Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5557-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5557-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Potential and limitations of oceanic carbon dioxide storage via reactor-based accelerated weathering of limestone
Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
Filip J. R. Meysman
Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
Sebastiaan J. van de Velde
Department of Marine Science, University of Otago, Ōtepoti / Dunedin, 9016, New Zealand
National Institute of Water and Atmospheric Research, Te Whanganui-a-Tara / Wellington, 6022, New Zealand
Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
Related authors
No articles found.
Gunter Flipkens, Greet Lembregts, and Filip Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2025-4887, https://doi.org/10.5194/egusphere-2025-4887, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Cement and lime kiln dust, industrial by-products, could help remove CO2 from the atmosphere by increasing surface ocean alkalinity. Lab experiments showed that a fraction dissolves rapidly in seawater, releasing substantial alkalinity. Most of the residual fraction may dissolve in marine sediments to drive further carbon storage. Both materials could thus aid in global CO2 removal, but spreading them may increase water turbidity, requiring careful strategies to protect marine ecosystems.
Clare Woulds, Dick Van Oevelen, Silvia Hidalgo-Martinez, and Filip Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3676, https://doi.org/10.5194/egusphere-2025-3676, 2025
Short summary
Short summary
Marine sediments are locations of carbon storage. Only some deposited carbon remains stored, while most is lost as CO2 through respiration by organisms. We report experiments to investigate the organisms responsible for marine sediment respiration. Larger organisms and microbes contributed equally to respiration. The groups competed to feed on fresh carbon. Respiration of older carbon was stimulated when both groups were present, thus burrowing activities allow microbial activity to increase.
Silvia Placitu, Sebastiaan J. van de Velde, Astrid Hylén, Mats Eriksson, Per O. J. Hall, and Steeve Bonneville
EGUsphere, https://doi.org/10.5194/egusphere-2025-3020, https://doi.org/10.5194/egusphere-2025-3020, 2025
Short summary
Short summary
Marine sediments store organic carbon and help regulate climate. Oxygen-depleted waters are thought to enhance this, however West Gotland Basin sediments show low carbon despite such conditions. We studied the role of mineral protection, which can shield carbon from microbes, and found it limited. This suggests that without physical protection, carbon remains accessible and gets degraded, making mineral protection a key factor in carbon preservation.
Astrid Hylen, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-146, https://doi.org/10.5194/essd-2025-146, 2025
Preprint under review for ESSD
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
Biogeosciences, 22, 355–384, https://doi.org/10.5194/bg-22-355-2025, https://doi.org/10.5194/bg-22-355-2025, 2025
Short summary
Short summary
Marine enhanced rock weathering (mERW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of mERW parameters and identifying aspects to consider when applying mERW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Astrid Hylén, Sebastiaan J. van de Velde, Mikhail Kononets, Mingyue Luo, Elin Almroth-Rosell, and Per O. J. Hall
Biogeosciences, 18, 2981–3004, https://doi.org/10.5194/bg-18-2981-2021, https://doi.org/10.5194/bg-18-2981-2021, 2021
Short summary
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
Sebastiaan J. van de Velde, Rebecca K. James, Ine Callebaut, Silvia Hidalgo-Martinez, and Filip J. R. Meysman
Biogeosciences, 18, 1451–1461, https://doi.org/10.5194/bg-18-1451-2021, https://doi.org/10.5194/bg-18-1451-2021, 2021
Short summary
Short summary
Some 540 Myr ago, animal life evolved in the ocean. Previous research suggested that when these early animals started inhabiting the seafloor, they retained phosphorus in the seafloor, thereby limiting photosynthesis in the ocean. We studied salt marsh sediments with and without animals and found that their impact on phosphorus retention is limited, which implies that their impact on the global environment might have been less drastic than previously assumed.
Martijn Hermans, Nils Risgaard-Petersen, Filip J. R. Meysman, and Caroline P. Slomp
Biogeosciences, 17, 5919–5938, https://doi.org/10.5194/bg-17-5919-2020, https://doi.org/10.5194/bg-17-5919-2020, 2020
Short summary
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
Cited articles
Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., Nebuchina, Y., Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T., Schneider, K., Sesboüé, M., Shamberger, K., Silverman, J., Wolfe, K., Zhu, K., and Caldeira, K.: Reversal of ocean acidification enhances net coral reef calcification, Nature, 531, 362–365, https://doi.org/10.1038/nature17155, 2016.
Bach, L. T.: The additionality problem of ocean alkalinity enhancement, Biogeosciences, 21, 261–277, https://doi.org/10.5194/bg-21-261-2024, 2024.
