Articles | Volume 21, issue 22
https://doi.org/10.5194/bg-21-5305-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-5305-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microbial response to deliquescence of nitrate-rich soils in the hyperarid Atacama Desert
Felix L. Arens
CORRESPONDING AUTHOR
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, 10623 Berlin, Germany
Alessandro Airo
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, 10623 Berlin, Germany
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
Christof Sager
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, 10623 Berlin, Germany
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
Hans-Peter Grossart
Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
Institute for Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
Kai Mangelsdorf
Organic Geochemistry Section, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Rainer U. Meckenstock
Environmental Microbiology and Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
Mark Pannekens
Environmental Microbiology and Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
Philippe Schmitt-Kopplin
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Analytical Food Chemistry, Technische Universität München, 85354 Freising, Germany
Jenny Uhl
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Bernardita Valenzuela
Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile
Pedro Zamorano
Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
Luca Zoccarato
Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
Core Facility Bioinformatics, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
Institute of Computational Biology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
Dirk Schulze-Makuch
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, 10623 Berlin, Germany
Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
Geomicrobiology Section, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Related authors
No articles found.
Angelika Graiff, Matthias Braun, Amelie Driemel, Jörg Ebbing, Hans-Peter Grossart, Tilmann Harder, Joseph I. Hoffman, Boris Koch, Florian Leese, Judith Piontek, Mirko Scheinert, Petra Quillfeldt, Jonas Zimmermann, and Ulf Karsten
Polarforschung, 91, 45–57, https://doi.org/10.5194/polf-91-45-2023, https://doi.org/10.5194/polf-91-45-2023, 2023
Short summary
Short summary
There are many approaches to better understanding Antarctic processes that generate very large data sets (
Antarctic big data). For these large data sets there is a pressing need for improved data acquisition, curation, integration, service, and application to support fundamental scientific research, and this article describes and evaluates the current status of big data in various Antarctic scientific disciplines, identifies current gaps, and provides solutions to fill these gaps.
Loeka L. Jongejans, Kai Mangelsdorf, Cornelia Karger, Thomas Opel, Sebastian Wetterich, Jérémy Courtin, Hanno Meyer, Alexander I. Kizyakov, Guido Grosse, Andrei G. Shepelev, Igor I. Syromyatnikov, Alexander N. Fedorov, and Jens Strauss
The Cryosphere, 16, 3601–3617, https://doi.org/10.5194/tc-16-3601-2022, https://doi.org/10.5194/tc-16-3601-2022, 2022
Short summary
Short summary
Large parts of Arctic Siberia are underlain by permafrost. Climate warming leads to permafrost thaw. At the Batagay megaslump, permafrost sediments up to ~ 650 kyr old are exposed. We took sediment samples and analysed the organic matter (e.g. plant remains). We found distinct differences in the biomarker distributions between the glacial and interglacial deposits with generally stronger microbial activity during interglacial periods. Further permafrost thaw enhances greenhouse gas emissions.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018, https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Short summary
Arctic warming mobilizes belowground organic matter in northern high latitudes. This study focused on the size of organic carbon pools and organic matter quality in ice-rich permafrost on the Baldwin Peninsula, West Alaska. We analyzed biogeochemistry and found that three-quarters of the carbon is stored in degraded permafrost deposits. Nonetheless, using biomarker analyses, we showed that the organic matter in undisturbed yedoma permafrost has a higher potential for decomposition.
Janina G. Stapel, Georg Schwamborn, Lutz Schirrmeister, Brian Horsfield, and Kai Mangelsdorf
Biogeosciences, 15, 1969–1985, https://doi.org/10.5194/bg-15-1969-2018, https://doi.org/10.5194/bg-15-1969-2018, 2018
Short summary
Short summary
Climate warming in the Arctic results in thawing of permafrost deposits. This promotes the accessibility of freeze-locked old organic matter (OM) accumulated during the past. Characterizing OM of different depositional ages, we were able to show that OM from last glacial Yedoma deposits possess the highest potential to provide organic substrates such as acetate for microbial greenhouse gas production and therefore to accelerate the carbon–climate feedback cycle during ongoing global warming.
