Articles | Volume 22, issue 2
https://doi.org/10.5194/bg-22-473-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-22-473-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment framework to predict sensitivity of marine calcifiers to ocean alkalinity enhancement – identification of biological thresholds and importance of precautionary principle
Nina Bednaršek
CORRESPONDING AUTHOR
Cooperative Institute for Marine Ecosystem and Resources Studies, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive Newport, OR 97365, USA
Hanna van de Mortel
HvdMortel Consulting, Utrecht, the Netherlands
Greg Pelletier
Washington Department of Ecology, Olympia, 300 Desmond Dr SE, WA 98503, USA
retired
Marisol García-Reyes
Farallon Institute, 101 St. Suite Q, Petaluma, CA 94952, USA
Richard A. Feely
NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
Andrew G. Dickson
University of California at San Diego, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA
retired
Related authors
No articles found.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Li-Qing Jiang, Tim P. Boyer, Christopher R. Paver, Hyelim Yoo, James R. Reagan, Simone R. Alin, Leticia Barbero, Brendan R. Carter, Richard A. Feely, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 3383–3390, https://doi.org/10.5194/essd-16-3383-2024, https://doi.org/10.5194/essd-16-3383-2024, 2024
Short summary
Short summary
In this paper, we unveil a data product featuring ten coastal ocean acidification variables. These indicators are provided on 1°×1° spatial grids at 14 standardized depth levels, ranging from the surface to a depth of 500 m, along the North American ocean margins.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha Siedlecki, and Dana Greeley
Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, https://doi.org/10.5194/bg-21-1639-2024, 2024
Short summary
Short summary
We provide a new multi-stressor data product that allows us to characterize the seasonality of temperature, O2, and CO2 in the southern Salish Sea and delivers insights into the impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also describe the present-day frequencies of temperature, O2, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Dana Greeley, Beth Curry, Julian Herndon, and Mark Warner
Earth Syst. Sci. Data, 16, 837–865, https://doi.org/10.5194/essd-16-837-2024, https://doi.org/10.5194/essd-16-837-2024, 2024
Short summary
Short summary
The Salish cruise data product provides 2008–2018 oceanographic data from the southern Salish Sea and nearby coastal sampling stations. Temperature, salinity, oxygen, nutrient, and dissolved inorganic carbon measurements from 715 oceanographic profiles will facilitate further study of ocean acidification, hypoxia, and marine heatwave impacts in this region. Three subsets of the compiled datasets from 35 cruises are available with consistent formatting and multiple commonly used units.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Kai G. Schulz, Lennart T. Bach, and Andrew G. Dickson
State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023
Short summary
Short summary
Ocean alkalinity enhancement is a promising approach for long-term anthropogenic carbon dioxide sequestration, required to avoid catastrophic climate change. In this chapter we describe its impacts on seawater carbonate chemistry speciation and highlight pitfalls that need to be avoided during sampling, storage, measurements, and calculations.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Li-Qing Jiang, Richard A. Feely, Rik Wanninkhof, Dana Greeley, Leticia Barbero, Simone Alin, Brendan R. Carter, Denis Pierrot, Charles Featherstone, James Hooper, Chris Melrose, Natalie Monacci, Jonathan D. Sharp, Shawn Shellito, Yuan-Yuan Xu, Alex Kozyr, Robert H. Byrne, Wei-Jun Cai, Jessica Cross, Gregory C. Johnson, Burke Hales, Chris Langdon, Jeremy Mathis, Joe Salisbury, and David W. Townsend
Earth Syst. Sci. Data, 13, 2777–2799, https://doi.org/10.5194/essd-13-2777-2021, https://doi.org/10.5194/essd-13-2777-2021, 2021
Short summary
Short summary
Coastal ecosystems account for most of the economic activities related to commercial and recreational fisheries and aquaculture industries, supporting about 90 % of the global fisheries yield and 80 % of known species of marine fish. Despite the large potential risks from ocean acidification (OA), internally consistent water column OA data products in the coastal ocean still do not exist. This paper is the first time we report a high quality OA data product in North America's coastal waters.
Samantha A. Siedlecki, Darren Pilcher, Evan M. Howard, Curtis Deutsch, Parker MacCready, Emily L. Norton, Hartmut Frenzel, Jan Newton, Richard A. Feely, Simone R. Alin, and Terrie Klinger
Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, https://doi.org/10.5194/bg-18-2871-2021, 2021
Short summary
Short summary
Future ocean conditions can be simulated using projected trends in fossil fuel use paired with Earth system models. Global models generally do not include local processes important to coastal ecosystems. These coastal processes can alter the degree of change projected. Higher-resolution models that include local processes predict modified changes in carbon stressors when compared to changes projected by global models in the California Current System.
