Articles | Volume 22, issue 4
https://doi.org/10.5194/bg-22-1135-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1135-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A shift in circadian stem increment patterns in a Pyrenean alpine treeline precedes spring growth after snow melting
Department of Geosciences, Colorado State University, Fort Collins, Colorado 80521, USA
CryoPyr, Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, 50059, Spain
J. Julio Camarero
CryoPyr, Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, 50059, Spain
Alba Sanmiguel-Vallelado
iuFOR, EiFAB, Universidad de Valladolid, Campus Duques de Soria, Soria, 42004, Spain
Francisco Rojas Heredia
CryoPyr, Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, 50059, Spain
Pablo Domínguez Aguilar
CryoPyr, Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, 50059, Spain
Jesús Revuelto
CryoPyr, Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, 50059, Spain
Juan Ignacio López-Moreno
CORRESPONDING AUTHOR
CryoPyr, Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, 50059, Spain
Related authors
No articles found.
Carlos Sancho, Ánchel Belmonte, Maria Leunda, Marc Luetscher, Christoph Spötl, Juan Ignacio López-Moreno, Belén Oliva-Urcia, Jerónimo López-Martínez, Ana Moreno, and Miguel Bartolomé
EGUsphere, https://doi.org/10.5194/egusphere-2025-8, https://doi.org/10.5194/egusphere-2025-8, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ice caves, vital for paleoclimate studies, face rapid ice loss due to global warming. A294 cave, home to the oldest firn deposit (6100 years BP), shows rising air temperatures (~1.07–1.56 °C in 12 years), fewer freezing days, and melting rates (15–192 cm/year). Key factors include warmer winters, increased rainfall, and reduced snowfall. This study highlights the urgency of recovering data from these unique ice archives before they vanish forever.
Ixeia Vidaller, Toshiyuki Fujioka, Juan Ignacio López-Moreno, Ana Moreno, and the ASTER Team
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-75, https://doi.org/10.5194/cp-2024-75, 2024
Preprint under review for CP
Short summary
Short summary
Since the Pyrenean Last Glacial Maximum (75 ka), the deglaciation of the Ésera glacier (central Pyrenees) was characterized by complex dynamics, with advances and rapid retreats. Cosmogenic dates of moraines along the headwaters of the valley and lacustrine sediments analyses allowed to reconstruct evolutionary history of the Ésera glacier and the associated environmental implications during the last deglaciation and calculate the Equilibrium Line Altitude to determine changes in temperature.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1770, https://doi.org/10.5194/egusphere-2024-1770, 2024
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (Central-Western Greenland). By > 2070 glacier mass loss may double the rate from the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Haibo Du, Michael C. Stambaugh, Jesús Julio Camarero, Mai-He Li, Dapao Yu, Shengwei Zong, Hong S. He, and Zhengfang Wu
Clim. Past, 19, 1295–1304, https://doi.org/10.5194/cp-19-1295-2023, https://doi.org/10.5194/cp-19-1295-2023, 2023
Short summary
Short summary
We reconstruct, for the first time, high-resolution temperatures prior to the Millennium Eruption (946 CE) using a unique tree-ring proxy dataset in Changbai Mountain and compare them with modern temperatures. The temperatures during the last 1.5 centuries have stronger fluctuations, more frequent abruption, and a weaker periodicity of temperature variance compared to the pre-millennium temperatures. These recent changes correspond to long-term anthropogenic influences on regional climate.
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023, https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Fanny Larue, Ghislain Picard, Laurent Arnaud, Inès Ollivier, Clément Delcourt, Maxim Lamare, François Tuzet, Jesus Revuelto, and Marie Dumont
The Cryosphere, 14, 1651–1672, https://doi.org/10.5194/tc-14-1651-2020, https://doi.org/10.5194/tc-14-1651-2020, 2020
Short summary
Short summary
The effect of surface roughness on snow albedo is often overlooked,
although a small change in albedo may strongly affect the surface energy
budget. By carving artificial roughness in an initially smooth snowpack,
we highlight albedo reductions of 0.03–0.04 at 700 nm and 0.06–0.10 at 1000 nm. A model using photon transport is developed to compute albedo considering roughness and applied to understand the impact of roughness as a function of snow properties and illumination conditions.
