L.: New insights into leaf physiological responses to ozone for use in crop modelling, Plants, 8, 84, https://doi.org/10.3390/plants8040084, 2019.
Osborne, T., Gornall, J., Hooker, J., Williams, K., Wiltshire, A., Betts, R., and Wheeler, T.: JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator, Geosci. Model Dev., 8, 1139–1155, https://doi.org/10.5194/gmd-8-1139-2015, 2015.
Pande, P., Bland, S., Booth, N., Cook, J., Feng, Z., and Emberson, L.: Developing the DO3SE-crop model for Xiaoji, China, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-694, 2024a.
Pande, P., Hayes, F., Bland, S., Booth, N., Pleijel, H., and Emberson, L. D.: Ozone dose-response relationships for wheat can be derived using photosynthetic-based stomatal conductance models, Agr. Forest Meteorol., 356, 110150, https://doi.org/10.1016/j.agrformet.2024.110150, 2024b.
Pandey, A. K., Ghosh, A., Agrawal, M., and Agrawal, S. B.: Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality, Ecotox. Environ. Safe., 158, 59–68, https://doi.org/10.1016/j.ecoenv.2018.04.014, 2018.
Panozzo, J. F. and Eagles, H. A.: Rate and duration of grain filling and grain nitrogen accumulation of wheat cultivars grown in different environments, Aust. J. Agr. Res., 50, 1007–1015, https://doi.org/10.1071/AR98146, 1999.
Paoletti, E. and Grulke, N. E.: Ozone exposure and stomatal sluggishness in different plant physiognomic classes, Environ. Pollut., 158, 2664–2671, https://doi.org/10.1016/j.envpol.2010.04.024, 2010.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python Fabian, J. Mach. Learn. Res., 12, 2825–2830, https://doi.org/10.48550/arXiv.1201.0490, 2011.
Piikki, K., De Temmerman, L., Ojanperä, K., Danielsson, H., and Pleijel, H.: The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure, Eur. J. Agron., 28, 245–254, https://doi.org/10.1016/j.eja.2007.07.004, 2008.
Pilbeam, D. J.: The Utilization of Nitrogen by Plants: A Whole Plant Perspective, Wiley, New York, 305–351, https://doi.org/10.1002/9781444328608.ch13, 2010.
Rai, R. and Agrawal, M.: Impact of tropospheric ozone on crop plants, P. Natl. A. Sci. India B, 82, 241–257, https://doi.org/10.1007/s40011-012-0032-2, 2012.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis: The Primer, John Wiley & Sons Ltd, Chichester, https://doi.org/10.1111/j.1751-5823.2008.00062_17.x, 2008.
Sanchez-Bragado, R., Serret, M. D., and Araus, J. L.: The nitrogen contribution of different plant parts to wheat grains: Exploring genotype, water, and nitrogen effects, Front. Plant Sci., 7, 1–14, https://doi.org/10.3389/fpls.2016.01986, 2017.
Sarkar, A., Rakwal, R., Agrawal, S. B., Shibato, J., Ogawa, Y., Yoshida, Y., Kumar Agrawal, G., and Agrawal, M.: Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches, J. Proteome Res., 9, 4565–4584, https://doi.org/10.1021/pr1002824, 2010.
scikit-learn developers: sklearn.metrics.r2_score; scikit-learn 1.3.2 documentation: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html, last access: 17 April 2024.
Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., and Muricho, G.: Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security, Food Secur., 5, 291–317, https://doi.org/10.1007/s12571-013-0263-y, 2013.
Silvestro, P. C., Pignatti, S., Yang, H., Yang, G., Pascucci, S., Castaldi, F., and Casa, R.: Sensitivity analysis of the Aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications, PLoS One, 12, 1–30, https://doi.org/10.1371/journal.pone.0187485, 2017.
Soltani, A. and Sinclair, T. R.: Modeling physiology of crop development, growth and yield, edited by: Soltani, A. and Sinclair, T. R., CAB International, 336 pp., https://doi.org/10.1079/9781845939700.0001, 2012.
Sultana, N., Islam, S., Juhasz, A., and Ma, W.: Wheat leaf senescence and its regulatory gene network, Crop J., 9, 703–717, https://doi.org/10.1016/j.cj.2021.01.004, 2021.