Andrea J. Fassbender, James C. Orr, and Andrew G. Dickson
Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, https://doi.org/10.5194/bg-18-1407-2021, 2021
Short summary
Short summary
A decline in upper-ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Katja Fennel, Simone Alin, Leticia Barbero, Wiley Evans, Timothée Bourgeois, Sarah Cooley, John Dunne, Richard A. Feely, Jose Martin Hernandez-Ayon, Xinping Hu, Steven Lohrenz, Frank Muller-Karger, Raymond Najjar, Lisa Robbins, Elizabeth Shadwick, Samantha Siedlecki, Nadja Steiner, Adrienne Sutton, Daniela Turk, Penny Vlahos, and Zhaohui Aleck Wang
Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, https://doi.org/10.5194/bg-16-1281-2019, 2019
Short summary
Short summary
We review and synthesize available information on coastal ocean carbon fluxes around North America (NA). There is overwhelming evidence, compiled and discussed here, that the NA coastal margins act as a sink. Our synthesis shows the great diversity in processes driving carbon fluxes in different coastal regions, highlights remaining gaps in observations and models, and discusses current and anticipated future trends with respect to carbon fluxes and acidification.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, Alex Kozyr, Andreas J. Andersson, Nicholas R. Bates, Wei-Jun Cai, Meghan F. Cronin, Eric H. De Carlo, Burke Hales, Stephan D. Howden, Charity M. Lee, Derek P. Manzello, Michael J. McPhaden, Melissa Meléndez, John B. Mickett, Jan A. Newton, Scott E. Noakes, Jae Hoon Noh, Solveig R. Olafsdottir, Joseph E. Salisbury, Uwe Send, Thomas W. Trull, Douglas C. Vandemark, and Robert A. Weller
Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, https://doi.org/10.5194/essd-11-421-2019, 2019
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggests the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, and Alex Kozyr
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-77, https://doi.org/10.5194/essd-2018-77, 2018
Preprint withdrawn
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggest the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
Y. Takeshita, C. A. Frieder, T. R. Martz, J. R. Ballard, R. A. Feely, S. Kram, S. Nam, M. O. Navarro, N. N. Price, and J. E. Smith
Biogeosciences, 12, 5853–5870, https://doi.org/10.5194/bg-12-5853-2015, https://doi.org/10.5194/bg-12-5853-2015, 2015
Short summary
Short summary
In this manuscript, habitat-specific acidification projections are presented for four near-shore habitats in the Southern California Bight using high-temporal-resolution pH sensor data: surf zone, kelp forest, canyon edge, and the shelf break. All habitats were within 5km of one another and exhibited unique, habitat-specific CO2 variability signatures and acidification trajectories, demonstrating the importance of making projections in the context of habitat-specific CO2 signatures.
Z. Cao, M. Dai, W. Evans, J. Gan, and R. Feely
Biogeosciences, 11, 6341–6354, https://doi.org/10.5194/bg-11-6341-2014, https://doi.org/10.5194/bg-11-6341-2014, 2014
A. J. Sutton, C. L. Sabine, S. Maenner-Jones, N. Lawrence-Slavas, C. Meinig, R. A. Feely, J. T. Mathis, S. Musielewicz, R. Bott, P. D. McLain, H. J. Fought, and A. Kozyr
Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, https://doi.org/10.5194/essd-6-353-2014, 2014
Short summary
Short summary
In an effort to track ocean change, sustained ocean observations are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade have dramatically improved our ability to understand how rising atmospheric CO2 and climate change affect the chemistry of the oceans and their marine ecosystems. Here we describe one of those advancements, the MAPCO2 system, and the climate-quality data produced from 14 ocean CO2 observatories.
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
M. Ishii, R. A. Feely, K. B. Rodgers, G.-H. Park, R. Wanninkhof, D. Sasano, H. Sugimoto, C. E. Cosca, S. Nakaoka, M. Telszewski, Y. Nojiri, S. E. Mikaloff Fletcher, Y. Niwa, P. K. Patra, V. Valsala, H. Nakano, I. Lima, S. C. Doney, E. T. Buitenhuis, O. Aumont, J. P. Dunne, A. Lenton, and T. Takahashi
Biogeosciences, 11, 709–734, https://doi.org/10.5194/bg-11-709-2014, https://doi.org/10.5194/bg-11-709-2014, 2014
E. E. Bockmon, C. A. Frieder, M. O. Navarro, L. A. White-Kershek, and A. G. Dickson
Biogeosciences, 10, 5967–5975, https://doi.org/10.5194/bg-10-5967-2013, https://doi.org/10.5194/bg-10-5967-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Climate Change
Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through marine enhanced rock weathering using olivine
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Effect of the 2022 summer drought across forest types in Europe
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Long-term impacts of global temperature stabilization and overshoot on exploited marine species
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Modelling the nutritional implications of ozone on wheat protein and amino acids
Global and regional hydrological impacts of global forest expansion
Effects of pH/pCO2 fluctuation on photosynthesis and fatty acid composition of two marine diatoms, with reference to consequence of coastal acidification
Selecting allometric equations to estimate forest biomass from plot- rather than individual-level predictive performance
The biological and preformed carbon pumps in perpetually slower and warmer oceans
The Effectiveness of Agricultural Carbon Dioxide Removal using the University of Victoria Earth System Climate Model
Toward more robust NPP projections in the North Atlantic Ocean
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Direct foliar phosphorus uptake from wildfire ash
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Consistency of global carbon budget between concentration- and emission-driven historical experiments simulated by CMIP6 Earth system models and suggestion for improved simulation of CO2 concentration
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Divergent responses of evergreen needle-leaf forests in Europe to the 2020 warm winter
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Anthropogenic climate change drives non-stationary phytoplankton internal variability
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Quantifying land carbon cycle feedbacks under negative CO2 emissions
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Ideas and perspectives: Land–ocean connectivity through groundwater
Bioclimatic change as a function of global warming from CMIP6 climate projections
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Drivers of intermodel uncertainty in land carbon sink projections
Reviews and syntheses: A framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Evaluation of soil carbon simulation in CMIP6 Earth system models
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
Biogeosciences, 22, 355–384, https://doi.org/10.5194/bg-22-355-2025, https://doi.org/10.5194/bg-22-355-2025, 2025
Short summary
Short summary
Marine enhanced rock weathering (mERW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of mERW parameters and identifying aspects to consider when applying mERW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Philipp Suessle, Jan Taucher, Silvan Urs Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
Biogeosciences, 22, 71–86, https://doi.org/10.5194/bg-22-71-2025, https://doi.org/10.5194/bg-22-71-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine communities and the particle export they drive. Here, impacts of carbonate-based OAE on the flux and attenuation of sinking particles in an oligotrophic plankton community are presented. Whilst biological parameters remained unaffected, abiotic carbonate precipitation occurred. Among counteracting OAE’s efficiency, it influenced mineral ballasting and particle sinking velocities, requiring monitoring.
