Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5625-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5625-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Contribution of sulfate to aerobic methane oxidation in upland soils – a mini-review
Rui Su
College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
Kexin Li
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Nannan Wang
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
Fenghui Yuan
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
Ying Zhao
College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
Yunjiang Zuo
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
Ying Sun
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
Liyuan He
Biology Department, San Diego State University, San Diego, CA 92182, USA
Lixin Yang
China Center for Commercial Science, Technology and Quality, Beijing, 100801, China
Biology Department, San Diego State University, San Diego, CA 92182, USA
Lihua Zhang
CORRESPONDING AUTHOR
College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
Related authors
No articles found.
Liyuan He, Jorge L. Mazza Rodrigues, Melanie A. Mayes, Chun-Ta Lai, David A. Lipson, and Xiaofeng Xu
Biogeosciences, 21, 2313–2333, https://doi.org/10.5194/bg-21-2313-2024, https://doi.org/10.5194/bg-21-2313-2024, 2024
Short summary
Short summary
Soil microbes are the driving engine for biogeochemical cycles of carbon and nutrients. This study applies a microbial-explicit model to quantify bacteria and fungal biomass carbon in soils from 1901 to 2016. Results showed substantial increases in bacterial and fungal biomass carbon over the past century, jointly influenced by vegetation growth and soil temperature and moisture. This pioneering century-long estimation offers crucial insights into soil microbial roles in global carbon cycling.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Cited articles
Adamsen, A. P. S. and King, G. M.: Methane consumption in temperate and subarctic forest soils rates, vertical zonation, and responses to water and nitrogen, Appl. Environ. Microbiol., 59, 485–490, https://doi.org/10.1128/aem.59.2.485-490.1993, 1993.
Balasubramanian, R. and Rosenzweig, A. C.: Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase, Accounts Chem. Res., 40, 573–580, https://doi.org/10.1021/ar700004s, 2007.
Bechtold, E. K., Ellenbogen, J. B., Villa, J. A., Ferreira, D. K. d. M., Oliverio, A. M., Kostka, J. E., Rich, V. I., Varner, R. K., Bansal, S., Ward, E. J., Bohrer, G., Borton, M. A., Wrighton, K. C., and Wilkins, M. J.: Metabolic interactions underpinning high methane fluxes across terrestrial freshwater wetlands, Nat. Commun., 16, https://doi.org/10.1038/s41467-025-56133-0, 2025.
Benstead, J. and King, G. M.: The effect of soil acidification on atmospheric methane uptake by a Maine forest soil, FEMS Microbiol. Ecol., 34, 207–212, https://doi.org/10.1111/j.1574-6941.2001.tb00771.x, 2001.
Bjorneras, C., Skerlep, M., Floudas, D., Persson, P., and Kritzberg, E. S.: High sulfate concentration enhances iron mobilization from organic soil to water, Biogeochemistry, 144, 245–259, https://doi.org/10.1007/s10533-019-00581-6, 2019.
Bodelier, P. L. E.: Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils, Curr. Opin. Environ. Sustain., 3, 379–388, https://doi.org/10.1016/j.cosust.2011.06.002, 2011.
Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B., Witte, U., and Pfannkuche, O.: A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
Bradford, M. A., Ineson, P., Wookey, P. A., and Lappin-Scott, H. M.: The effects of acid nitrogen and acid sulphur deposition on CH4 oxidation in a forest soil: a laboratory study, Soil Biol. Biochem., 33, 1695–1702, https://doi.org/10.1016/s0038-0717(01)00091-8, 2001a.
Bradford, M. A., Wookey, P. A., Ineson, P., and Lappin-Scott, H. M.: Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil, Soil Biol. Biochem., 33, 93–102, https://doi.org/10.1016/S0038-0717(00)00118-8, 2001b.
Bronson, K. F. and Mosier, A. R.: Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors, Biol. Fert. Soils, 17, 263–268, https://doi.org/10.1007/bf00383979, 1994.