Michael Gonsior, Juliana Valle, Philippe Schmitt-Kopplin, Norbert Hertkorn, David Bastviken, Jenna Luek, Mourad Harir, Wanderley Bastos, and Alex Enrich-Prast
Biogeosciences, 13, 4279–4290, https://doi.org/10.5194/bg-13-4279-2016, https://doi.org/10.5194/bg-13-4279-2016, 2016
Short summary
Short summary
We present in this study a highly diverse and complex chemodiversity of dissolved organic matter (DOM) in the Amazon Basin analyzed by modern ultrahigh-resolution mass spectrometry and optical property analyses. DOM within the Rio Madeira (white water), Rio Negro (black water) and Rio Tapajós (clear water) area showed a large overlap of thousands of molecular formulae, but also unique signatures were apparent for each region, with significant correlations to colored DOM.
Norbert Hertkorn, Mourad Harir, Kaelin M. Cawley, Philippe Schmitt-Kopplin, and Rudolf Jaffé
Biogeosciences, 13, 2257–2277, https://doi.org/10.5194/bg-13-2257-2016, https://doi.org/10.5194/bg-13-2257-2016, 2016
Short summary
Short summary
Wetlands commonly feature high levels of natural dissolved organic matter (DOM), a critical component in their biogeochemical functions. Here we describe the first detailed, comparative, molecular characterization of DOM in three sub-tropical, pulsed, wetlands, using optical properties, high field nuclear magnetic resonance and ultrahigh resolution mass spectrometry, and compare compositional features to variations in organic matter sources and flooding characteristics.
M. Gonsior, P. Schmitt-Kopplin, and D. Bastviken
Biogeosciences, 10, 6945–6956, https://doi.org/10.5194/bg-10-6945-2013, https://doi.org/10.5194/bg-10-6945-2013, 2013
Related subject area
Astrobiology and Exobiology: Extreme Environments, Brines & Hydrothermal
Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge
Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring
Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia)
Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community
Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments
Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge
Novel water source for endolithic life in the hyperarid core of the Atacama Desert
Experimental fossilisation of viruses from extremophilic Archaea
Yann Lelièvre, Jozée Sarrazin, Julien Marticorena, Gauthier Schaal, Thomas Day, Pierre Legendre, Stéphane Hourdez, and Marjolaine Matabos
Biogeosciences, 15, 2629–2647, https://doi.org/10.5194/bg-15-2629-2018, https://doi.org/10.5194/bg-15-2629-2018, 2018
Short summary
Short summary
The Main Endeavour vent field, a Marine Protected Area, is a target site for the cabled observatory Ocean Networks Canada, providing unprecedented opportunities to better understand vent ecosystem functioning. We report the diversity and food webs of six faunal communities associated with siboglinid tubeworms of the Grotto edifice. Better knowledge of the ecological functioning of these communities will help in assessing the role of the MPA as a management tool for hydrothermal vents ecosystems.
Shun Chen, Xiaotong Peng, Hengchao Xu, and Kaiwen Ta
Biogeosciences, 13, 2051–2060, https://doi.org/10.5194/bg-13-2051-2016, https://doi.org/10.5194/bg-13-2051-2016, 2016
Short summary
Short summary
The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, in combination of culture-independent and culture-dependent approaches, we provide direct evidences that ammonia-oxidizing Archaea (AOA) are indeed responsible for the major portion of ammonia oxidation in high-temperature hot springs.
