Articles | Volume 22, issue 14
https://doi.org/10.5194/bg-22-3503-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3503-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Occupancy history influences extinction risk of fossil marine microplankton groups
Isaiah E. Smith
CORRESPONDING AUTHOR
Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
Ádám T. Kocsis
Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
Wolfgang Kiessling
Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
Related authors
No articles found.
Ádám T. Kocsis, Qianshuo Zhao, Mark J. Costello, and Wolfgang Kiessling
Biogeosciences, 18, 6567–6578, https://doi.org/10.5194/bg-18-6567-2021, https://doi.org/10.5194/bg-18-6567-2021, 2021
Short summary
Short summary
Biodiversity is under threat from the effects of global warming, and assessing the effects of climate change on areas of high species richness is of prime importance to conservation. Terrestrial and freshwater rich spots have been and will be less affected by climate change than other areas. However, marine rich spots of biodiversity are expected to experience more pronounced warming.
Mareike Petersen, Falko Glöckler, Wolfgang Kiessling, Markus Döring, David Fichtmüller, Lertsutham Laphakorn, Brian Baltruschat, and Jana Hoffmann
Foss. Rec., 21, 47–53, https://doi.org/10.5194/fr-21-47-2018, https://doi.org/10.5194/fr-21-47-2018, 2018
Short summary
Short summary
Natural history museums harbor millions of collection items. To exchange and publish the associated data, an appropriate standard is essential. ABCD (Access to Biological Collection Data) enables together with its extension EFG (Extension for Geoscience) sharing and publishing of data related to biology, paleontological, mineralogical, and petrological objects. Here, we review the history of ABCDEFG and highlight its usage by different initiatives and for the data publication in various portals.
Related subject area
Biodiversity and Ecosystem Function: Paleo
External and internal drivers behind the formation, vegetation succession, and carbon balance of a subarctic fen margin
Palaeoecology of ungulates in northern Iberia during the Late Pleistocene through isotopic analysis of teeth
Reply to Head's comment on “The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the `boring billion' ” by Franz et al. (2023)
Comment on “The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the `boring billion' ” by Franz et al. (2023)
Rates of palaeoecological change can inform ecosystem restoration
Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion
Late Neogene evolution of modern deep-dwelling plankton
Photosynthetic activity in Devonian Foraminifera
Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats
Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology
Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa
Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions
Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene
Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus
Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic
Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline
The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC–AD 2008
Climate-related changes in peatland carbon accumulation during the last millennium
Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa)
Experimental mineralization of crustacean eggs: new implications for the fossilization of Precambrian–Cambrian embryos
The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
Biogeosciences, 22, 3047–3071, https://doi.org/10.5194/bg-22-3047-2025, https://doi.org/10.5194/bg-22-3047-2025, 2025
Short summary
Short summary
Vegetation can be used to infer the potential climate feedback of peatlands. New studies have shown the recent expansion of peatlands, but their plant community succession has not been studied. Although generally described as dry bog-type vegetation, our results show that peatland margins in a subarctic fen began as wet fen with high methane emissions and shifted to bog-type peatland area only after the Little Ice Age. Thus, they have acted as a carbon source for most of their history.
Mónica Fernández-García, Sarah Pederzani, Kate Britton, Lucía Agudo-Pérez, Andrea Cicero, Jeanne Marie Geiling, Joan Daura, Montserrat Sanz, and Ana B. Marín-Arroyo
Biogeosciences, 21, 4413–4437, https://doi.org/10.5194/bg-21-4413-2024, https://doi.org/10.5194/bg-21-4413-2024, 2024
Short summary
Short summary
Significant climatic changes affected Europe's vegetation and fauna, affecting human subsistence strategies during the Late Pleistocene. Reconstructing the local conditions humans faced is essential to understanding their adaptation processes and resilience. This study analyses the chemical composition of the teeth of herbivores consumed by humans 80,000 to 15,000 years ago, revealing the ecology of ungulates in northern Iberia and thus the palaeoenvironment humans exploited.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, and Ulrich Struck
Biogeosciences, 21, 4119–4131, https://doi.org/10.5194/bg-21-4119-2024, https://doi.org/10.5194/bg-21-4119-2024, 2024
Short summary
Short summary
The Volyn biota (Ukraine), previously assumed to be an extreme case of natural abiotic synthesis of organic matter, is more likely a diverse assemblage of fossils from the deep biosphere. Although contamination by modern organisms cannot completely be ruled out, it is unlikely, considering all aspects, i.e., their mode of occurrence in the deep biosphere, their fossilization and mature state of organic matter, their isotope signature, and their large morphological diversity.