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024, https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
Biogeosciences, 21, 5481–5494, https://doi.org/10.5194/bg-21-5481-2024, https://doi.org/10.5194/bg-21-5481-2024, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests an alarming level of vulnerability of forests across Europe to more frequent droughts.
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024, https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Short summary
The remaining carbon budget (RCB) represents the allowable future CO2 emissions before a temperature target is reached. Understanding the uncertainty in the RCB is critical for effective climate regulation and policy-making. One major source of uncertainty is the representation of the carbon cycle in Earth system models. We assessed how nutrient limitation affects the estimation of the RCB. We found a reduction in the estimated RCB when nutrient limitation is taken into account.
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024, https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
Short summary
Climate change is expected to increase the risk of forest fires. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. The findings suggest a longer fire season, more fires, and an increase in burnt area towards the end of the century.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3090, https://doi.org/10.5194/egusphere-2024-3090, 2024
Short summary
Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that only about half of the habitat loss for marine species is realized when temperature stabilization is initially reached. The maximum habitat loss happens over a century after peak warming in an overshoot scenario peaking at 2 °C before stabilizing at 1.5 °C. We also emphasize that species adaptation may play a key role in mitigating the long-term impacts of temperature stabilization and overshoot.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2968, https://doi.org/10.5194/egusphere-2024-2968, 2024
Short summary
Short summary
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential for nutrition, like lysine and methionine. Here, we improve the DO3SE-CropN model to simulate wheat’s protective processes against O3 and their impact on protein and amino acid concentrations. While the model captures O3-induced yield losses, it underestimates amino acid reductions. Further research is needed to refine the model, enabling future risk assessments of O3's impact on yields and nutrition.
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024, https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Yu Shang, Jingmin Qiu, Yuxi Weng, Xin Wang, Di Zhang, Yuwei Zhou, Juntian Xu, and Futian Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2430, https://doi.org/10.5194/egusphere-2024-2430, 2024
Short summary
Short summary
Coastal waters are characterized by dynamic pH due to a range of natural and anthropogenic factors. However, research on influences of dynamic pH on marine ecosystem is still in its infancy. We manipulated the culturing pH to simulate pH fluctuation and found lower pH could increase EPA and DHA production with unaltered growth and photosynthesis. Effects of seawater acidification on primary production could be overestimated if the prediction doesn’t take pH variability into account.
Nicolas Picard, Noël Fonton, Faustin Boyemba Bosela, Adeline Fayolle, Joël Loumeto, Gabriel Ngua Ayecaba, Bonaventure Sonké, Olga Diane Yongo Bombo, Hervé Martial Maïdou, and Alfred Ngomanda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2302, https://doi.org/10.5194/egusphere-2024-2302, 2024
Short summary
Short summary
Allometric equations predict tree biomass and are crucial for estimating forest carbon storage, thus assessing forests' role in climate change mitigation. Usually, these equations are selected based on tree-level predictive performance. However, we evaluated the model performance at plot and forest levels, finding it varies with plot size. This has significant implications for reducing uncertainty in biomass estimates at these levels.
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Rebecca Chloe Evans and H. Damon Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2024-1810, https://doi.org/10.5194/egusphere-2024-1810, 2024
Short summary
Short summary
To mitigate our impact on the climate, research suggests that we will need to both drastically reduce emissions and perform carbon dioxide removal (CDR). We simulated future climates under three emissions scenarios, in which we removed some carbon from the air and put it into agricultural soil at varying rates. We found that agricultural CDR is much more effective at reducing global temperatures if done in a low emissions scenario and at a high rate, and it becomes less effective with time.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1820, https://doi.org/10.5194/egusphere-2024-1820, 2024
Short summary
Short summary
Phytoplankton net primary production (NPP) is influenced by many processes, and their representation varies across Earth-system models. This leads to differing projections for NPP's future under climate change, especially in the North Atlantic. To address this, we identified and assessed the processes controlling NPP in each model. This assessment helped us select the most reliable models, significantly improving NPP projections in the region.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024, https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Short summary
This paper explores the climate processes that drive increasing global average temperatures in zero-emission commitment (ZEC) simulations despite decreasing atmospheric CO2. ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024, https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Short summary
We mapped the distribution of future potential afforestation regions based on future high-resolution climate data and climate–vegetation models. After considering the national afforestation policy and climate change, we found that the future potential afforestation region was mainly located around and to the east of the Hu Line. This study provides a dataset for exploring the effects of future afforestation.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024, https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary
Short summary
We present coherence and time lags in spectral response of three vegetation types in the European temperate zone to the influencing meteorological factors and teleconnection indices for the period 2002–2022. Vegetation condition in broadleaved forest, coniferous forest and pastures was measured with MODIS NDVI and EVI, and the coherence between NDVI and EVI and meteorological elements was described using the methods of wavelet coherence and Pearson’s linear correlation with time lag.
Anton Lokshin, Daniel Palchan, and Avner Gross
Biogeosciences, 21, 2355–2365, https://doi.org/10.5194/bg-21-2355-2024, https://doi.org/10.5194/bg-21-2355-2024, 2024
Short summary
Short summary
Ash particles from wildfires are rich in phosphorus (P), a crucial nutrient that constitutes a limiting factor in 43 % of the world's land ecosystems. We hypothesize that wildfire ash could directly contribute to plant nutrition. We find that fire ash application boosts the growth of plants, but the only way plants can uptake P from fire ash is through the foliar uptake pathway and not through the roots. The fertilization impact of fire ash was also maintained under elevated levels of CO2.