Brumme, R. and Borken, W.: Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem, Global Biogeochem. Cy., 13, 493–501, https://doi.org/10.1029/1998gb900017, 1999.
Chen, X., Zhang, J. E., and Wei, H.: Physiological responses of earthworm under acid rain stress, Int. J. Env. Res. Public Health., 17, 7246, https://doi.org/10.3390/ijerph17197246, 2020.
Chistoserdova, L., Vorholt, J. A., and Lidstrom, M. E.: A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea, Genome Biol., 6, 1–6, https://doi.org/10.1186/gb-2005-6-2-208, 2005.
Chowdhury, T. R. and Dick, R. P.: Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands, Appl. Soil Ecol., 65, 8–22, https://doi.org/10.1016/j.apsoil.2012.12.014, 2013.
Dassama, L. M., Kenney, G. E., Ro, S. Y., Zielazinski, E. L., and Rosenzweig, A. C.: Methanobactin transport machinery, P. Natl. Acad. Sci. USA, 113, 13027–13032, https://doi.org/10.1073/pnas.1603578113, 2016.
Deng, Y., Che, R., Wang, F., Conrad, R., Dumont, M., Yun, J., Wu, Y., Hu, A., Fang, J., Xu, Z., Cui, X., and Wang, Y.: Upland Soil Cluster Gamma dominates methanotrophic communities in upland grassland soils, Sci. Total Environ., 670, 826–836, https://doi.org/10.1016/j.scitotenv.2019.03.299, 2019.
DiSpirito, A. A., Semrau, J. D., Murrell, J. C., Gallagher, W. H., Dennison, C., and Vuilleumier, S.: Methanobactin and the link between copper and bacterial methane oxidation, Microbiol. Mol. Biol. R., 80, 387–409, https://doi.org/10.1128/mmbr.00058-15, 2016.
Dunfield, P. and Knowles, R.: Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol, Appl. Environ. Microbiol., 61, 3129–3135, https://doi.org/10.1128/aem.61.8.3129-3135.1995, 1995.
Fan, J. L., Xu, Y. H., Chen, Z. M., Xiao, J., Liu, D. Y., Luo, J. F., Bolan, N., and Ding, W. X.: Sulfur deposition suppressed nitrogen-induced soil N2O emission from a subtropical forestland in southeastern China, Agr. Forest Meteorol., 233, 163–170, https://doi.org/10.1016/j.agrformet.2016.11.017, 2017.
Fan, L. C., Schneider, D., Dippold, M. A., Poehlein, A., Wu, W. C., Gui, H., Ge, T. D., Wu, J. S., Thiel, V., Kuzyakov, Y., and Dorodnikov, M.: Active metabolic pathways of anaerobic methane oxidation in paddy soils, Soil Biol. Biochem., 156, 108215, https://doi.org/10.1016/j.soilbio.2021.108215, 2021.
Fasth, W. J., David, M. B., and Vance, G. F.: Sulfate retention and cation leaching of forest soils in response to acid additions, Can. J. Forest Res., 21, 32–41, https://doi.org/10.1139/x91-005, 1991.
Fenibo, E. O., Selvarajan, R., Wang, H. Q., Wang, Y., and Abia, A. L. K.: Untapped talents: insight into the ecological significance of methanotrophs and its prospects, Sci. Total Environ., 903, 166145, https://doi.org/10.1016/j.scitotenv.2023.166145, 2023.
Gauci, V., Matthews, E., Dise, N., Walter, B., Koch, D., Granberg, G., and Vile, M.: Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries, P. Natl. Acad. Sci. USA, 101, 12583–12587, https://doi.org/10.1073/pnas.0404412101, 2004.
Granberg, G., Sund, I., Svensson, B. H., and Nilsson, M.: Effect of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire, Ecology, 82, 1982–1998, 2001.