C. Monnin, V. Chavagnac, C. Boulart, B. Ménez, M. Gérard, E. Gérard, C. Pisapia, M. Quéméneur, G. Erauso, A. Postec, L. Guentas-Dombrowski, C. Payri, and B. Pelletier
Biogeosciences, 11, 5687–5706, https://doi.org/10.5194/bg-11-5687-2014, https://doi.org/10.5194/bg-11-5687-2014, 2014
L. A. Ziolkowski, N. C. S. Mykytczuk, C. R. Omelon, H. Johnson, L. G. Whyte, and G. F. Slater
Biogeosciences, 10, 7661–7675, https://doi.org/10.5194/bg-10-7661-2013, https://doi.org/10.5194/bg-10-7661-2013, 2013
D. de Beer, M. Haeckel, J. Neumann, G. Wegener, F. Inagaki, and A. Boetius
Biogeosciences, 10, 5639–5649, https://doi.org/10.5194/bg-10-5639-2013, https://doi.org/10.5194/bg-10-5639-2013, 2013
A. Bourbonnais, S. K. Juniper, D. A. Butterfield, A. H. Devol, M. M. M. Kuypers, G. Lavik, S. J. Hallam, C. B. Wenk, B. X. Chang, S. A. Murdock, and M. F. Lehmann
Biogeosciences, 9, 4661–4678, https://doi.org/10.5194/bg-9-4661-2012, https://doi.org/10.5194/bg-9-4661-2012, 2012
J. Wierzchos, A. F. Davila, I. M. Sánchez-Almazo, M. Hajnos, R. Swieboda, and C. Ascaso
Biogeosciences, 9, 2275–2286, https://doi.org/10.5194/bg-9-2275-2012, https://doi.org/10.5194/bg-9-2275-2012, 2012
F. Orange, A. Chabin, A. Gorlas, S. Lucas-Staat, C. Geslin, M. Le Romancer, D. Prangishvili, P. Forterre, and F. Westall
Biogeosciences, 8, 1465–1475, https://doi.org/10.5194/bg-8-1465-2011, https://doi.org/10.5194/bg-8-1465-2011, 2011
Cited articles
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389–3402, 1997.
Amundson, R., Dietrich, W., Bellugi, D., Ewing, S., Nishiizumi, K., Chong, G., Owen, J., Finkel, R., Heimsath, A., Stewart, B., and Caffee, M.: Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert, Geol. Soc. Am. Bull., 124, 1048–1070, https://doi.org/10.1130/B30445.1, 2012.
Ansari, F. A., Ali, S. N., and Mahmood, R.: Sodium nitrite-induced oxidative stress causes membrane damage, protein oxidation, lipid peroxidation and alters major metabolic pathways in human erythrocytes, Toxicol. Vitro, 29, 1878–1886, 2015.
Araya, J. P., González, M., Cardinale, M., Schnell, S., and Stoll, A.: Microbiome dynamics associated with the Atacama flowering desert, Front. Microbiol., 10, 3160, https://doi.org/10.3389/fmicb.2019.03160, 2020.
Archer, D. G.: Thermodynamic properties of the NaNO3 + H2O system, J. Phys. Chem. Ref. Data, 29, 1141–1156, 2000.
Arens, F. L., Airo, A., Feige, J., Sager, C., Wiechert, U., and Schulze-Makuch, D.: Geochemical proxies for water-soil interactions in the hyperarid Atacama Desert, Chile, CATENA, 206, 105531, https://doi.org/10.1016/j.catena.2021.105531, 2021.
Arens, F. L., Airo, A., Sager, C., Grossart, H.-P., Mangelsdorf, K., Meckenstock, R. U., Pannekens, M., Schmitt-Kopplin, P., Uhl, J., Valenzuela, B., Zamorano, P., Zoccarato, L., and Schulze-Makuch, D.: Microbial response to deliquescence of nitrate-rich soils in the hyperarid Atacama Desert – research data, TU Berlin [data set], https://doi.org/10.14279/depositonce-21515, 2024.
Artieda, O., Davila, A., Wierzchos, J., Buhler, P., Rodríguez-Ochoa, R., Pueyo, J., and Ascaso, C.: Surface evolution of salt-encrusted playas under extreme and continued dryness, Earth Surf. Proc. Land., 40, 1939–1950, https://doi.org/10.1002/esp.3771, 2015.
Azua-Bustos, A., González-Silva, C., and Fernández-Martínez, M. Á.: Aeolian transport of viable microbial life across the Atacama Desert, Chile: Implications for Mars, Sci. Rep., 9, 11024, https://doi.org/10.1038/s41598-019-47394-z, 2019.
Azua-Bustos, A., Fairén, A. G., Silva, C. G., Carrizo, D., Fernández-Martínez, M. Á., Arenas-Fajardo, C., Fernández-Sampedro, M., Gil-Lozano, C., Sánchez-García, L., Ascaso, C., Wierzchos, J., and Rampe, E. B.: Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars, Sci. Rep., 10, 19183, https://doi.org/10.1038/s41598-020-76302-z, 2020.