Martin J. Head, James B. Riding, Jennifer M. K. O'Keefe, Julius Jeiter, and Julia Gravendyck
Biogeosciences, 21, 1773–1783, https://doi.org/10.5194/bg-21-1773-2024, https://doi.org/10.5194/bg-21-1773-2024, 2024
Short summary
Short summary
A diverse suite of “fossils” associated with the ~1.5 Ga Volyn (Ukraine) kerite was published recently. We show that at least some of them represent modern contamination including plant hairs, pollen, and likely later fungal growth. Comparable diversity is shown to exist in moderm museum dust, calling into question whether any part of the Volyn biota is of biological origin while emphasising the need for scrupulous care in collecting, analysing, and identifying Precambrian microfossils.
Walter Finsinger, Christian Bigler, Christoph Schwörer, and Willy Tinner
Biogeosciences, 21, 1629–1638, https://doi.org/10.5194/bg-21-1629-2024, https://doi.org/10.5194/bg-21-1629-2024, 2024
Short summary
Short summary
Rate-of-change records based on compositional data are ambiguous as they may rise irrespective of the underlying trajectory of ecosystems. We emphasize the importance of characterizing both the direction and the rate of palaeoecological changes in terms of key features of ecosystems rather than solely on community composition. Past accelerations of community transformation may document the potential of ecosystems to rapidly recover important ecological attributes and functions.
Adam Woodhouse, Frances A. Procter, Sophie L. Jackson, Robert A. Jamieson, Robert J. Newton, Philip F. Sexton, and Tracy Aze
Biogeosciences, 20, 121–139, https://doi.org/10.5194/bg-20-121-2023, https://doi.org/10.5194/bg-20-121-2023, 2023
Short summary
Short summary
This study looked into the regional and global response of planktonic foraminifera to the climate over the last 5 million years, when the Earth cooled significantly. These single celled organisms exhibit the best fossil record available to science. We document an abundance switch from warm water to cold water species as the Earth cooled. Moreover, a closer analysis of certain species may indicate higher fossil diversity than previously thought, which has implications for evolutionary studies.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Zofia Dubicka, Maria Gajewska, Wojciech Kozłowski, Pamela Hallock, and Johann Hohenegger
Biogeosciences, 18, 5719–5728, https://doi.org/10.5194/bg-18-5719-2021, https://doi.org/10.5194/bg-18-5719-2021, 2021
Short summary
Short summary
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their symbiosis with photosynthetic microorganisms. Foraminifera were also components of Devonian stromatoporoid coral reefs; however, whether they could have harbored symbionts has remained unclear. We show that Devonian foraminifera may have stayed photosynthetically active, which likely had an impact on their evolutionary radiation and possibly also on the functioning of Paleozoic shallow marine ecosystems.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Elizaveta Rivkina, Lada Petrovskaya, Tatiana Vishnivetskaya, Kirill Krivushin, Lyubov Shmakova, Maria Tutukina, Arthur Meyers, and Fyodor Kondrashov
Biogeosciences, 13, 2207–2219, https://doi.org/10.5194/bg-13-2207-2016, https://doi.org/10.5194/bg-13-2207-2016, 2016
Short summary
Short summary
A comparative analysis of the metagenomes from two 30,000-year-old permafrost samples, one of lake-alluvial origin and the other from late Pleistocene Ice Complex sediments, revealed significant differences within microbial communities. The late Pleistocene Ice Complex sediments (which are characterized by the absence of methane with lower values of redox potential and Fe2+ content) showed both a low abundance of methanogenic archaea and enzymes from the carbon, nitrogen, and sulfur cycles.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann
Biogeosciences, 12, 6945–6954, https://doi.org/10.5194/bg-12-6945-2015, https://doi.org/10.5194/bg-12-6945-2015, 2015
Short summary
Short summary
We measured the oxygen isotopic composition of Late Jurassic chondrichthyan teeth (sharks, rays, chimaeras) from the Swiss Jura to get ecological information. The main finding is that the extinct shark Asteracanthus (Hybodontiformes) could inhabit reduced salinity areas, although previous studies on other European localities always resulted in a clear marine isotopic signal for this genus. We propose a mainly marine ecology coupled with excursions into areas of lower salinity in our study site.