Francois Tuzet, Marie Dumont, Laurent Arnaud, Didier Voisin, Maxim Lamare, Fanny Larue, Jesus Revuelto, and Ghislain Picard
The Cryosphere, 13, 2169–2187, https://doi.org/10.5194/tc-13-2169-2019, https://doi.org/10.5194/tc-13-2169-2019, 2019
Short summary
Short summary
Here we present a novel method to estimate the impurity content (e.g. black carbon or mineral dust) in Alpine snow based on measurements of light extinction profiles. This method is proposed as an alternative to chemical measurements, allowing rapid retrievals of vertical concentrations of impurities in the snowpack. In addition, the results provide a better understanding of the impact of impurities on visible light extinction in snow.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Esteban Alonso-González, J. Ignacio López-Moreno, Simon Gascoin, Matilde García-Valdecasas Ojeda, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Jesús Revuelto, Antonio Ceballos, María Jesús Esteban-Parra, and Richard Essery
Earth Syst. Sci. Data, 10, 303–315, https://doi.org/10.5194/essd-10-303-2018, https://doi.org/10.5194/essd-10-303-2018, 2018
Short summary
Short summary
We present a new daily gridded snow depth and snow water equivalent database over the Iberian Peninsula from 1980 to 2014 structured in common elevation bands. The data have proved their consistency with in situ observations and remote sensing data (MODIS). The presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism and risk management.
Jesús Revuelto, Cesar Azorin-Molina, Esteban Alonso-González, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Ibai Rico, and Juan Ignacio López-Moreno
Earth Syst. Sci. Data, 9, 993–1005, https://doi.org/10.5194/essd-9-993-2017, https://doi.org/10.5194/essd-9-993-2017, 2017
Short summary
Short summary
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner for certain dates and (iii) time-lapse images showing the evolution of the snow-covered area.
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
Samuel T. Buisán, Michael E. Earle, José Luís Collado, John Kochendorfer, Javier Alastrué, Mareile Wolff, Craig D. Smith, and Juan I. López-Moreno
Atmos. Meas. Tech., 10, 1079–1091, https://doi.org/10.5194/amt-10-1079-2017, https://doi.org/10.5194/amt-10-1079-2017, 2017
Short summary
Short summary
Within the framework of the WMO-SPICE (Solid Precipitation Intercomparison Experiment) the Thies tipping bucket precipitation gauge, widely used at AEMET, was assessed against the SPICE reference.
Most countries use tipping buckets and for this reason the underestimation of snowfall precipitation is a large-scale problem.
The methodology presented here can be used by other national weather services to test precipitation bias corrections and to identify regions where errors are higher.
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
Anita Drumond, Erica Taboada, Raquel Nieto, Luis Gimeno, Sergio M. Vicente-Serrano, and Juan Ignacio López-Moreno
Earth Syst. Dynam., 7, 549–558, https://doi.org/10.5194/esd-7-549-2016, https://doi.org/10.5194/esd-7-549-2016, 2016
Short summary
Short summary
A Lagrangian approach was used to identify the moisture sources for fourteen ice-core sites located worldwide for the present climate. The approach computed budgets of evaporation minus precipitation by calculating changes in the specific humidity along 10-day backward trajectories. The results indicate that the oceanic regions around the subtropical high-pressure centers provide most of moisture, and their contribution varies throughout the year following the annual cycles of the centers.
Juan Ignacio López-Moreno, Jesús Revuelto, Ibai Rico, Javier Chueca-Cía, Asunción Julián, Alfredo Serreta, Enrique Serrano, Sergio Martín Vicente-Serrano, Cesar Azorin-Molina, Esteban Alonso-González, and José María García-Ruiz
The Cryosphere, 10, 681–694, https://doi.org/10.5194/tc-10-681-2016, https://doi.org/10.5194/tc-10-681-2016, 2016
Short summary
Short summary
This paper analyzes the evolution of the Monte Perdido Glacier, Spanish Pyrenees, since 1981. Changes in ice volume were estimated by geodetic methods and terrestrial laser scanning. An acceleration in ice thinning is detected during the 21st century. Local climatic changes observed during the study period do not seem sufficient to explain the acceleration. The strong disequilibrium between the glacier and the current climate and feedback mechanisms seems to be the most plausible explanation.