Bibring, J.-P., Langevin, Y., Mustard, J. F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., Berthé, M., Bibring, J.-P., Gendrin, A., Gomez, C., Gondet, B., Jouglet, D., Poulet, F., Soufflot, A., Vincendon, M., Combes, M., Drossart, P., Encrenaz, T., Fouchet, T., Merchiorri, R., Belluci, G. C., Altieri, F., Formisano, V., Capaccioni, F., Cerroni, P., Coradini, A., Fonti, S., Korablev, O., Kottsov, V., Ignatiev, N., Moroz, V., Titov, D., Zasova, L., Loiseau, D., Mangold, N., Pinet, P., Douté, S., Schmitt, B., Sotin, C., Hauber, E., Hoffmann, H., Jaumann, R., Keller, U., Arvidson, R., Mustard, J. F., Duxbury, T., Forget, F., and Neukum, G.: Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 312, 400–404, https://doi.org/10.1126/science.1122659, 2006.
Blagodatskaya, E. and Kuzyakov, Y.: Active microorganisms in soil: critical review of estimation criteria and approaches, Soil Biol. Biochem., 67, 192–211, 2013.
Bozkurt, D., Rondanelli, R., Garreaud, R., and Arriagada, A.: Impact of warmer eastern tropical Pacific SST on the March 2015 Atacama floods, Mon. Weather Rev., 144, 4441–4460, 2016.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Meth., 13, 581–583, 2016.
Cockell, C. S., Wilhelm, M. B., Perl, S., Wadsworth, J., Payler, S., McMahon, S., Paling, S., and Edwards, T.: 0.25 Ga salt deposits preserve signatures of habitable conditions and ancient lipids, Astrobiology, 20, 864–877, 2020.
Connon, S. A., Lester, E. D., Shafaat, H. S., Obenhuber, D. C., and Ponce, A.: Bacterial diversity in hyperarid Atacama Desert soils, J. Geophys. Res., 112, G04S17, https://doi.org/10.1029/2006JG000311, 2007.
Crits-Christoph, A., Robinson, C. K., Barnum, T., Fricke, W. F., Davila, A. F., Jedynak, B., McKay, C. P., and DiRuggiero, J.: Colonization patterns of soil microbial communities in the Atacama Desert, Microbiome, 1, 1–13, 2013.
Damsté, J. S. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., and de Leeuw, J. W.: Evidence for gammacerane as an indicator of water column stratification, Geochim. Cosmochim. Ac., 59, 1895–1900, 1995.
Davila, A. F. and Schulze-Makuch, D.: The Last Possible Outposts for Life on Mars, Astrobiology, 16, 159–168, https://doi.org/10.1089/ast.2015.1380, 2016.
Davila, A. F., Hawes, I., Ascaso, C., and Wierzchos, J.: Salt deliquescence drives photosynthesis in the hyperarid Atacama Desert, Env. Microbiol. Rep., 5, 583–587, https://doi.org/10.1111/1758-2229.12050, 2013.
Dunai, T. J., González L., G., and Juez-Larré, J.: Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms, Geology, 33, 321–324, 2005.
Ericksen, G. E.: Geology and Origin of nitrate deposition in Atacama Desert, Geol. Soc. Am. Bull., https://pubs.usgs.gov/pp/1188/report.pdf (last access: 20 November 2024), 1981.
Ewing, S. A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S. S., Perry, K., Dietrich, W., McKay, C. P., and Amundson, R.: A threshold in soil formation at Earth's arid–hyperarid transition, Geochim. Cosmochim. Ac., 70, 5293–5322, https://doi.org/10.1016/j.gca.2006.08.020, 2006.
Ewing, S. A., Yang, W., DePaolo, D. J., Michalski, G., Kendall, C., Stewart, B. W., Thiemens, M., and Amundson, R.: Non-biological fractionation of stable Ca isotopes in soils of the Atacama Desert, Chile, Geochim. Cosmochim. Ac., 72, 1096–1110, https://doi.org/10.1016/j.gca.2007.10.029, 2008.
Fernández-Remolar, D. C., Chong-Díaz, G., Ruíz-Bermejo, M., Harir, M., Schmitt-Kopplin, P., Tziotis, D., Gómez-Ortíz, D., García-Villadangos, M., Martín-Redondo, M. P., Gómez, F., Rodríguez-Manfredi, J. A., Moreno-Paz, M., Diego-Castilla, G. de, Echeverría, A., Urtuvia, V. N., Blanco, Y., Rivas, L., Izawa, M. R. M., Banerjee, N. R., Demergasso, C., and Parro, V.: Molecular preservation in halite- and perchlorate-rich hypersaline subsurface deposits in the Salar Grande basin (Atacama Desert, Chile): Implications for the search for molecular biomarkers on Mars, J. Geophys. Res.-Biogeo., 118, 922–939, https://doi.org/10.1002/jgrg.20059, 2013.