Gulledge, J. and Schimel, J.: Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH inhibition, Appl. Environ. Microbiol., 64, 4291–4298, 1998.
Gulledge, J., Hrywna, Y., Cavanaugh, C., and Steudler, P. A.: Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils, FEMS Microbiol. Ecol., 49, 389–400, https://doi.org/10.1016/j.femsec.2004.04.013, 2004.
Guo, J. H., Feng, H. L., Peng, C. H., Chen, H., Xu, X., Ma, X. H., Li, L., Kneeshaw, D., Ruan, H. H., Yang, H. Q., and Wang, W. F.: Global climate change increases terrestrial soil CH4 emissions, Global Biogeochem. Cy., 37, e2021GB007255, https://doi.org/10.1029/2021gb007255, 2023.
Hakemian, A. S. and Rosenzweig, A. C.: The biochemistry of methane oxidation, Annu. Rev. Biochem., 76, 223–241, https://doi.org/10.1146/annurev.biochem.76.061505.175355, 2007.
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev., 60, 439–471, https://doi.org/10.1128/mmbr.60.2.439-471.1996, 1996.
Ho, A., Lüke, C., Reim, A., and Frenzel, P.: Selective stimulation in a natural community of methane oxidizing bacteria: effects of copper on pmoA transcription and activity, Soil Biol. Biochem., 65, 211–216, https://doi.org/10.1016/j.soilbio.2013.05.027, 2013.
Ho, A., Lee, H. J., Reumer, M., Meima-Franke, M., Raaijmakers, C., Zweers, H., de Boer, W., Van der Putten, W. H., and Bodelier, P. L. E.: Unexpected role of canonical aerobic methanotrophs in upland agricultural soils, Soil Biol. Biochem., 131, 1–8, https://doi.org/10.1016/j.soilbio.2018.12.020, 2019.
Hu, M. J., Wilson, B. J., Sun, Z. G., Huang, J. F., and Tong, C.: Effects of nitrogen and sulphate addition on methane oxidation in the marsh soil of a typical subtropical estuary (Min River) in China, Chem. Ecol., 34, 610–623, https://doi.org/10.1080/02757540.2018.1464153, 2018.
Hu, Y. L., Jung, K., Zeng, D. H., and Chang, S. X.: Nitrogen- and sulfur-deposition-altered soil microbial community functions and enzyme activities in a boreal mixedwood forest in western Canada, Can. J. Forest Res., 43, 777–784, https://doi.org/10.1139/cjfr-2013-0049, 2013.
Huang, J., Zhou, K. J., Zhang, W., Liu, J. X., Ding, X., Cai, X. A., and Mo, J. M.: Sulfur deposition still contributes to forest soil acidification in the Pearl River Delta, South China, despite the control of sulfur dioxide emission since 2001, Environ. Sci. Pollut. Res., 26, 12928–12939, https://doi.org/10.1007/s11356-019-04831-w, 2019.
Huang, R. L., Crowther, T. W., Sui, Y. Y., Sun, B., and Liang, Y. T.: High stability and metabolic capacity of bacterial community promote the rapid reduction of easily decomposing carbon in soil, Commun. Biol., 4, 1376, https://doi.org/10.1038/s42003-021-02907-3, 2021.
IPCC: Climate change 2013: the physical science basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Islam, M.: The effect of different rates and forms of sulfur on seed yield and micronutrient uptake by chickpea, Plant Soil Environ., 58, 399–404, https://doi.org/10.17221/145/2012-pse, 2012.
King, G. M. and Schnell, S.: Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils, Appl. Environ. Microbiol., 64, 253–257, 1998.
Klessa, D. A., Frame, J., Golightly, R. D., and Harkess, R. D.: The effect of fertilizer sulfur on grass production for silage, Grass Forage Sci., 44, 277–281, https://doi.org/10.1111/j.1365-2494.1989.tb02165.x, 1989.