E. Nadal-Romero, J. Revuelto, P. Errea, and J. I. López-Moreno
SOIL, 1, 561–573, https://doi.org/10.5194/soil-1-561-2015, https://doi.org/10.5194/soil-1-561-2015, 2015
Short summary
Short summary
Geomatic techniques have been routinely applied in erosion studies, providing the opportunity to build high-resolution topographic models.The aim of this study is to assess and compare the functioning of terrestrial laser scanner and close range photogrammetry techniques to evaluate erosion and deposition processes in a humid badlands area.
Our results demonstrated that north slopes experienced more intense and faster dynamics than south slopes as well as the highest erosion rates.
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, https://doi.org/10.5194/tc-8-1989-2014, 2014
E. Morán-Tejeda, J. Zabalza, K. Rahman, A. Gago-Silva, J. I. López-Moreno, S. Vicente-Serrano, A. Lehmann, C. L. Tague, and M. Beniston
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11983-2013, https://doi.org/10.5194/hessd-10-11983-2013, 2013
Manuscript not accepted for further review
J. Lorenzo-Lacruz, E. Morán-Tejeda, S. M. Vicente-Serrano, and J. I. López-Moreno
Hydrol. Earth Syst. Sci., 17, 119–134, https://doi.org/10.5194/hess-17-119-2013, https://doi.org/10.5194/hess-17-119-2013, 2013
Cited articles
Albrich, K., Rammer, W., and Seidl, R.: Climate change causes critical transitions and irreversible alterations of mountain forests, Glob. Change Biol., 26, 4013–4027, https://doi.org/10.1111/gcb.15118, 2020.
Andrus, R. A., Harvey, B. J., Rodman, K. C., Hart, S. J., and Veblen, T. T.: Moisture availability limits subalpine tree establishment, Ecology, 99, 567–575, https://doi.org/10.1002/ecy.2134, 2018.
Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., and Zang, C.: dplR: dendrochronology program library in R, [code], https://cran.r-project.org/package=dplR (last access: 26 February 2025), 2023.
Bunn, A. G.: A dendrochronology program library in R (dplR), Dendrochronologia, 26, 115–124, https://doi.org/10.1016/j.dendro.2008.01.002, 2008.
Bunn, A. G.: Statistical and visual crossdating in R using the dplR library, Dendrochronologia, 28, 251–258, https://doi.org/10.1016/j.dendro.2009.12.001, 2010.
Camarero, J. J., Guerrero-Campo, J., and Gutiérrez, E.: Tree-Ring Growth and Structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees, Arct. Alp. Res., 30, 1–10, https://doi.org/10.2307/1551739, 1998.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Deslauriers, A., Rossi, S., and Anfodillo, T.: Dendrometer and intra-annual tree growth: What kind of information can be inferred?, Dendrochronologia, 25, 113–124, https://doi.org/10.1016/j.dendro.2007.05.003, 2007.
Dobbert, S., Pape, R., and Löffler, J.: The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions, Biogeosciences, 19, 1933–1958, https://doi.org/10.5194/bg-19-1933-2022, 2022.
Fritz, H. C.: Tree rings and climate, Academic Press Inc., London, ISBN-10 0122684508, 1976.
Galván, J. D., Camarero, J. J., and Gutiérrez, E.: Seeing the trees for the forest: drivers of individual growth responses to climate in inus uncinata mountain forests, J. Ecol., 102, 1244–1257, https://doi.org/10.1111/1365-2745.12268, 2014.
Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J.-F., Szczypta, C., Marti, R., and Sánchez, R.: A snow cover climatology for the Pyrenees from MODIS snow products, Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, 2015.
Grossiord, C., Ulrich, D. E. M., and Vilagrosa, A.: Controls of the hydraulic safety–efficiency trade-off, Tree Physiol., 40, 573–576, https://doi.org/10.1093/treephys/tpaa013, 2020.