Fuentes, B., Choque, A., Gómez, F., Alarcón, J., Castro-Nallar, E., Arenas, F., Contreras, D., Mörchen, R., Amelung, W., Knief, C., Moradi, G., Klumpp, E., Saavedra, C. P., Prietzel, J., Klysubun, W., Remonsellez, F., and Bol, R.: Influence of Physical-Chemical Soil Parameters on Microbiota Composition and Diversity in a Deep Hyperarid Core of the Atacama Desert, Front. Microbiol., 12, 794743, https://doi.org/10.3389/fmicb.2021.794743, 2021.
Greenspan, L.: Humidity fixed points of binary saturated aqueous solutions, J. Res. NBS Phys. Ch., 81, 89, 1977.
Gupta, D., Kim, H., Park, G., Li, X., Eom, H.-J., and Ro, C.-U.: Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates, Atmos. Chem. Phys., 15, 3379–3393, https://doi.org/10.5194/acp-15-3379-2015, 2015.
Heinz, J., Waajen, A. C., Airo, A., Alibrandi, A., Schirmack, J., and Schulze-Makuch, D.: Bacterial Growth in Chloride and Perchlorate Brines: Halotolerances and Salt Stress Responses of Planococcus halocryophilus, Astrobiology, 19, 1377–1387, https://doi.org/10.1089/ast.2019.2069, 2019.
Heinz, J., Rambags, V., and Schulze-Makuch, D.: Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines, Life, 11, 1194, https://doi.org/10.3390/life11111194, 2021.
Hwang, Y., Schulze-Makuch, D., Arens, F. L., Saenz, J. S., Adam, P. S., Sager, C., Bornemann, T. L. V., Zhao, W., Zhang, Y., Airo, A., Schloter, M., and Probst, A. J.: Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core, Microbiome, 9, 234, https://doi.org/10.1186/s40168-021-01177-9, 2021.
Hyde, A. M., Zultanski, S. L., Waldman, J. H., Zhong, Y.-L., Shevlin, M., and Peng, F.: General principles and strategies for salting-out informed by the Hofmeister series, Org. Process Res. Dev., 21, 1355–1370, 2017.
Jordan, T. E., Kirk-Lawlor, N. E., Blanco, N. P., Rech, J. A., and Cosentino, N. J.: Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile, Bulletin, 126, 1016–1046, 2014.
Knief, C., Bol, R., Amelung, W., Kusch, S., Frindte, K., Eckmeier, E., Jaeschke, A., Dunai, T., Fuentes, B., Mörchen, R., Schütte, T., Lücke, A., Klumpp, E., Kaiser, K., and Rethemeyer, J.: Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert, Global Planet. Change, 184, 103078, https://doi.org/10.1016/j.gloplacha.2019.103078, 2020.
Lester, E. D., Satomi, M., and Ponce, A.: Microflora of extreme arid Atacama Desert soils, Soil Biol. Biochem., 39, 704–708, https://doi.org/10.1016/j.soilbio.2006.09.020, 2007.
Lima Alves, F. de, Stevenson, A., Baxter, E., Gillion, J. L. M., Hejazi, F., Hayes, S., Morrison, I. E. G., Prior, B. A., McGenity, T. J., Rangel, D. E. N., and others: Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window, Curr. Genet., 61, 457–477, 2015.
Majou, D. and Christieans, S.: Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats, Meat Sci., 145, 273–284, 2018.
Mangelsdorf, K., Karger, C., and Zink, K.-G.: Phospholipids as life markers in geological habitats, Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate, Springer, 445–473, https://doi.org/10.1007/978-3-319-90569-3_12, 2020.
Manning, C. V., Zahnle, K. J., and McKay, C. P.: Impact processing of nitrogen on early Mars, Icarus, 199, 273–285, https://doi.org/10.1016/j.icarus.2008.10.015, 2009.
Martin, M.: Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, 17, 10–12, https://doi.org/10.14806/ej.17.1.200, 2011.