L. Zhang, L. Zhao, Z.-Q. Chen, T. J. Algeo, Y. Li, and L. Cao
Biogeosciences, 12, 1597–1613, https://doi.org/10.5194/bg-12-1597-2015, https://doi.org/10.5194/bg-12-1597-2015, 2015
Short summary
Short summary
The Smithian--Spathian boundary was a key event in the recovery of marine environments and ecosystems following the end-Permian mass extinction ~1.5 million years earlier. Our analysis of the Shitouzhai section in South China reveals major changes in oceanographic conditions at the SSB intensification of oceanic circulation leading to enhanced upwelling of nutrient- and sulfide-rich deep waters and coinciding with an abrupt cooling that terminated the Early Triassic hothouse climate.
J. Quirk, J. R. Leake, S. A. Banwart, L. L. Taylor, and D. J. Beerling
Biogeosciences, 11, 321–331, https://doi.org/10.5194/bg-11-321-2014, https://doi.org/10.5194/bg-11-321-2014, 2014
D. Fredh, A. Broström, M. Rundgren, P. Lagerås, F. Mazier, and L. Zillén
Biogeosciences, 10, 3159–3173, https://doi.org/10.5194/bg-10-3159-2013, https://doi.org/10.5194/bg-10-3159-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
B. Van Bocxlaer, W. Salenbien, N. Praet, and J. Verniers
Biogeosciences, 9, 4497–4512, https://doi.org/10.5194/bg-9-4497-2012, https://doi.org/10.5194/bg-9-4497-2012, 2012
D. Hippler, N. Hu, M. Steiner, G. Scholtz, and G. Franz
Biogeosciences, 9, 1765–1775, https://doi.org/10.5194/bg-9-1765-2012, https://doi.org/10.5194/bg-9-1765-2012, 2012
J. M. Reed, A. Cvetkoska, Z. Levkov, H. Vogel, and B. Wagner
Biogeosciences, 7, 3083–3094, https://doi.org/10.5194/bg-7-3083-2010, https://doi.org/10.5194/bg-7-3083-2010, 2010
Cited articles
Alroy, J.: Dynamics of origination and extinction in the marine fossil record, P. Natl. Acad. Sci.-Biol., 105, 11536–11542, https://doi.org/10.1073/pnas.0802597105, 2008.
Benton, M. J.: Mass extinction among non-marine tetrapods, Nature, 316, 811–814, https://doi.org/10.1038/316811a0, 1985.
Boltovskoy, D.: The sedimentary record of pelagic biogeography, Prog. Oceanogr., 34, 135–160, https://doi.org/10.1016/0079-6611(94)90006-X, 1994.
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.: Next-generation plate-tectonic reconstructions using GPlates, in: Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, edited by: Baru, C. and Keller, G. R., Cambridge University Press, Cambridge, 95–114, ISBN 978-0-521-89715-0, 2011.
Chaabane, S., de Garidel-Thoron, T., Meilland, J., Sulpis, O., Chalk, T. B., Brummer, G. J. A., Mortyn, P. G., Giraud, X., Howa, H., Casajus, N., Kuroyanagi, A., Beaugrand, G., and Schiebel, R.: Migrating is not enough for modern planktonic foraminifera in a changing ocean, Nature, 636, 390–396, https://doi.org/10.1038/s41586-024-08191-5, 2024.
Chamberlain, S. and Szocs, E.: taxize – taxonomic search and retrieval in R, F1000Research, 2, 191, https://doi.org/10.12688/f1000research.2-191.v2, 2013.
Darroch, S. A., Saupe, E. E., Casey, M. M., and Jorge, M. L.: Integrating geographic ranges across temporal scales, Trends Ecol. Evol., 37, 851–860, https://doi.org/10.1016/j.tree.2022.05.005, 2022.