Knapp, C. W., Fowle, D. A., Kulczycki, E., Roberts, J. A., and Graham, D. W.: Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources, P. Natl. Acad. Sci. USA, 104, 12040–12045, https://doi.org/10.1073/pnas.0702879104, 2007.
Koo, C. W. and Rosenzweig, A. C.: Biochemistry of aerobic biological methane oxidation, Chem. Soc. Rev., 50, 3424–3436, https://doi.org/10.1039/d0cs01291b, 2021.
La, W., Han, X., Liu, C. Q., Ding, H., Liu, M., Sun, F., Li, S., and Lang, Y.: Sulfate concentrations affect sulfate reduction pathways and methane consumption in coastal wetlands, Water Res., 217, 118441, https://doi.org/10.1016/j.watres.2022.118441, 2022.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of methane by soil: a review, Eur. J. Soil Biol., 37, 25–50, https://doi.org/10.1016/S1164-5563(01)01067-6, 2001.
Li, C., Liu, X., Meng, M. J., Zhai, L., Zhang, B., Jia, Z. H., Gu, Z. Y., Liu, Q. Q., Zhang, Y. L., and Zhang, J. C.: The use of Biolog Eco microplates to compare the effects of sulfuric and nitric acid rain on the metabolic functions of soil microbial communities in a subtropical plantation within the Yangtze River Delta region, Catena, 198, 105039, https://doi.org/10.1016/j.catena.2020.105039, 2021.
Li, C. H., Wang, B., Fang, Z., Yu, H. L., and Huang, J. Y.: Plant species diversity is driven by soil base cations under acid deposition in desert coal-mining region in northwestern China, Ecol. Indic., 145, 109682, https://doi.org/10.1016/j.ecolind.2022.109682, 2022.
Li, Y., Liu, Y. W., Pan, H., Hernández, M., Guan, X. M., Wang, W., Zhang, Q. C., Luo, Y., Di, H. J., and Xu, J. M.: Impact of grazing on shaping abundance and composition of active methanotrophs and methane oxidation activity in a grassland soil, Biol. Fert. Soil., 56, 799–810, https://doi.org/10.1007/s00374-020-01461-0, 2020.
Lv, Y., Wang, C. Y., Jia, Y. Y., Wang, W. W., Ma, X., Du, J. J., Pu, G. Z., and Tian, X. J.: Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China, Appl. Soil Ecol., 79, 1–9, https://doi.org/10.1016/j.apsoil.2013.12.002, 2014.
Mancinelli, R.: The regulation of methane oxidation in soil, Annu. Rev. Microbiol., 49, 581–605, 1995.
Mishra, V. K., Shukla, R., and Shukla, P. N.: Inhibition of Soil Methane Oxidation by Fertilizer Application: an Intriguing but Persistent Paradigm, Environ. Pollut. Protect., 3, 57–69, https://doi.org/10.22606/epp.2018.32001, 2018.
Murguia-Flores, F., Arndt, S., Ganesan, A. L., Murray-Tortarolo, G., and Hornibrook, E. R. C.: Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil, Geosci. Model Dev., 11, 2009–2032, https://doi.org/10.5194/gmd-11-2009-2018, 2018.
Nanba, K. and King, G.: Response of atmospheric methane consumption by maine forest soils to exogenous aluminum salts, Appl. Environ. Microbiol., 66, 3674–3679, https://doi.org/10.1128/AEM.66.9.3674-3679.2000, 2000.
Op den Camp, H. J., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A., Schouten, S., Jetten, M. S., Birkeland, N. K., Pol, A., and Dunfield, P. F.: Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia, Environ. Microbiol. Rep., 1, 293–306, https://doi.org/10.1111/j.1758-2229.2009.00022.x, 2009.