Maus, D., Heinz, J., Schirmack, J., Airo, A., Kounaves, S. P., Wagner, D., and Schulze-Makuch, D.: Methanogenic archaea can produce methane in deliquescence-driven Mars analog environments, Sci. Rep., 10, 6, https://doi.org/10.1038/s41598-019-56267-4, 2020.
McKay, C. P., Friedmann, E. I., Gómez-Silva, B., Cáceres-Villanueva, L., Andersen, D. T., and Landheim, R.: Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998, Astrobiology, 3, 393–406, 2003.
McMurdie, P. J. and Holmes, S.: phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data, PloS one, 8, e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Michalski, G., Böhlke, J. K., and Thiemens, M.: Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions, Geochim. Cosmochim. Ac., 68, 4023–4038, https://doi.org/10.1016/j.gca.2004.04.009, 2004.
Mitra, S., Förster-Fromme, K., Damms-Machado, A., Scheurenbrand, T., Biskup, S., Huson, D. H., and Bischoff, S. C.: Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing, BMC genomics, 14, 1–11, 2013.
Müller, K.-D., Husmann, H., and Nalik, H. P.: A new and rapid method for the assay of bacterial fatty acids using high resolution capillary gas chromatography and trimethylsulfonium hydroxide, ZBL Bakt., 274, 174–182, 1990.
Navarro-Gonzalez, R., Rainey, F., Molina, P., Bagaley, D., Hollen, B., Rosa, J., Small, A., Quinn, R., Grunthaner, F., Cáceres, L., Gomez-Silva, B., and McKay, C.: Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life, Science, 302, 1018–1021, https://doi.org/10.1126/science.1089143, 2003.
Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E., and Chistoserdova, L.: Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake, Appl. Environ. Microbiol., 71, 6885–6899, 2005.
Neubauer, D., Kolmakova, O., Woodhouse, J., Taube, R., Mangelsdorf, K., Gladyshev, M., Premke, K., and Grossart, H.-P.: Zooplankton carcasses stimulate microbial turnover of allochthonous particulate organic matter, ISME J., 15, 1735–1750, 2021.
Perez-Fernandez, C. A., Wilburn, P., Davila, A., and DiRuggiero, J.: Adaptations of endolithic communities to abrupt environmental changes in a hyper-arid desert, Sci. Rep., 12, 20022, https://doi.org/10.1038/s41598-022-23437-w, 2022.
Perl, S. M. and Baxter, B. K.: Great Salt Lake as an astrobiology analogue for ancient martian hypersaline aqueous systems, Great Salt Lake biology: A terminal Lake in a time of change, Springer, 487–514, 2020.
Pfeiffer, M., Morgan, A., Heimsath, A., Jordan, T., Howard, A., and Amundson, R.: Century scale rainfall in the absolute Atacama Desert: Landscape response and implications for past and future rainfall, Quaternary Sci. Rev., 254, 106797, https://doi.org/10.1016/j.quascirev.2021.106797, 2021.
Pruesse, E., Peplies, J., and Glöckner, F. O.: SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes, Bioinformatics, 28, 1823–1829, 2012.
Quade, J., Rech, J. A., Latorre, C., Betancourt, J. L., Gleeson, E., and Kalin, M. T. K.: Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile, Geochim. Cosmochim. Ac., 71, 3772–3795, https://doi.org/10.1016/j.gca.2007.02.016, 2007.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 41, D590–D596, 2012.
Rhodes, M. E., Fitz-Gibbon, S. T., Oren, A., and House, C. H.: Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea, Environ. Microbiol., 12, 2613–2623, 2010.
Robinson, C. K., Wierzchos, J., Black, C., Crits-Christoph, A., Ma, B., Ravel, J., Ascaso, C., Artieda, O., Valea, S., Roldán, M., Gómez-Silva, B., and DiRuggiero, J.: Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert, Environ. Microbiol., 17, 299–315, https://doi.org/10.1111/1462-2920.12364, 2015.
Sager, C., Airo, A., Arens, F. L., and Schulze-Makuch, D.: New type of sand wedge polygons in the salt cemented soils of the hyper-arid Atacama Desert, Geomorphology, 373, 107481, https://doi.org/10.1016/j.geomorph.2020.107481, 2021.