Dietl, G. P., Smith, J. A., and Durham, S. R.: Discounting the past: the undervaluing of paleontological data in conservation science, Frontiers in Ecology and Evolution, 7, 108, https://doi.org/10.3389/fevo.2019.00108, 2019.
Fagan, W. F., Aumann, C., Kennedy, C. M., and Unmack, P. J.: Rarity, fragmentation, and the scale dependence of extinction risk in desert fishes, Ecology, 86, 34–41, https://doi.org/10.1890/04-0491, 2005.
Fenton, I. S., Woodhouse, A., Aze, T., Lazarus, D., Renaudie, J., Dunhill, A. M., Young, J. R., and Saupe, E. E.: Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences, Scientific Data, 8, 160, https://doi.org/10.1038/s41597-021-00942-7, 2021.
Foote, M.: Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids, Paleobiology, 25, 1–115, https://doi.org/10.1017/S0094837300020236, 1999.
Foote, M. and Raup, D. M.: Fossil preservation and the stratigraphic ranges of taxa, Paleobiology, 22, 121–140, https://doi.org/10.1017/S0094837300016134, 1996.
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I.: Rise and fall of species occupancy in Cenozoic fossil mollusks, Science, 318, 1131–1134, https://doi.org/10.1126/science.1146303, 2007.
Foote, M., Ritterbush, K. A., and Miller, A. I.: Geographic ranges of genera and their constituent species: structure, evolutionary dynamics, and extinction resistance, Paleobiology, 42, 269–288, https://doi.org/10.1017/pab.2015.40, 2016.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic Time Scale, Elsevier, Amsterdam, ISBN 0444594485, 2012.
Guardiola, M., Pino, J., and Rodà, F.: Patch history and spatial scale modulate local plant extinction and extinction debt in habitat patches, Divers. Distrib., 19, 825–833, https://doi.org/10.1111/ddi.12045, 2013.
Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution models in ecology, Ecol. Model., 135, 147–186, https://doi.org/10.1016/S0304-3800(00)00354-9, 2000.
Henao Diaz, L. F., Harmon, L. J., Sugawara, M. T., Miller, E. T., and Pennell, M. W.: Macroevolutionary diversification rates show time dependency, P. Natl. Acad. Sci.-Biol., 116, 7403–7408, https://doi.org/10.1073/pnas.1818058116, 2019.
Hewitt, J. E., Thrush, S. F., and Lundquist, C.: Scale-dependence in ecological systems, Encyclopedia of Life Sciences (ELS), John Wiley & Sons, 1–7, https://doi.org/10.1002/9780470015902.a0021903.pub2, 2010.
Huber, B. T., Petrizzo, M. R., Young, J. R., Falzoni, F., Gilardoni, S. E., Bown, P. R., and Wade, B. S.: Pforams@microtax, Micropaleontology, 62, 429–438, 2016.
Jamson, K. M., Moon, B. C., and Fraass, A. J.: Diversity dynamics of microfossils from the Cretaceous to the Neogene show mixed responses to events, Palaeontology, 65, e12615, https://doi.org/10.1111/pala.12615, 2022.
Kiessling, W.: Habitat effects and sampling bias on Phanerozoic reef distribution, Facies, 51, 24–32, https://doi.org/10.1007/s10347-004-0044-3, 2005.
Kiessling, W. and Kocsis, Á. T.: Adding fossil occupancy trajectories to the assessment of modern extinction risk, Biol. Letters, 12, 20150813, https://doi.org/10.1098/rsbl.2015.0813, 2016.
Kiessling, W., Raja, N. B., Roden, V. J., Turvey, S. T., and Saupe, E. E.: Addressing priority questions of conservation science with palaeontological data, Philos. T. Roy. Soc. B, 374, 20190222, https://doi.org/10.1098/rstb.2019.0222, 2019.
Kocsis, Á.: icosa: global triangular and penta-hexagonal grids based on tessellated icosahedra, R package version 0.10.0, https://doi.org/10.32614/CRAN.package.icosa, 2020.