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024, https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Short summary
The general impact of afforestation on the regional climate conditions in Europe during the period 1986–2015 is investigated. For this purpose, a regional climate model simulation is performed, in which afforestation during this period is considered, and results are compared to a simulation in which this is not the case. Results show that afforestation had discernible impacts on the climate change signal in Europe, which may have mitigated the local warming trend, especially in summer in Europe.
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2024-188, https://doi.org/10.5194/egusphere-2024-188, 2024
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations. We successfully identified problems of global carbon budget in each model. We also found urgent issues that should be solved in the latest generation of models, land use change CO2 emissions.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2964, https://doi.org/10.5194/egusphere-2023-2964, 2024
Short summary
Short summary
Effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter in 2020 on the forest CO2 fluxes across 14 sites in Europe and found that in colder sites net ecosystem productivity (NEP) declined during the warm winter, while in the warmer sites NEP increased. Warming leads to increased respiration fluxes but if not translated into a direct warming of the soil might not enhance productivity, if the soil within the rooting zone remains frozen.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023, https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton internal variability using an Earth system model ensemble and identify a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Koramanghat Unnikrishnan Jayakrishnan and Govindasamy Bala
Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, https://doi.org/10.5194/bg-20-1863-2023, 2023
Short summary
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Cited articles
Agostini, S., Harvey, B. P., Milazzo, M., Wada, S., Kon, K., Floc'h, N., Komatsu, K., Kuroyama, M., and Hall-Spencer, J. M: Seawater carbonate chemistry and kelp densities and coral coverages at three study locations and photosynthesis and calcification of corals measured in the laboratory, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.944056, 2021.
Bach, L. T. and Mackinder, L. C. M.: Experiment: Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.830627, 2013.
Bach, L. T., Riebesell, U., and Schulz, K. G.: Seawater carbonate chemistry, growth rate and PIC and POC production during experiments with Emiliania huxleyi (B92/11), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.771288, 2011.
Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., and Schulz, K. G.: A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework, Prog. Oceanogr., 135, 125–138, https://doi.org/10.1016/j.pocean.2015.04.012, 2015.
Bach, L. T., Gill, S. J., Rickaby, R. E., Gore, S. and Renforth, P.: CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems, Front. Clim., 1, 21 pp., https://doi.org/10.3389/fclim.2019.00007, 2019.
Barcelos e Ramos, J., Müller, M. N., and Riebesell, U.: Seawater carbonate chemistry and processes during experiments with phytoplankton Emiliania huxleyi (strain Bergen 2005), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.736022, 2010.
Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B. P., Kessouri, F., León, P., Lischka, S., Maas, A. E., McLaughlin, K., Nezlin, N. P., and Sutula, M.: Systematic review and meta-analysis toward synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming, Front. Mar. Sci., 6, 227, https://doi.org/10.3389/fmars.2019.00227, 2019.
Bednaršek, N., Naish, K. A., Feely, R. A., Hauri, C., Kimoto, K., Hermann, A. J., Michel, C., Niemi, A., and Pilcher, D.: Integrated Assessment of Ocean Acidification Risks to Pteropods in the Northern High Latitudes: Regional Comparison of Exposure, Sensitivity and Adaptive Capacity, Front. Mar. Sci., 8, 671497, https://doi.org/10.3389/FMARS.2021.671497, 2021a.
Bednaršek, N., Ambrose, R., Calosi, P., Childers, R. K., Feely, R. A., Litvin, S. Y., Long, W. C., Spicer, J. I., Štrus, J., Taylor, J., and Kessouri, F.: Synthesis of thresholds of ocean acidification impacts on decapods, Front. Mar. Sci., 8, 651102, https://doi.org/10.3389/fmars.2021.651102, 2021b.
Bednaršek, N., Calosi, P., Feely, R. A., Ambrose, R., Byrne, M., Chan, K. Y. K., Dupont, S., Padilla-Gamiño, J. L., Spicer, J. I., Kessouri, F., and Roethler, M.: Synthesis of thresholds of ocean acidification impacts on echinoderms, Front. Mar. Sci., 8, 602601, https://doi.org/10.3389/fmars.2021.602601, 2021c.
Bibby, R., Cleall-Harding, P., Rundle, S., Widdicombe, S., and Spicer, J. I.: Seawater carbonate chemistry during experiments with Littorina littorea, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.716837, 2007.
Bove, C. B., Whitehead, R. F., and Szmant, A. M.: Seawater carbonate chemistry and gastrovascular cavity pH, calcification of Montastraea cavernosa and Duncanopsammia axifuga, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.927310, 2020.
Brading, P., Warner, M. E., Davey, P., Smith, D. J., Achterberg, E. P., and Suggett, D. J.: Seawater carbonate chemistry and growth rate during experiments with phylotypes of Symbiodinium (Dinophyceae), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.771293, 2011.
Briggs, A. A. and Carpenter, R. C.: Seawater carbonate chemistry and photosynthesis and photochemical efficiency of Porolithon onkodes, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.920025, 2019.
Brown, K. T., Mello-Athayde, M. A., Sampayo, E. M., Chai, A., Dove, S., and Barott, K. L.: Seawater carbonate chemistry and endosymbiont density, photosynthesis and net calcification rates of reef-building coral Pocillopora damicornis, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.953058, 2022.
Cameron, L. P., Reymond, C. E., Müller-Lundin, F., Westfield, I. T., Grabowski, J. H., Westphal, H., and Ries, J. B.: Seawater carbonate chemistry and physiology and extrapallial fluid pH, calcification rate, and condition factor of the king scallop Pecten maximus, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.919939, 2019.