Hagedorn, F., Shiyatov, S. G., Mazepa, V. S., Devi, N. M., Grigor'ev, A. A., Bartysh, A. A., Fomin, V. V., Kapralov, D. S., Terent'ev, M., Bugman, H., Rigling, A., and Moiseev, P. A.: Treeline advances along the Urals mountain range – driven by improved winter conditions?, Glob. Change Biol., 20, 3530–3543, https://doi.org/10.1111/gcb.12613, 2014.
Harpold, A. A. and Molotch, N. P.: Sensitivity of soil water availability to changing snowmelt timing in the western U.S., Geophys. Res. Lett., 42, 8011–8020, https://doi.org/10.1002/2015GL065855, 2015.
Hedstrom, N. R. and Pomeroy, J. W.: Measurements and modelling of snow interception in the boreal forest, Hydrol. Process., 12, 1611–1625, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4, 1998.
Holmes, R. L.: Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bulletin, 43, 69–78, 1983.
Huang, M., Wang, G., Bie, X., Jiang, Y., Huang, X., Li, J.-J., Shi, S., Zhang, T., and Peng, P.-H.: Seasonal snow cover patterns explain alpine treeline elevation better than temperature at regional scale, Forest Ecosystems, 10, 100106, https://doi.org/10.1016/j.fecs.2023.100106, 2023.
Izagirre, E., Revuelto, J., Vidaller, I., Deschamps-Berger, C., Rojas-Heredia, F., Rico, I., Alonso-González, E., Gascoin, S., Serrano, E., and López-Moreno, J. I.: Pyrenean glaciers are disappearing fast: state of the glaciers after the extreme mass losses in 2022 and 2023, Reg. Environ. Change, 24, 172, https://doi.org/10.1007/s10113-024-02333-1, 2024.
Khorchani, M., Nadal-Romero, E., Lasanta, T., and Tague, C.: Carbon sequestration and water yield tradeoffs following restoration of abandoned agricultural lands in Mediterranean mountains, Environ. Res., 207, 112203, https://doi.org/10.1016/j.envres.2021.112203, 2022.
Knüsel, S., Peters, R. L., Haeni, M., Wilhelm, M., and Zweifel, R.: Processing and Extraction of Seasonal Tree Physiological Parameters from Stem Radius Time Series, Forests, 12, 765, https://doi.org/10.3390/f12060765, 2021.
Lázaro-Gimeno, D., Ferrari, C., Delhomme, N., Johansson, M., Sjölander, J., Singh, R. K., Mutwil, M., and Eriksson, M. E.: The circadian clock participates in seasonal growth in Norway spruce (Picea abies), Tree Physiol., 44, tpae139, https://doi.org/10.1093/treephys/tpae139, 2024.
López-Moreno, J. I.: Recent Variations of Snowpack Depth in the Central Spanish Pyrenees, Arct. Antarct. Alp. Res., 37, 253–260, https://doi.org/10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2, 2005.
López-Moreno, J. I. and Latron, J.: Influence of canopy density on snow distribution in a temperate mountain range, Hydrol. Process., 22, 117–126, https://doi.org/10.1002/hyp.6572, 2008.
López-Moreno, J. I., Soubeyroux, J. M., Gascoin, S., Alonso-Gonzalez, E., Durán-Gómez, N., Lafaysse, M., Vernay, M., Carmagnola, C., and Morin, S.: Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees, Int. J. Climatol., 40, 6122–6136, https://doi.org/10.1002/joc.6571, 2020.
Lüttge, U. and Hertel, B.: Diurnal and annual rhythms in trees, Trees, 23, 683–700, https://doi.org/10.1007/s00468-009-0324-1, 2009.
Maxwell, R. S. and Larsson, L.-A.: Measuring tree-ring widths using the CooRecorder software application, Dendrochronologia, 67, 125841, https://doi.org/10.1016/j.dendro.2021.125841, 2021.
Mei-Jun, L. I. U., Qiu-Wen, C., Jin-Lin, L., Guo-Qing, L. I., and Sheng, D. U.: Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region, Chinese Journal of Plant Ecology, 47, 227–237, https://doi.org/10.17521/cjpe.2022.0100, 2023.