Sager, C., Airo, A., Arens, F. L., and Schulze-Makuch, D.: Eolian erosion of polygons in the Atacama Desert as a proxy for hyper-arid environments on Earth and beyond, Sci. Rep., 12, 12394, https://doi.org/10.1038/s41598-022-16404-y, 2022.
Sager, C., Airo, A., Mangelsdorf, K., Arens, F. L., Karger, C., and Schulze-Makuch, D.: Habitability of Polygonal Soils in the Hyper-Arid Atacama Desert After a Simulated Rain Experiment, J. Geophys. Res., e2022JG007328, https://doi.org/10.1029/2022JG007328, 2023.
Schulze-Makuch, D., Wagner, D., Kounaves, S. P., Mangelsdorf, K., Devine, K. G., de Vera, J.-P., Schmitt-Kopplin, P., Grossart, H.-P., Parro, V., Kaupenjohann, M., Galy, A., Schneider, B., Airo, A., Frösler, J., Davila, A. F., Arens, F. L., Cáceres, L., Cornejo, F. S., Carrizo, D., Dartnell, L., DiRuggiero, J., Flury, M., Ganzert, L., Gessner, M. O., Grathwohl, P., Guan, L., Heinz, J., Hess, M., Keppler, F., Maus, D., McKay, C. P., Meckenstock, R. U., Montgomery, W., Oberlin, E. A., Probst, A. J., Sáenz, J. S., Sattler, T., Schirmack, J., Sephton, M. A., Schloter, M., Uhl, J., Valenzuela, B., Vestergaard, G., Wörmer, L., and Zamorano, P.: Transitory microbial habitat in the hyperarid Atacama Desert, P. Natl. Acad. Sci. USA, 115, 2670–2675, https://doi.org/10.1073/pnas.1714341115, 2018.
Schulze-Makuch, D., Lipus, D., Arens, F. L., Baqué, M., Bornemann, T. L. V., Vera, J.-P. de, Flury, M., Frösler, J., Heinz, J., Hwang, Y., Kounaves, S. P., Mangelsdorf, K., Meckenstock, R. U., Pannekens, M., Probst, A. J., Sáenz, J. S., Schirmack, J., Schloter, M., Schmitt-Kopplin, P., Schneider, B., Uhl, J., Vestergaard, G., Valenzuela, B., Zamorano, P., and Wagner, D.: Microbial Hotspots in Lithic Microhabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert, Microorganisms, 9, 1038, https://doi.org/10.3390/microorganisms9051038, 2021.
Segura, A. and Navarro-González, R.: Nitrogen fixation on early Mars by volcanic lightning and other sources, Geophys. Res. Lett., 32, L05203, https://doi.org/10.1029/2004GL021910, 2005.
SERNAGEOMIN: Mapa Geológico de Chile: versión digital, Servicio Nacional de Geología, Publicación Geológica Digital, No. 4 CD-R, versión 1, 2003.
Shen, J.: Phospholipid biomarkers in Mars-analogous soils of the Atacama Desert, Int. J. Astrobiol., 19, 505–514, https://doi.org/10.1017/S1473550420000294, 2020.
Stepinski, T. F. and Stepinski, A. P.: Morphology of drainage basins as an indicator of climate on early Mars, J. Geophys. Res.-Planet., 110, E12S12, https://doi.org/10.1029/2005JE002448, 2005.
Stern, J. C., Sutter, B., Freissinet, C., Navarro-González, R., McKay, C. P., Archer Jr., P. D., Buch, A., Brunner, A. E., Coll, P., Eigenbrode, J. L., Fairen, A. G., Franz, H. B., Glavin, D. P., Kashyap, S., McAdam, A. C., Ming, D. W., Steele, A., Szopa, C., Wray, J. J., Martín-Torres, F. J., Zorzano, M., Conrad, P. G., Mahaffy, P. R., and the MSL Science Team: Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars, P. Natl. Acad. Sci. USA, 112, 4245–4250, https://doi.org/10.1073/pnas.1420932112, 2015.
Stern, J. C., Sutter, B., Jackson, W. A., Navarro-González, R., McKay, C. P., Ming, D. W., Archer, P. D., and Mahaffy, P. R.: The nitrate/(per) chlorate relationship on Mars, Geophys. Res. Lett., 44, 2643–2651, 2017.