Berner, R. A. and Berner, R. A.: The Phanerozoic Carbon Cycle: CO2 and O2, Oxford University Press, Oxford, New York, 158 pp., ISBN 9780197562215, https://doi.org/10.1093/oso/9780195173338.001.0001, 2004.
Berner, R. A. and Morse, J. W.: Dissolution kinetics of calcium carbonate in sea water; IV, Theory of calcite dissolution, American Journal of Science, 274, 108–134, 1974.
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon-Dioxide over the Past 100 Million Years, Am. J. Sci., 283, 641–683, https://doi.org/10.2475/ajs.283.7.641, 1983.
Calcium Carbonate Prices, News, Monitor, Analysis and Demand: Calcium Carbonate Price Trend and Forecast, https://www.chemanalyst.com/Pricing-data/calcium-carbonate-1158, last access: 27 March 2024.
Caldeira, K. and Rau, G. H.: Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications, Geophysical Research Letters, 27, 225–228, https://doi.org/10.1029/1999GL002364, 2000.
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Jotzo, F., Krug, T., Lasco, R., Lee, Y.-Y., Masson-Delmotte, V., Meinshausen, M., Mintenbeck, K., Mokssit, A., Otto, F. E. L., Pathak, M., Pirani, A., Poloczanska, E., Pörtner, H.-O., Revi, A., Roberts, D. C., Roy, J., Ruane, A. C., Skea, J., Shukla, P. R., Slade, R., Slangen, A., Sokona, Y., Sörensson, A. A., Tignor, M., Van Vuuren, D., Wei, Y.-M., Winkler, H., Zhai, P., Zommers, Z., Hourcade, J.-C., Johnson, F. X., Pachauri, S., Simpson, N. P., Singh, C., Thomas, A., Totin, E., Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J. J., Pichs-Madruga, R., Rose, S. K., Saheb, Y., Sánchez Rodríguez, R., Ürge-Vorsatz, D., Xiao, C., Yassaa, N., Alegría, A., Armour, K., Bednar-Friedl, B., Blok, K., Cissé, G., Dentener, F., Eriksen, S., Fischer, E., Garner, G., Guivarch, C., Haasnoot, M., Hansen, G., Hauser, M., Hawkins, E., Hermans, T., Kopp, R., Leprince-Ringuet, N., Lewis, J., Ley, D., Ludden, C., Niamir, L., Nicholls, Z., Some, S., Szopa, S., Trewin, B., Van Der Wijst, K.-I., Winter, G., Witting, M., Birt, A., Ha, M., Lee, H., Abdullq, A., Aldrian, E., Barret, K., Clavo, E., Carraro, C., Dadi, D. K., Driouech, F., Fischlin, A., Fuglestvedt, J., Krug, T., Mahmoud. N. G. E., Masson-Delmotte, V., Méndez. C., Pereira, J. J., Pichs-Madruga, R., Pörtner, H., Reisinger, A., Roberts, D. C., Semenov. S., Shukla, P., Skea, J., Sokona, Y., Tanabe, K., Tariq, M. I., ürge-Vorsatz, D., Vera, C., Yanada, P., Yassaa, N., Zatari, T. M., and Zhai, P.: IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team: Lee, H. and Romero, J., IPCC, Geneva, Switzerland, Intergovernmental Panel on Climate Change (IPCC), https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Campbell, J. S., Foteinis, S., Furey, V., Hawrot, O., Pike, D., Aeschlimann, S., Maesano, C. N., Reginato, P. L., Goodwin, D. R., Looger, L. L., Boyden, E. S., and Renforth, P.: Geochemical Negative Emissions Technologies: Part I: Review, Front. Clim., 4, https://doi.org/10.3389/fclim.2022.879133, 2022.
Cao, X., Li, Q., Xu, L., and Tan, Y.: A review of in situ carbon mineralization in basalt, Journal of Rock Mechanics and Geotechnical Engineering, 16, 1467–1485, https://doi.org/10.1016/j.jrmge.2023.11.010, 2024.
Caserini, S., Cappello, G., Righi, D., Raos, G., Campo, F., De Marco, S., Renforth, P., Varliero, S., and Grosso, M.: Buffered accelerated weathering of limestone for storing CO2: Chemical background, International Journal of Greenhouse Gas Control, 112, 103517, https://doi.org/10.1016/j.ijggc.2021.103517, 2021.
Castaño, S. V., Plante, E. C. L., Shimoda, S., Wang, B., Neithalath, N., Sant, G., and Pilon, L.: Calcination-free production of calcium hydroxide at sub-boiling temperatures, RSC Adv., 11, 1762–1772, https://doi.org/10.1039/D0RA08449B, 2021.