Camp, E. F., Nitschke, M. R., Rodolfo-Metalpa, R., Houlbrèque, F., Gardner, S. G., Smith, D. J., Zampighi, M., and Suggett, D. J.: Seawater carbonate chemistry and calcification rate, net photosynthesis and respiration rate of reef-building corals, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.880242, 2017.
Casareto, B. E., Niraula, M. P., Fujimura, H., and Suzuki, Y.: Seawater carbonate chemistry, primary production, biomass and calcification of plankton and bacteria, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.756687, 2009.
Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Seawater carbonate chemistry, shell linear extension and calcification during calcein staining and 45Ca experiments with pteropod Limacina helicina, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.726856, 2009.
Comeau, S., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Seawater carbonate chemistry and biological processes during experiments with Limacina helicina, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.744720, 2010a.
Comeau, S., Gorsky, G., Alliouane, S., and Gattuso, J.-P.: Seawater carbonate chemistry and shell length of Mediterranean pteropod Cavolinia inflexa larvae during experiments. Laboratoire d'Océanographie de Villefranche, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.733905, 2010b.
Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R. C.: The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.833687, 2013.
Comeau, S., Cornwall, C. E., De Carlo, E. H., Krieger, E., and McCulloch, M. T.: Seawater carbonate chemistry and calcification physiology data in coral reef taxa, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.892655, 2018.
Comeau, S., Cornwall, C. E., Pupier, C. A., DeCarlo, Thomas M., Alessi, C., Trehern, R., and McCulloch, M. T.: Seawater carbonate chemistry and calcification rate, calcifying fluid pH, calcifying fluid DIC, photosynthetic rates, metabolic alteration of pH in the DBL of corals and coralline algae, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.914328, 2019.
Cornwall, C. E., Comeau, S., DeCarlo, T. M., Moore, B., D'Alexis, Q., and McCulloch, M. T.: Seawater carbonate chemistry and resistance of corals and coralline algae to ocean acidification, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.914886, 2018.
Courtney, T. and Ries, J. B.: Impact of atmospheric pCO2, seawater temperature, and calcification rate on the delta 18O and delta 13C composition of echinoid calcite (Echinometra viridis), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.862558, 2015.
Courtney, T., Westfield, I. T., and Ries, J. B.: Seawater carbonate chemistry and calcification in the tropical urchin Echinometra viridis in a laboratory experiment, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.824707, 2013.
Cripps, G., Widdicombe, S., Spicer, J. I. and Findlay, H. S.: Biological impacts of enhanced alkalinity in Carcinus maenas, Mar. Poll. Bull., 71, 190–198, https://doi.org/10.1016/j.marpolbul.2013.03.015, 2013
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-z, 1990.
Diner, R. E., Benner, I., Passow, U., Iglesias-Rodriguez, M. D., and Robertson, D. L.: Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus, Mar. Biol., 162, 1287–1305, https://doi.org/10.1007/s00227-015-2669-x, 2015.
Eisaman, M. D., Geilert, S., Renforth, P., Bastianini, L., Campbell, J., Dale, A. W., Foteinis, S., Grasse, P., Hawrot, O., Löscher, C. R., Rau, G. H., and Rønning, J.: Assessing the technical aspects of ocean-alkalinity-enhancement approaches, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023.
Evensen, N. R. and Edmunds, P. J.: Interactive effects of ocean acidification and neighboring corals on the growth of Pocillopora verrucosa, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.867268, 2016.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J. : Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362–366, https://doi.org/10.1126/SCIENCE.1097329, 2004.
Fennel, K., Long, M. C., Algar, C., Carter, B., Keller, D., Laurent, A., Mattern, J. P., Musgrave, R., Oschlies, A., Ostiguy, J., Palter, J. B., and Whitt, D. B.: Modelling considerations for research on ocean alkalinity enhancement (OAE), in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023.
Ferderer, A., Chase, Z., Kennedy, F., Schulz, K. G., and Bach, L. T.: Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community, Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, 2022.
Findlay, H. S., Kendall, M. A., Spicer, J. I., and Widdicombe, S.: Seawater carbonate chemistry and biological processes during experiments with barnacle Semibalanus balanoides, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.737438, 2010.
Fiorini, S., Middelburg, J. J., and Gattuso, J.-P.: Seawater carbonate chemistry, nutrients, particulate carbon and growth rate of Emiliania huxleyi (AC472), Calcidiscus leptoporus (AC370) and Syracosphaera pulchra (AC418) during experiments, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.773860, 2011.
Gafar, N. A. and Schulz, K. G.: A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections, Biogeosciences, 15, 3541–3560, https://doi.org/10.5194/bg-15-3541-2018, 2018.
Garilli, V., Rodolfo-Metalpa, R., Scuderi, D., Brusca, L., Parrinello, D., Rastrick, S. P. S., Foggo, A., Twitchett, R. J., Hall-Spencer, J. M., and Milazzo, M.: Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans, PANGAEA [data set]. https://doi.org/10.1594/PANGAEA.847397, 2015.
Gattuso, J. P., Magnan, A. K., Bopp, L., Cheung, W. W., Duarte, C. M., Hinkel, J., Mcleod, E., Micheli, F., Oschlies, A., Williamson, P., and Billé, R.: Ocean solutions to address climate change and its effects on marine ecosystems, Front. Mar. Sci., 5, 410554, https://doi.org/10.3389/fmars.2018.00337, 2018.
Gattuso, J. P., Williamson, P., Duarte, C. M., and Magnan, A. K.: The potential for ocean-based climate action: negative emissions technologies and beyond, Front. Clim., 2, 575716, https://doi.org/10.3389/fclim.2020.575716, 2021.
Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J.-P., Middelburg, J. J., and Heip, C. H. R.: Seawater carbonate chemistry and calcification during incubation experiments with Mytilus edulis and Grassostrea gigas, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.718130, 2007.
Gazeau, F., Alliouane, S., Bock, C., Bramanti, L., López Correa, M., Gentile, M., Hirse, T., Pörtner, H.-O., and Ziveri, P.: Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.843969, 2014.
Gehlen, M., Gruber, N., Gangstø, R., Bopp, L., and Oschlies, A.: Biogeochemical consequences of ocean acidification and feedback to the earth system, Ocean Acidification, 1, 230–248, https://doi.org./10.1093/oso/9780199591091.003.0017, 2011.
Hansen, P. J.: Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession, Aquat. Microb. Ecol., 28, 279–288, https://doi.org/10.3354/ame028279, 2002.
Hansen, P. J., Lundholm, N., and Rost, B.: Seawater carbonate chemistry and growth rate during experiments with dinoflagellates, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.718182, 2007.
Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J., and Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage, Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, 2023.
He, J. and Tyka, M. D.: Limits and CO2 equilibration of near-coast alkalinity enhancement, Biogeosciences, 20, 27–43, https://doi.org/10.5194/bg-20-27-2023, 2023.
Ho, D. T., Bopp, L., Palter, J. B., Long, M. C., Boyd, P. W., Neukermans, G., and Bach, L. T.: Monitoring, reporting, and verification for ocean alkalinity enhancement, State Planet, 2, 1–12, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023.
Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D.: PyCO2SYS v1.8: marine carbonate system calculations in Python, Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, 2022.
Humphreys, M. P., Schiller, A. J., Sandborn, D., Gregor, L., Pierrot, D., van Heuven, S. M. A. C., Lewis, E. R., and Wallace, D. W. R.: PyCO2SYS: marine carbonate system calculations in Python (v1.8.3.3), Zenodo [software], https://doi.org/10.5281/zenodo.13759753, 2024.
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs S. J., von Dassow, P., Rehm, E., Armbrust, E. V., and Boessenkool, K. P.: Seawater carbonate chemistry and processes during experiments with Emiliania huxleyi, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.718841, 2008.
Johnson, M. D., Bravo, L., Lucey, N. M., and Altieri, A. H.: Seawater carbonate chemistry and calcification rate of crustose coralline algae, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.939809, 2021.
Keul, N., Langer, G., de Nooijer, L. J., and Bijma, J.: Seawater carbonate chemistry and benthic foraminifera Ammonia sp. mass, size, and growth rate during experiments, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.821209, 2013.
Kheshgi, H. S.: Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy, 20, 915–922, 1995.
Kisakürek, B., Eisenhauer, A., Böhm, F., Hathorne, E. C., and Erez, J.: Seawater carbonate chemistry and biological processes of foraminifera, Globigerinoides ruber and Globigerinella siphonifera during experiments, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.763297, 2011.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J. P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Krueger, T., Horwitz, N., Bodin, J., Giovani, Maria-Evangelia, Escrig, S., Meibom, A., and Fine, M.: Seawater carbonate chemistry and photosynthesis, respiration and calcification of common reef-building coral in the Northern Red Sea, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.880318, 2017.
Langer, G. and Bode, M.: Seawater carbonate chemistry, growth rate and morphology of Calcidiscus leptoporus (RCC1135) during experiments, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.763286, 2011.
Langer, G., Geisen, M., Baumann, Karl-Heinz, Kläs, J., Riebesell, U., Thoms, S., and Young, J.: Seawater carbonate chemistry, growth rate and processes during experiments with Coccolithus pelagicus and Calcidiscus leptoporus, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.721107, 2006.
Leung, J. Y., Zhang, S., and Connell, S. D.: Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades, Small, 18, 2107407, https://doi.org/10.1002/smll.202107407, 2022.
Li, J., Xue, S., and Mao, Y.: Seawater carbonate parameters function differently in affecting embryonic development and calcification in Pacific abalone (Haliotis discus hannai), Aquat. Toxicol., 257, 106450, https://doi.org/10.1016/j.aquatox.2023.106450, 2023.
Lischka, S. and Riebesell, U.: Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.832422, 2012.
Lischka, S., Büdenbender, J., Boxhammer, T., and Riebesell, U.: Seawater carbonate chemistry and biological processes of Limacina helicina during experiments, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.761910, 2011.
Lutier, M., Di Poi, C., Gazeau, F., Appolis, A., Luyer, J. L., and Pernet, F.: Revisiting tolerance to ocean acidification: Insights from a new framework combining physiological and molecular tipping points of Pacific oyster, Glob. Change Biol., 28, 3333–3348. https://doi.org/10.1111/gcb.16101, 2022.
Maier, C., Hegeman, J., Weinbauer, M. G., and Gattuso, J.-P.: Seawater carbonate chemistry and calcification of Lophelia pertusa during experiments, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.767577, 2009.
Manno, C., Morata, N., and Bellerby, R. G. J.: Seawater carbonate chemistry, survival rate, shell size, calcification rate of the planktonic foraminifer Neogloboquadrina pachyderma (sinistral) in a laboratory experiment, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.830908, 2012.
Manríquez, P. H., Jara, M. E., Seguel, M. E., Torres, R., Alarcon, E., Lee, M. R., and Dam, H. G.: Ocean acidification and increased temperature have both positive and negative effects on early ontogenetic traits of a rocky shore keystone predator species, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.869291, 2016.
Mekkes, L., Renema, W., Alin, S. R., Feely, R. A., Huisman, J., Roessingh, P., and Peijnenburg, K. T. C. A.: Seawater carbonate chemistry and shell thickness, shell dissolution of Limacina helicina pteropods, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.930065, 2021.