Kocsis, Á. T., Reddin, C. J., Alroy, J., and Kiessling, W.: The R package divDyn for quantifying diversity dynamics using fossil sampling data, Methods Ecol. Evol., 10, 735–743, https://doi.org/10.1111/2041-210X.13161, 2019.
Lazarus, D.: Neptune: a marine micropaleontology database, Math. Geol., 26, 817–832, https://doi.org/10.1007/BF02083119, 1994.
Lazarus, D., Weinkauf, M., and Diver, P.: Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil data, Paleobiology, 38, 144–161, https://doi.org/10.1666/10067.1, 2012.
Lazarus, D., Barron, J., Renaudie, J., Diver, P., and Türke, A.: Cenozoic planktonic marine diatom diversity and correlation to climate change, PLoS One, 9, e84857, https://doi.org/10.1371/journal.pone.0084857, 2014.
Lindeman, R. H., Merenda, P. F., and Gold, R. Z.: Introduction to bivariate and multivariate analysis, Scott Foresman and Company, Glenview, ISBN 0673150992, 1980.
Liow, L. H., Skaug, H. J., Ergon, T., and Schweder, T.: Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species, Paleobiology, 36, 224–252, https://doi.org/10.1666/08080.1, 2010.
Longhurst, A. R.: Ecological geography of the sea, Elsevier, ISBN 978-0-12-455521-1, 2007.
Lowery, C. M., Bown, P. R., Fraass, A. J., and Hull, P. M.: Ecological response of plankton to environmental change: thresholds for extinction, Annu. Rev. Earth Pl. Sc., 48, 403–429, https://doi.org/10.1146/annurev-earth-081619-052818, 2020.
Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Akçakaya, H. R., Leader-Williams, N., Milner-Gulland, E. J., and Stuart, S. N.: Quantification of extinction risk: IUCN's system for classifying threatened species, Conserv. Biol., 22, 1424–1442, https://doi.org/10.1111/j.1523-1739.2008.01044.x, 2008.
Mathes, G. H., van Dijk, J., Kiessling, W., and Steinbauer, M. J.: Extinction risk controlled by interaction of long-term and short-term climate change, Nature Ecology and Evolution, 5, 304–310, https://doi.org/10.1038/s41559-020-01377-w, 2021.
McKinney, M. L.: Extinction vulnerability and selectivity: combining ecological and paleontological views, Annu. Rev. Ecol. Syst., 28, 495–516, https://doi.org/10.1146/annurev.ecolsys.28.1.495, 1997.
Nigrini, C., Sanfilippo, A., and Moore Jr., T. C.: Cenozoic radiolarian biostratigraphy: a magnetobiostratigraphic chronology of Cenozoic sequences from ODP Sites 1218, 1219, and 1220, Equatorial Pacific, Proceedings of the Ocean Drilling Program, Scientific Results, 199, 1–76, 2006.
Payne, J. L. and Finnegan, S.: The effect of geographic range on extinction risk during background and mass extinction, P. Natl. Acad. Sci.-Biol., 104, 10506–10511, https://doi.org/10.1073/pnas.0701257104, 2007.
Powell, M. G. and Glazier, D. S.: Asymmetric geographic range expansion explains the latitudinal diversity gradients of four major taxa of marine plankton, Paleobiology, 43, 196–208, https://doi.org/10.1017/pab.2016.38, 2017.
Purvis, A., Gittleman, J. L., Cowlishaw, G., and Mace, G. M.: Predicting extinction risk in declining species, P. Roy. Soc. Lond. B Bio., 267, 1947–1952, https://doi.org/10.1098/rspb.2000.1234, 2000.
Raja, N. B. and Kiessling, W.: Out of the extratropics: The evolution of the latitudinal diversity gradient of Cenozoic marine plankton, P. R. Soc. B, 288, 20210545, https://doi.org/10.1098/rspb.2021.0545, 2021.
Raup, D. M.: A kill curve for Phanerozoic marine species, Paleobiology, 17, 37–48, https://doi.org/10.1017/S0094837300010332, 1991.
R Core Team: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 11 July 2025), 2022.
Renaudie, J.: plannapus/NSBcompanion: NSBcompanion 2.1 (v2.1.1), Zenodo [code], https://doi.org/10.5281/zenodo.3408190, 2019.