Chou, W.-C., Gong, G.-C., Hsieh, P.-S., Chang, M.-H., Chen, H.-Y., Yang, C.-Y., and Syu, R.-W.: Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: A case study for the Hoping power plant in northeastern Taiwan, Marine Chemistry, 168, 27–36, https://doi.org/10.1016/j.marchem.2014.10.008, 2015.
Damu, D. N. A., Lee, A. G. J., Chai, S. Y. W., and Ngu, L. H.: Accelerated weathering of construction-grade limestone for CO2 absorption, Greenhouse Gases: Science and Technology, 14, 1049–1067, https://doi.org/10.1002/ghg.2311, 2024.
De Marco, S., Varliero, S., Caserini, S., Cappello, G., Raos, G., Campo, F., and Grosso, M.: Techno-economic evaluation of buffered accelerated weathering of limestone as a CO2 capture and storage option, Mitig. Adapt. Strateg. Glob. Change, 28, 17, https://doi.org/10.1007/s11027-023-10052-x, 2023.
Dickson, A. G.: An Exact Definition of Total Alkalinity and a Procedure for the Estimation of Alkalinity and Total Inorganic Carbon from Titration Data, Deep-Sea Res., 28, 609–623, https://doi.org/10.1016/0198-0149(81)90121-7, 1981.
Dong, S., Subhas, A. V., Rollins, N. E., Naviaux, J. D., Adkins, J. F., and Berelson, W. M.: A kinetic pressure effect on calcite dissolution in seawater, Geochimica et Cosmochimica Acta, 238, 411–423, https://doi.org/10.1016/j.gca.2018.07.015, 2018.
Dong, S., Berelson, W. M., Forin, P., Gutierrez, M., Carroll, D., Menemenlis, D., Kyi, A. Y., and Adkins, J. F.: Potential of CO2 sequestration through accelerated weathering of limestone on ships, Science Advances, 11, eadr7250, https://doi.org/10.1126/sciadv.adr7250, 2025.
Gadikota, G.: Carbon mineralization pathways for carbon capture, storage and utilization, Commun. Chem., 4, 1–5, https://doi.org/10.1038/s42004-021-00461-x, 2021.
Geerts, L. J. J., Hylén, A., and Meysman, F. J. R.: Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through marine enhanced rock weathering using olivine, Biogeosciences, 22, 355–384, https://doi.org/10.5194/bg-22-355-2025, 2025.
Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J., and Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage, Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, 2023.
He, J. and Tyka, M. D.: Limits and CO equilibration of near-coast alkalinity enhancement, Biogeosciences, 20, 27–43, https://doi.org/10.5194/bg-20-27-2023, 2023.
Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore, T. S., Howard, J., and Duarte, C. M.: Photosynthetic activity buffers ocean acidification in seagrass meadows, Biogeosciences, 11, 333–346, https://doi.org/10.5194/bg-11-333-2014, 2014.
Hofmann, A. F., Soetaert, K., Middelburg, J. J., and Meysman, F. J. R.: AquaEnv: An Aquatic Acid–Base Modelling Environment in R, Aquat. Geochem., 16, 507–546, https://doi.org/10.1007/s10498-009-9084-1, 2010.
James, R. K., van Katwijk, M. M., van Tussenbroek, B. I., van der Heide, T., Dijkstra, H. A., van Westen, R. M., Pietrzak, J. D., Candy, A. S., Klees, R., Riva, R. E. M., Slobbe, C. D., Katsman, C. A., Herman, P. M. J., and Bouma, T. J.: Water motion and vegetation control the pH dynamics in seagrass-dominated bays, Limnology and Oceanography, 65, 349–362, https://doi.org/10.1002/lno.11303, 2020.
Jones, D. C., Ito, T., Takano, Y., and Hsu, W.-C.: Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide, Global Biogeochemical Cycles, 28, 1163–1178, https://doi.org/10.1002/2014GB004813, 2014.
Kheshgi, H. S.: Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy, 20, 915–922, https://doi.org/10.1016/0360-5442(95)00035-F, 1995.
Kirchner, J. S., Lettmann, K. A., Schnetger, B., Wolff, J.-O., and Brumsack, H.-J.: Carbon capture via accelerated weathering of limestone: Modeling local impacts on the carbonate chemistry of the southern North Sea, International Journal of Greenhouse Gas Control, 92, 102855, https://doi.org/10.1016/j.ijggc.2019.102855, 2020a.