Meyer, F. W., Vogel, N., Teichberg, M., Uthicke, S., Wild, C., and Diaz-Pulido, G.: The physiological response of two green calcifying algae from the great barrier reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.868094, 2015.
Meyer, F. W., Vogel, N., Diele, K., Kunzmann, A., Uthicke, S., and Wild, C.: Effects of high dissolved inorganic and organic carbon availability on the physiology of the hard coral Acropora millepora from the Great Barrier Reef, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.869416, 2016.
Monserrat, M., Comeau, S., Verdura, J., Alliouane, S., Spennato, G., Priouzeau, F., Romero, G., and Mangialajo, L.: Seawater carbonate chemistry and the recruitment of macroalgal marine forests, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.955425, 2022.
Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R., and Schulz, K. G.: Ocean alkalinity enhancement–avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution, Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, 2022.
National Academies of Sciences, Engineering, and Medicine: A research strategy for ocean-based carbon dioxide removal and sequestration, Washington, DC, The National Academies Press, https://doi.org/10.17226/26278, 2021.
Ninokawa, A., Takeshita, Y., Jellison, B. M., Jurgens, L. J., and Gaylord, B.: Seawater carbonate chemistry and mussel respiration and calcification rates, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.915978, 2020.
Ninokawa, A. T., Saley, A. M., Shalchi, R., and Gaylord, B.: Multiple carbonate system parameters independently govern shell formation in a marine mussel, Commun. Earth Environ., 5, 273, https://doi.org/10.1038/s43247-024-01440-5, 2024.
Noisette, F., Bordeyne, F., Davoult, D., and Martin, S.: Assessing the physiological responses of the gastropod Crepidula fornicata to predicted ocean acidification and warming, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.860508, 2016.
Okazaki, R., Swart, P. K., and Langdon, C.: Stress-tolerant corals of Florida Bay are vulnerable to ocean acidification, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.833005, 2013.
Ong, E. Z., Briffa, M., Moens, T., and Van Colen, C.: Seawater carbonate chemistry and respiration, clearance and calcification rates of the common cockle Cerastoderma edule, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.949749, 2017.
Oron, S., Evans, D., Abramovich, S., Almogi-Labin, A., and Erez, J.: Seawater carbonate chemistry and calcification, respiration, and photosynthesis of the widespread diatom-bearing LBF Operculina ammonoides, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.929866, 2020.
Oschlies, A., Bach, L. T., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P.: Climate targets, carbon dioxide removal, and the potential role of ocean alkalinity enhancement, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023.
Palmer, R. M.: Alkalinity enhancement, thermal stress and their impacts on the physiology of three Caribbean coral species: Acropora Cervicornis, Pseudodiploria strigosa and Siderastrea siderea, in: University of Miami, https://scholarship.miami.edu/esploro/ (last access: 6 April 2024), 2022.
Pansch, C., Schaub, I., Havenhand, J. N., and Wahl, M.: Habitat traits and food availability determine the response of marine invertebrates to ocean acidification, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.831428, 2014.
Paul, A. J. and Bach, L. T.: Universal response pattern of phytoplankton growth rates to increasing CO2, New Phytol., 228, 1710–1716, https://doi.org/10.1111/nph.16806, 2020.
Prazeres, M., Uthicke, S., and Pandolfi, J. M.: Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.848419, 2015.
Putnam, H. M. and Gates, R. D.: Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.859356, 2015.
Ramajo, L., Marbà, N., Prado, L., Peron, S., Lardies, M. A., Rodriguez-Navarro, A., Vargas, C. A., Lagos, N. A., and Duarte, C. M.: Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.860506, 2016.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon sequestration, Rev. Geophys., 55, 636–674, https://doi.org/10.1002/2016RG000533, 2017.
Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S., and Pandolfi, J. M.: Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.833683, 2013.
Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drüke, M., Fetzer, I., Bala, G., von Bloh, W., and Feulner, G.: Earth beyond six of nine planetary boundaries, Sci. Adv., 9, 2458, https://doi.org/10.1126/sciadv.adh2458, 2023.
Richier, S., Fiorini, S., Kerros, Marie-Emmanuelle, von Dassow, P., and Gattuso, J.-P.: Seawater carbonate chemistry, particulate inorganic and organic carbon and growth rate of Emiliana huxleyi (RCC1216) during experiments, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.770439, 2011.
Riebesell, U. and Gattuso, J. P.: Lessons learned from ocean acidification research, Nat. Clim. Change, 5, 12–14, https://doi.org/10.1038/nclimate2456, 2015.
Riebesell, U., Wolf-Gladrow, D. A., and Smetacek, V.: Carbon dioxide limitation of marine phytoplankton growth rates, Nature, 361, 249–251, https://doi.org/10.1038/361249a0, 1993.
Riebesell, U., Bach, L. T., Bellerby, R. G., Monsalve, J. R. B., Boxhammer, T., Czerny, J., Larsen, A., Ludwig, A., and Schulz, K. G.: Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification, Nat. Geosci., 10, 19–23, https://doi.org/10.1038/ngeo2854, 2017.
Ries, J. B.: A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Ac., 75, 4053–4064, https://doi.org/10.1016/j.gca.2011.04.025, 2011.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Seawater carbonate chemistry and biological processes during experiments with calcifying organisms, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.733947, 2009.
Sett, S., Bach, L. T., Schulz, K. G., Koch-Klavsen, S., Lebrato, M., and Riebesell, U.: Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.835214, 2014.
Schulz, K. G., Bach, L. T., and Dickson, A. G.: Seawater carbonate chemistry considerations for ocean alkalinity enhancement research: theory, measurements, and calculations, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 2, https://doi.org/10.5194/sp-2-oae2023-2-2023, 2023.