Noguera, I., Vicente-Serrano, S. M., Peña-Angulo, D., Domínguez-Castro, F., Juez, C., Tomás-Burguera, M., Lorenzo-Lacruz, J., Azorin-Molina, C., Halifa-Marín, A., Fernández-Duque, B., and El Kenawy, A.: Assessment of vapor pressure deficit variability and trends in Spain and possible connections with soil moisture, Atmos. Res., 285, 106666, https://doi.org/10.1016/j.atmosres.2023.106666, 2023.
Pardo, I., Camarero, J. J., Gutiérrez, E., and García, M. B.: Uncoupled changes in tree cover and field layer vegetation at two Pyrenean treeline ecotones over 11 years, Plant Ecol. Divers., 6, 355–364, https://doi.org/10.1080/17550874.2013.811306, 2013.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., Yang, D. Q., and Mountain Research Initiative EDW Working Group: Elevation-dependent warming in mountain regions of the world, Nat. Clim. Change, 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015.
Peterson, D. L.: Climate, limiting factors and environmental change in high-altitude forests of Western North America, in: The Impacts of Climate Variability on Forests, edited by: Beniston, M. and Innes, J. L., Springer, Berlin, Heidelberg, 191–208, https://doi.org/10.1007/BFb0009773, 1998.
Pomeroy, J. W., Gray, D. M., Hedstrom, N. R., and Janowicz, J. R.: Prediction of seasonal snow accumulation in cold climate forests, Hydrol. Process., 16, 3543–3558, https://doi.org/10.1002/hyp.1228, 2002.
Pomeroy, J. W., Bewley, D. S., Essery, R. L. H., Hedstrom, N. R., Link, T., Granger, R. J., Sicart, J. E., Ellis, C. R., and Janowicz, J. R.: Shrub tundra snowmelt, Hydrol. Process., 20, 923–941, https://doi.org/10.1002/hyp.6124, 2006.
Ren, P., Ziaco, E., Rossi, S., Biondi, F., Prislan, P., and Liang, E.: Growth rate rather than growing season length determines wood biomass in dry environments, Agr. Forest Meteorol., 271, 46–53, https://doi.org/10.1016/j.agrformet.2019.02.031, 2019.
Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., and Vicente-Serrano, S. M.: Canopy influence on snow depth distribution in a pine stand determined from terrestrial laser data, Water Resour. Res., 51, 3476–3489, https://doi.org/10.1002/2014WR016496, 2015.
Revuelto, J., Azorin-Molina, C., Alonso-González, E., Sanmiguel-Vallelado, A., Navarro-Serrano, F., Rico, I., and López-Moreno, J. I.: Meteorological and snow distribution data in the Izas Experimental Catchment (Spanish Pyrenees) from 2011 to 2017, Earth Syst. Sci. Data, 9, 993–1005, https://doi.org/10.5194/essd-9-993-2017, 2017.
Saavedra, F. A., Kampf, S. K., Fassnacht, S. R., and Sibold, J. S.: Changes in Andes snow cover from MODIS data, 2000–2016, The Cryosphere, 12, 1027–1046, https://doi.org/10.5194/tc-12-1027-2018, 2018.
Sanmiguel-Vallelado, A., Camarero, J. J., Gazol, A., Morán-Tejeda, E., Sangüesa-Barreda, G., Alonso-González, E., Gutiérrez, E., Alla, A. Q., Galván, J. D., and López-Moreno, J. I.: Detecting snow-related signals in radial growth of Pinus uncinata mountain forests, Dendrochronologia, 57, 125622, https://doi.org/10.1016/j.dendro.2019.125622, 2019.
Sanmiguel-Vallelado, A., Camarero, J. J., Morán-Tejeda, E., Gazol, A., Colangelo, M., Alonso-González, E., and López-Moreno, J. I.: Snow dynamics influence tree growth by controlling soil temperature in mountain pine forests, Agr. Forest Meteorol., 296, 108205, https://doi.org/10.1016/j.agrformet.2020.108205, 2021.