Kirchner, J. S., Berry, A., Ohnemüller, F., Schnetger, B., Erich, E., Brumsack, H.-J., and Lettmann, K. A.: Reducing CO2 Emissions of a Coal-Fired Power Plant via Accelerated Weathering of Limestone: Carbon Capture Efficiency and Environmental Safety, Environ. Sci. Technol., 54, 4528–4535, https://doi.org/10.1021/acs.est.9b07009, 2020b.
Kirchner, J. S., Lettmann, K. A., Schnetger, B., Wolff, J.-O., and Brumsack, H.-J.: Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions, Minerals, 11, 1261, https://doi.org/10.3390/min11111261, 2021.
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.-P., Langdon, C., and Opdyke, B. N.: Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs, Science, 284, 118–120, https://doi.org/10.1126/science.284.5411.118, 1999.
Langer, W. H., Juan, C. A., Rau, G., and Caldeira, K.: Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries, Mining Engineering, 61, 27–32, 2009.
Lehmann, N. and Bach, L. T.: Global carbonate chemistry gradients reveal a negative feedback on ocean alkalinity enhancement, Nat. Geosci., 18, 232–238, https://doi.org/10.1038/s41561-025-01644-0, 2025.
Liyanaarachchi, S., Shu, L., Muthukumaran, S., Jegatheesan, V., and Baskaran, K.: Problems in seawater industrial desalination processes and potential sustainable solutions: a review, Rev. Environ. Sci. Biotechnol., 13, 203–214, https://doi.org/10.1007/s11157-013-9326-y, 2014.
Lunstrum, A. and Berelson, W.: CaCO3 dissolution in carbonate-poor shelf sands increases with ocean acidification and porewater residence time, Geochimica et Cosmochimica Acta, 329, 168–184, https://doi.org/10.1016/j.gca.2022.04.031, 2022.
Matter, J. M. and Kelemen, P. B.: Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation, Nat. Geosci., 2, 837–841, https://doi.org/10.1038/ngeo683, 2009.
Meysman, F. J. R. and Montserrat, F.: Negative CO emissions via enhanced silicate weathering in coastal environments, Biol. Lett., 13, https://doi.org/10.1098/rsbl.2016.0905, 2017.
Missimer, T. M. and Maliva, R. G.: Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls, Desalination, 434, 198–215, https://doi.org/10.1016/j.desal.2017.07.012, 2018.
Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R., and Schulz, K. G.: Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution, Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, 2022.
Morse, J. W. and He, S.: Influences of T, S and PCO2 on the pseudo-homogeneous precipitation of CaCO3 from seawater: implications for whiting formation, Marine Chemistry, 41, 291–297, https://doi.org/10.1016/0304-4203(93)90261-L, 1993.
Morse, J. W., Arvidson, R. S., and Lüttge, A.: Calcium Carbonate Formation and Dissolution, Chem. Rev., 107, 342–381, https://doi.org/10.1021/cr050358j, 2007.
Mucci, A., Canuel, R., and Zhong, S.: The solubility of calcite and aragonite in sulfate-free seawater and the seeded growth kinetics and composition of the precipitates at 25 °C, Chemical Geology, 74, 309–320, https://doi.org/10.1016/0009-2541(89)90040-5, 1989.
Oates, J. A. H.: Lime and Limestone: Chemistry and Technology, Production and Uses, John Wiley & Sons, 475 pp., ISBN 9783527612024, https://doi.org/10.1002/9783527612024, 2008.
Rau, G., Caldeira, K., Knauss, K., Downs, B., and Sarv, H.: Enhanced Carbonate Dissolution as a Means of Capturing and Sequestering Carbon Dioxide, in: First National Conference on Carbon Sequestration, Washington DC, US, 14–17 May 2001, 2001.
Rau, G. H.: CO2 Mitigation via Capture and Chemical Conversion in Seawater, Environ. Sci. Technol., 45, 1088–1092, https://doi.org/10.1021/es102671x, 2011.
Rau, G. H. and Caldeira, K.: Enhanced carbonate dissolution:: a means of sequestering waste CO2 as ocean bicarbonate, Energy Conversion and Management, 40, 1803–1813, https://doi.org/10.1016/S0196-8904(99)00071-0, 1999.
Rau, G. H., Knauss, K. G., Langer, W. H., and Caldeira, K.: Reducing energy-related CO2 emissions using accelerated weathering of limestone, Energy, 32, 1471–1477, https://doi.org/10.1016/j.energy.2006.10.011, 2007.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon sequestration, Rev. Geophys., 55, 636–674, https://doi.org/10.1002/2016rg000533, 2017.
Renforth, P. and Kruger, T.: Coupling Mineral Carbonation and Ocean Liming, Energy Fuels, 27, 4199–4207, https://doi.org/10.1021/ef302030w, 2013.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, 37, 1131–1134, https://doi.org/10.1130/G30210A.1, 2009.