Stevenson, A., Cray, J. A., Williams, J. P., Santos, R., Sahay, R., Neuenkirchen, N., McClure, C. D., Grant, I. R., Houghton, J., Quinn, J. P., and others: Is there a common water-activity limit for the three domains of life?, ISME J., 9, 1333–1351, 2015.
Stoertz, G. E. and Ericksen, G. E.: Geology of the salars of N Chile, US Gov. Print. Off., US Geological Survey professional paper, 811, 1974.
Tang, I. N. and Munkelwitz, H. R.: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance, J. Geophys. Res.-Atmos., 99, 18801–18808, 1994.
Valea, S.: Ecosistemas microbianos endolíticos en nódulos superficiales de halita del desierto hiperárido de Atacama: microclima, microhábitat y biodiversidad, CSIC-Museo Nacional de Ciencias Naturales (MNCN), 2015.
Warren-Rhodes, K. A., Rhodes, K. L., Pointing, S. B., Ewing, S. A., Lacap, D. C., Gómez-Silva, B., Amundson, R., Friedmann, E. I., and McKay, C. P.: Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert, Microbial Ecol., 52, 389–398, https://doi.org/10.1007/s00248-006-9055-7, 2006.
Warren-Rhodes, K. A., Lee, K. C., Archer, S. D. J., Cabrol, N., Ng-Boyle, L., Wettergreen, D., Zacny, K., and Pointing, S. B.: Subsurface Microbial Habitats in an Extreme Desert Mars-Analog Environment, Front. Microbiol., 10, 69, https://doi.org/10.3389/fmicb.2019.00069, 2019.
Wickham, H., Chang, W., and Wickham, M. H.: Package “ggplot2”, Create elegant data visualisations using the grammar of graphics, Version, 2, Citeseer, 1–189, 2016.
Wierzchos, J., Ascaso, C., and McKay, C. P.: Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert, Astrobiology, 6, 415–422, 2006.
Wierzchos, J., Cámara, B., Los Rios, A. de, Davila, A. F., Im Sánchez Almazo, Artieda, O., Wierzchos, K., Gomez-Silva, B., McKay, C., and Ascaso, C.: Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars, Geobiology, 9, 44–60, 2011.
Wierzchos, J., de Los Ríos, A., and Ascaso, C.: Microorganisms in desert rocks: the edge of life on Earth, International microbiology the official journal of the Spanish Society for Microbiology, 15, 173–183, https://doi.org/10.2436/20.1501.01.170, 2012.
Yang, L., Zhang, Z., and Chen, Z.: Formation of nitrite and ammonium during the irradiation of nitrate-containing water by VUV/UV, Journal of Water Process Engineering, 40, 101801, https://doi.org/10.1016/j.jwpe.2020.101801, 2021.
Zink, K.-G. and Mangelsdorf, K.: Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis, Anal. Bioanal. Chem., 380, 798–812, 2004.
Ziolkowski, L. A., Wierzchos, J., Davila, A. F., and Slater, G. F.: Radiocarbon evidence of active endolithic microbial communities in the hyperarid core of the Atacama Desert, Astrobiology, 13, 607–616, https://doi.org/10.1089/ast.2012.0854, 2013.
Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the Global Aridity Index and Potential Evapotranspiration Database, Sci. Data, 9, 409, https://doi.org/10.1038/s41597-022-01493-1, 2022.
Co-editor-in-chief
This study, pertinent to astrobiology, utilizes the Atacama Desert as an analog for conditions on Mars. The findings indicate that nitrate-rich environments on Mars may preserve potential biosignatures and provide insights into the boundaries of life. This relationship supports the objectives of ongoing and upcoming Mars missions.
This study, pertinent to astrobiology, utilizes the Atacama Desert as an analog for conditions...
Short summary
We studied unique nitrate-rich soils in the hyperarid Atacama Desert that form brines at night under high relative humidity. Despite providing water for microorganisms, these soils exhibit extremely low microbial activity, indicating that the high nitrate levels inhibit microbial life. On the other hand, enriched organic matter indicates their potential preservation. This research helps to understand the limits of life in extreme environments and aids in the search for signs of life on Mars.
We studied unique nitrate-rich soils in the hyperarid Atacama Desert that form brines at night...
Altmetrics
Final-revised paper
Preprint