Serrano-Notivoli, R., Tejedor, E., Sarricolea, P., Meseguer-Ruiz, O., de Luis, M., Saz, M. Á., Longares, L. A., and Olcina, J.: Unprecedented warmth: A look at Spain's exceptional summer of 2022, Atmos. Res., 293, 106931, https://doi.org/10.1016/j.atmosres.2023.106931, 2023.
Storck, P., Lettenmaier, D. P., and Bolton, S. M.: Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States, Water Resour. Res., 38, 5-1–5-16, https://doi.org/10.1029/2002WR001281, 2002.
Tardif, J., Camarero, J. J., Ribas, M., and Gutiérrez, E.: Spatiotemporal Variability in Tree Growth in the Central Pyrenees: Climatic and Site Influences, Ecol. Monogr., 73, 241–257, https://doi.org/10.1890/0012-9615(2003)073[0241:SVITGI]2.0.CO;2, 2003.
Tumajer, J., Scharnweber, T., Smiljanic, M., and Wilmking, M.: Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves, New Phytol., 233, 2429–2441, https://doi.org/10.1111/nph.17952, 2022.
Vicente-Serrano, S. M., Peña-Angulo, D., Murphy, C., López-Moreno, J. I., Tomas-Burguera, M., Domínguez-Castro, F., Tian, F., Eklundh, L., Cai, Z., Alvarez-Farizo, B., Noguera, I., Camarero, J. J., Sánchez-Salguero, R., Gazol, A., Grainger, S., Conradt, T., Boincean, B., and El Kenawy, A.: The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees, Sci. Total Environ., 769, 144702, https://doi.org/10.1016/j.scitotenv.2020.144702, 2021.
Villalba, R., Veblen, T. T., and Ogden, J.: Climatic Influences on the Growth of Subalpine Trees in the Colorado Front Range, Ecology, 75, 1450–1462, https://doi.org/10.2307/1937468, 1994.
Wigley, T. M. L., Briffa, K. R., and Jones, P. D.: On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology, Cover Journal of Applied Meteorology and Climatology J. Appl. Meteorol. Clim., 23, 201–213, https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2, 1984.
Yang, J. C., Bowling, D. R., Smith, K. R., Kunik, L., Raczka, B., Anderegg, W. R. L., Bahn, M., Blanken, P. D., Richardson, A. D., Burns, S. P., Bohrer, G., Desai, A. R., Arain, M. A., Staebler, R. M., Ouimette, A. P., Munger, J. W., and Litvak, M. E.: Forest carbon uptake as influenced by snowpack and length of photosynthesis season in seasonally snow-covered forests of North America, Agr. Forest Meteorol., 353, 110054, https://doi.org/10.1016/j.agrformet.2024.110054, 2024.
Zang, C. and Biondi, F.: treeclim: an R package for the numerical calibration of proxy-climate relationships, Ecography, 38, 431–436, 2015.
Ziaco, E. and Biondi, F.: Stem Circadian Phenology of Four Pine Species in Naturally Contrasting Climates from Sky-Island Forests of the Western USA, Forests, 9, 396, https://doi.org/10.3390/f9070396, 2018.
Zweifel, R., Haeni, M., Buchmann, N., and Eugster, W.: Are trees able to grow in periods of stem shrinkage?, New Phytol., 211, 839–849, https://doi.org/10.1111/nph.13995, 2016.
Zweifel, R., Sterck, F., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Häni, M., Peters, R. L., Walthert, L., Wilhelm, M., Ziemińska, K., and Etzold, S.: Why trees grow at night, New Phytol., 231, 2174–2185, https://doi.org/10.1111/nph.17552, 2021.
Short summary
In the Spanish Pyrenees, changing snow seasons and warmer growing seasons could impact tree growth in the montane evergreen forests. We used automatic sensors that measure tree growth to monitor and analyze the interactions between the climate, snow, and tree growth at the study site. We found a transition in the daily growth cycle that is triggered by the presence of snow. Additionally, warmer February and May temperatures enhanced tree growth.
In the Spanish Pyrenees, changing snow seasons and warmer growing seasons could impact tree...
Altmetrics
Final-revised paper
Preprint