Rivest, E. B. and Gouhier, T. C.: Complex Environmental Forcing across the Biogeographical Range of Coral Populations, PLOS ONE, 10, e0121742, https://doi.org/10.1371/journal.pone.0121742, 2015.
Romanov, V., Soong, Y., Carney, C., Rush, G. E., Nielsen, B., and O'Connor, W.: Mineralization of Carbon Dioxide: A Literature Review, ChemBioEng. Rev., 2, 231–256, https://doi.org/10.1002/cben.201500002, 2015.
Sánchez, N., Goldenberg, S. U., Brüggemann, D., Jaspers, C., Taucher, J., and Riebesell, U.: Plankton food web structure and productivity under ocean alkalinity enhancement, Science Advances, 10, eado0264, https://doi.org/10.1126/sciadv.ado0264, 2024.
Sanderson, B. M., O'Neill, B. C., and Tebaldi, C.: What would it take to achieve the Paris temperature targets?, Geophys. Res. Lett., 43, 7133–7142, https://doi.org/10.1002/2016gl069563, 2016.
Simoni, M., Wilkes, M. D., Brown, S., Provis, J. L., Kinoshita, H., and Hanein, T.: Decarbonising the lime industry: State-of-the-art, Renewable and Sustainable Energy Reviews, 168, 112765, https://doi.org/10.1016/j.rser.2022.112765, 2022.
Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., and Oelkers, E. H.: Carbon dioxide storage through mineral carbonation, Nat. Rev. Earth Environ., 1, 90–102, https://doi.org/10.1038/s43017-019-0011-8, 2020.
Song, Y., Jun, S., Na, Y., Kim, K., Jang, Y., and Wang, J.: Geomechanical challenges during geological CO2 storage: A review, Chemical Engineering Journal, 456, 140968, https://doi.org/10.1016/j.cej.2022.140968, 2023.
Survey, U. S. G.: Mineral commodity summaries 2023, Mineral Commodity Summaries, U.S. Geological Survey, https://doi.org/10.3133/mcs2023, 2023.
Teir, S., Suomalainen, M., and Onarheim, K.: Pre-evaluation of a new process for capture of CO2 using water, VTT Technical Centre of Finland, 20 pp., https://publications.vtt.fi/julkaisut/muut/2014/VTT-R-04035-14.pdf (last access: 15 January 2025), 2014.
Thonemann, N., Zacharopoulos, L., Fromme, F., and Nühlen, J.: Environmental impacts of carbon capture and utilization by mineral carbonation: A systematic literature review and meta life cycle assessment, Journal of Cleaner Production, 332, 130067, https://doi.org/10.1016/j.jclepro.2021.130067, 2022.
United Nations Environment Programme: Emissions Gap Report 2024: No more hot air … please! With a massive gap between rhetoric and reality, countries draft new climate commitments, United Nations Environment Programme, ISBN 978-92-807-4185-8, https://doi.org/10.59117/20.500.11822/46404, 2024.
Veetil, S. P. and Hitch, M.: Recent developments and challenges of aqueous mineral carbonation: a review, Int. J. Environ. Sci. Technol., 17, 4359–4380, https://doi.org/10.1007/s13762-020-02776-z, 2020.
Xing, L., Pullin, H., Bullock, L., Renforth, P., Darton, R. C., and Yang, A.: Potential of enhanced weathering of calcite in packed bubble columns with seawater for carbon dioxide removal, Chemical Engineering Journal, 431, 134096, https://doi.org/10.1016/j.cej.2021.134096, 2022.
Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater: equilibrium, kinetics and isotopes, Elsevier Science, Amsterdam, ISBN 978-0-444-50579-8, 2001.
Zhang, J., Yang, A., Darton, R., Xing, L., and Vaughan, A.: Surrogate modelling-assisted comparison of reactor schemes for carbon dioxide removal by enhanced weathering of minerals using seawater, Chemical Engineering Journal, 461, 141804, https://doi.org/10.1016/j.cej.2023.141804, 2023.
Short summary
To examine the potential of accelerated weathering of limestone as a CO2 mitigation technique, we describe AWL thermodynamically as a four-step process, thus providing a model framework that allows us to calculate the efficiency of the different steps as well as the overall CO2 sequestration potential. We then review the different reactor designs that have been proposed for the AWL process in recent years and evaluate their efficiency and potential in terms of CO2 emission mitigation capacity.
To examine the potential of accelerated weathering of limestone as a CO2 mitigation technique,...
Altmetrics
Final-revised paper
Preprint