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D., Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger, N., and Zanis, P.: Short-lived Climate Forcers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 817–922, https://doi.org/10.1017/9781009157896.008, 2021.
Tkachuk, R.: Nitrogen-to-protein conversion factors for cereals and oilseed meals, Cereal Chem., 46, 419–424, 1969.
Triboi, E. and Triboi-Blondel, A. M.: Productivity and grain or seed composition: A new approach to an old problem – Invited paper, Eur. J. Agron., 16, 163–186, https://doi.org/10.1016/S1161-0301(01)00146-0, 2002.
van Keulen, H. and Seligman, N. H.: Simulation of water use, nitrogen nutrition and growth of a spring wheat crop, Pudoc, Wageningen, https://doi.org/10.1017/S0021859600081582, 1987.
Vazquez-Cruz, M. A., Guzman-Cruz, R., Lopez-Cruz, I. L., Cornejo-Perez, O., Torres-Pacheco, I., and Guevara-Gonzalez, R. G.: Global sensitivity analysis by means of EFAST and Sobol' methods and calibration of reduced state-variable TOMGRO model using genetic algorithms, Comput. Electron. Agr., 100, 1–12, https://doi.org/10.1016/j.compag.2013.10.006, 2014.
Wang, E. and Engel, T.: Simulation of growth, water and nitrogen uptake of a wheat crop using the SPASS model, Environ. Modell. Softw., 17, 387–402, https://doi.org/10.1016/S1364-8152(02)00006-3, 2002.
Wang, Y. and Frei, M.: Stressed food – The impact of abiotic environmental stresses on crop quality, Agr. Ecosyst. Environ., 141, 271–286, https://doi.org/10.1016/j.agee.2011.03.017, 2011.
Xu, B., Wang, T., Gao, L., Ma, D., Song, R., Zhao, J., Yang, X., Li, S., Zhuang, B., Li, M., and Xie, M.: Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060, Environ. Pollut., 317, 120715, https://doi.org/10.1016/j.envpol.2022.120715, 2023.
Yadav, A., Bhatia, A., Yadav, S., Kumar, V., and Singh, B.: The effects of elevated CO2 and elevated O3 exposure on plant growth, yield and quality of grains of two wheat cultivars grown in north India, Heliyon, 5, e02317, https://doi.org/10.1016/j.heliyon.2019.e02317, 2019.
Yadav, D. S., Rai, R., Mishra, A. K., Chaudhary, N., Mukherjee, A., Agrawal, S. B., and Agrawal, M.: ROS production and its detoxification in early and late sown cultivars of wheat under future O3 concentration, Sci. Total Environ., 659, 200–210, https://doi.org/10.1016/j.scitotenv.2018.12.352, 2019.
Yadav, D. S., Mishra, A. K., Rai, R., Chaudhary, N., Mukherjee, A., Agrawal, S. B., and Agrawal, M.: Responses of an old and a modern Indian wheat cultivar to future O3 level: Physiological, yield and grain quality parameters, Environ. Pollut., 259, 113939, https://doi.org/10.1016/j.envpol.2020.113939, 2020.
Zanis, P., Akritidis, D., Turnock, S., Naik, V., Szopa, S., Georgoulias, A. K., Bauer, S. E., Deushi, M., Horowitz, L. W., Keeble, J., Le Sager, P., O'Connor, F. M., Oshima, N., Tsigaridis, K., and Van Noije, T.: Climate change penalty and benefit on surface ozone: A global perspective based on CMIP6 earth system models, Environ. Res. Lett., 17, 024014, https://doi.org/10.1088/1748-9326/ac4a34, 2022.
Zhang, J., Chen, W., Dell, B., Vergauwen, R., Zhang, X., Mayer, J. E., and Van den Ende, W.: Wheat genotypic variation in dynamic fluxes of WSC components in different stem segments under drought during grain filling, Front. Plant Sci., 6, 1–11, https://doi.org/10.3389/fpls.2015.00624, 2015.
Zhao, D., Derkx, A. P., Liu, D. C., Buchner, P., and Hawkesford, M. J.: Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat, Plant Biol., 17, 904–913, https://doi.org/10.1111/plb.12296, 2015.
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the...
Altmetrics
Final-revised paper
Preprint