Sciandra, A., Harlay, J., Lefèvre, D., Lemee, R., Rimmelin, P., Denis, M., and Gattuso, J.-P.: Seawater carbonate chemistry and processes during experiments with Emiliania huxleyi (TW1), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.727841, 2003.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and statistical modeling with Python, in: 9th Python in Science Conference, 57–61, Austin, TX, 28 June–3 July 2010, https://doi.org/10.25080/Majora-92bf1922-011, 2010.
Sinutok, S., Hill, R., Doblin, M. A., Wuhrer, R., and Ralph, P. J.: Seawater carbonate chemistry, calcification rate, oxygen production, maximum quantum yield, symbiont density, chlorophyll concentration and crystal width of Halimeda macroloba, Halimeda cylindracea and Marginopora vertebralis during experiments, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.774792, 2011.
Sordo, L., Duarte, C., Joaquim, S., Gaspar, M. B., and Matias, D.: Seawater carbonate chemistry and growth and survival of juveniles of the striped venus clam Chamelea gallina, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937477, 2021.
Stoll, H. M., Cruzado, A., Shimizu, N., and Kanamaru, K. : Seawater carbonate chemistry and , calcification rate of Emiliania huxleyi and Coccolithus braarudii, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.949913, 2012.
Sulpis, O., Lauvset, S. K., and Hagens, M.: Current estimates of K and K appear inconsistent with measured CO2 system parameters in cold oceanic regions, Ocean Sci., 16, 847–862, https://doi.org/10.5194/os-16-847-2020, 2020.
Tatters, A. O., Schnetzer, A., Fu, F., Lie, A. Y. A., Caron, D. A., and Hutchins, D. A.: Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.823381, 2013.
Truchot, J.: Water carbonate alkalinity as a determinant of hemolymph acid-base balance in the shore crab, Carcinus maenas: a study at two different ambient PCO2 and PO2 levels, J. Comp. Physiol. B, 154, 601–606, https://doi.org/10.1007/bf00684414, 1984.
Truchot, J.: Changes in the Hemolymph Acid-Base State of the Shore Crab, Carcinus maenas, Exposed to Simulated Tidepool Conditions, Biol. Bull., 170, 506–518, https://doi.org/10.2307/1541858, 1986.
United States Environmental Protection Agency (EPA): National Pollutant Discharge Elimination System (NPDES) Permit Writers' Manual, U.S. Environmental Protection Agency, Washington, D.C., https://www.epa.gov/npdes/npdes-permit-writers-manual (last access: 15 August 2024), 2010.
Uppström, L. R.: The boron chlorinity ratio of deep-sea water from the Pacific Ocean, Deep-Sea Res., 21, 161–162, https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
Uthicke, S. and Fabricius, K. E.: Seawater carbonate chemistry, productivity and calcification of Marginopora vertebralis in a laboratory experiment, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.831207, 2012.
van de Mortel, H.: hannavdmortel/OAE_calc_responses: Temperature change + pre-industrial lines removed (v1.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.14024442, 2024.
Van de Waal, D. B., John, U., Ziveri, P., Reichart, Gert-Jan, Hoins, M., Sluijs, A., and Rost, B.: Seawater carbonate chemistry and growth, calcification of Thoracosphaera heimii in a laboratory experiment, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.824705, 2013.
Vásquez-Elizondo, R. M. and Enríquez, S.: Coralline algal physiology is more adversely affected by elevated temperature than reduced pH, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.860802, 2016.
Waldbusser, G. G., Voigt, E. P., Bergschneider, H., Green, M. A., and Newell, R. I. E.: Seawater carbonate chemistry and calcification rate of eastern oyster Crassostrea virginica, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.758181, 2011.
Wang, X., Feng, X., Zhuang, Y., Lu, J., Wang, Y., Gonçalves, R. J., Li, X., Lou, Y., and Guan, W.: Seawater carbonate chemistry and physiology and toxicity of dinoflagellate Karenia mikimotoi, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.923683, 2019.
White, M. M., Drapeau, D. T., Lubelczyk, L. C., Abel, V. C., Bowler, B. C., and Balch, W. M.: Seawater carbonate chemistry and calcification of an estuarine coccolithophore, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.923623, 2018.
Xue, L. and Cai, W. J.: Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms, Mar. Chem., 222, 103791, https://doi.org/10.1016/j.marchem.2020.103791, 2020.
Zhang, M., Fang, J., Zhang, J., Li, B., Ren, S., Mao, Y., and Gao, Y.: Seawater carbonate chemistry and calcification and respiration of Chlamys farreri, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.949604, 2011.
Co-editor-in-chief
This paper warrants selection as a highlight due to its comprehensive synthesis of ocean alkalinity enhancement (OAE) impacts on marine calcifiers, offering essential insights for understanding potential ecological risks of this climate mitigation approach. By leveraging data from 96 studies and capturing responses across eleven biological groups, the paper establishes a predictive framework for biological responses to OAE. This work addresses a critical gap in OAE research, providing a precautionary guideline that can inform future studies, guide regional applications, and communicate risks to stakeholders.
This paper warrants selection as a highlight due to its comprehensive synthesis of ocean...
Short summary
The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. Our synthesis, based on 68 collected studies with 84 unique species, shows that 35 % of species respond positively, 26 % respond negatively, and 39 % show a neutral response to alkalinity addition. Biological thresholds were found from 50 to 500 µmol kg−1 NaOH addition. A precautionary approach is warranted to avoid potential risks, while current regulatory framework needs improvements to assure safe biological limits.
The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. Our synthesis,...
Special issue
Altmetrics
Final-revised paper
Preprint