Renaudie, J., Lazarus, D. B., and Diver, P.: NSB (Neptune Sandbox Berlin): An expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy, Palaeontol. Electron., 23, 1–28, https://doi.org/10.26879/1032, 2020.
Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., Firth, D., and Ripley, M. B.: Package “mass”, https://doi.org/10.32614/CRAN.package.MASS, 2013.
Saulsbury, J. G., Parins-Fukuchi, C. T., Wilson, C. J., Reitan, T., and Liow, L. H.: Age-dependent extinction and the neutral theory of biodiversity, P. Natl. Acad. Sci.-Biol., 121, e2307629121, https://doi.org/10.1073/pnas.2307629121, 2023.
Smith, I.: Supplementary code and data for “Occupancy history influences extinction risk of fossil marine microplankton groups”, Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.15174296, 2025.
Smith, J. A., Durham, S. R., and Dietl, G. P.: Conceptions of long-term data among marine conservation biologists and what conservation paleobiologists need to know, in: Marine conservation paleobiology, Springer, 23–54, https://doi.org/10.1007/978-3-319-73795-9_3, 2018.
Staude, I. R., Navarro, L. M., and Pereira, H. M.: Range size predicts the risk of local extinction from habitat loss, Global Ecol. Biogeogr., 29, 16–25, https://doi.org/10.1111/geb.13003, 2020.
Strack, T., Jonkers, L., Rillo, M. C., Baumann, K. H., Hillebrand, H., and Kucera, M.: Coherent response of zoo-and phytoplankton assemblages to global warming since the Last Glacial Maximum, Global Ecol. Biogeogr., 33, e13841, https://doi.org/10.1111/geb.13841, 2024.
Svenning, J. C., Eiserhardt, W. L., Normand, S., Ordonez, A., and Sandel, B.: The influence of paleoclimate on present-day patterns in biodiversity and ecosystems, Annu. Rev. Ecol. Evol. S., 46, 551–572, https://doi.org/10.1146/annurev-ecolsys-112414-054314, 2015.
Swain, A., Woodhouse, A., Fagan, W. F., Fraass, A. J., and Lowery, C. M.: Biogeographic response of marine plankton to Cenozoic environmental changes, Nature, 629, 616–623, https://doi.org/10.1038/s41586-024-07337-9, 2024.
Tietje, M. and Kiessling, W.: Predicting extinction from fossil trajectories of geographical ranges in benthic marine molluscs, J. Biogeogr., 40, 790–799, https://doi.org/10.1111/jbi.12030, 2013.
Trubovitz, S., Lazarus, D., Renaudie, J., and Noble, P. J.: Marine plankton show threshold extinction response to Neogene climate change, Nat. Commun., 11, 5069, https://doi.org/10.1038/s41467-020-18879-7, 2020.
Trubovitz, S., Renaudie, J., Lazarus, D., and Noble, P. J.: Abundance does not predict extinction risk in the fossil record of marine plankton, Communications Biology, 6, 554, https://doi.org/10.1038/s42003-023-04871-6, 2023.
Ying, R., Monteiro, F. M., Wilson, J. D., Ödalen, M., and Schmidt, D. N.: Past foraminiferal acclimatization capacity is limited during future warming, Nature, 636, 385–389, https://doi.org/10.1038/s41586-024-08029-0, 2024.
Co-editor-in-chief
This contribution uses occurrences of four major marine microplankton groups from a large paleontological database to test the hypothesis that changes in geographic range of a species predict extinction. The authors demonstrated that changes in geographic range are a dominant predictor of extinction risk in marine plankton. This result highlights the vulnerability of different plankton groups to extinction and shows the importance of paleontological observations for predicting extinction patterns in modern species.
This contribution uses occurrences of four major marine microplankton groups from a large...
Short summary
We examine how change in a species' geographic range size over time influences that species' extinction risk. We analyze instantaneous range size and range size change and how these terms relate to extinction risk in marine microplankton. We find that both the instantaneous range size and the change in range size are informative predictors of extinction. Using predictive models, we also assess extinction probability in four extant groups.
We examine how change in a species' geographic range size over time influences that species'...
Altmetrics
Final-revised paper
Preprint