Palmer, S. M., Clark, J. M., Chapman, P. J., van der Heijden, G. M. F., and Bottrell, S. H.: Effects of acid sulphate on DOC release in mineral soils: the influence of SO retention and Al release, Eur. J. Soil Sci., 64, 537–544, https://doi.org/10.1111/ejss.12048, 2013.
Place, S. E.: Examining the role of ruminants in sustainable food systems, Grass Forage Sci., 79, 135–143, https://doi.org/10.1111/gfs.12673, 2024.
Praeg, N., Wagner, A. O., and Illmer, P.: Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils, Plant Soil, 410, 193–206, https://doi.org/10.1007/s11104-016-2993-z, 2016.
Qi, S. Q., Li, X. X., Luo, J., Han, R. F., Chen, Q. Q., Shen, D. S., and Shentu, J.: Soil heterogeneity influence on the distribution of heavy metals in soil during acid rain infiltration: experimental and numerical modeling, J. Environ. Manage., 322, 116144, https://doi.org/10.1016/j.jenvman.2022.116144, 2022.
Schimel, J.: Playing scales in the methane cycle: from microbial ecology to the globe, P. Natl. Acad. Sci. USA, 101, 12400–12401, https://doi.org/10.1073/pnas.0405075101, 2004.
Schimel, J. and Gulledge, J.: Microbial community structure and global trace gases, Glob. Change Biol., 4, 745–758, https://doi.org/10.1046/j.1365-2486.1998.00195.x, 1998.
Semrau, J. D., DiSpirito, A. A., and Yoon, S.: Methanotrophs and copper, FEMS Microbiol. Rev., 34, 496–531, https://doi.org/10.1111/j.1574-6976.2010.00212.x, 2010.
Semrau, J. D., DiSpirito, A. A., Gu, W., and Yoon, S.: Metals and Methanotrophy, Appl. Environ. Microbiol., 84, https://doi.org/10.1128/aem.02289-17, 2018.
Shukla, P. N., Pandey, K. D., and Mishra, V. K.: Environmental determinants of soil methane oxidation and methanotrophs, Crit. Rev. Env. Sci. Tec., 43, 1945–2011, https://doi.org/10.1080/10643389.2012.672053, 2013.
Silver, W. L., Lugo, A. E., and Keller, M.: Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils, Biogeochemistry, 44, 301–328, https://doi.org/10.1007/bf00996995, 1999.
Singh, B. K., Bardgett, R. D., Smith, P., and Reay, D. S.: Microorganisms and climate change: terrestrial feedbacks and mitigation options, Nat. Rev. Microbiol., 8, 779–790, https://doi.org/10.1038/nrmicro2439, 2010.
Sitaula, B. K., Bakken, L. R., and Abrahamsen, G.: CH4 uptake by temperate forest soil: effect of N input and soil acidification, Soil Biol. Biochem., 27, 870–880, https://doi.org/10.1016/0038-0717(95)00017-9, 1995.
Sogn, T. and Abrahamsen, G.: Effects of N and S deposition on leaching from an acid forest soil and growth of Scots pine (Pinus sylvestris L.) after 5 years of treatment, Forest Ecol. Manage., 103, 177–190, https://doi.org/10.1016/S0378-1127(97)00188-6, 1998.
Song, H., Peng, C., Zhu, Q., Chen, Z., Blanchet, J.-P., Liu, Q., Li, T., Li, P., and Liu, Z.: Quantification and uncertainty of global upland soil methane sinks: Processes, controls, model limitations, and improvements, Earth-Sci. Rev., 252, https://doi.org/10.1016/j.earscirev.2024.104758, 2024.
Stanley, S. H., Prior, S. D., Leak, D. J., and Dalton, H.: Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms – studies in batch and continuous cultures, Biotechnol. Lett., 5, 487–492, https://doi.org/10.1007/bf00132233, 1983.
Tamai, N., Takenaka, C., Ishizuka, S., and Tezuka, T.: Methane flux and regulatory variables in soils of three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in central Japan, Soil Biol. Biochem., 35, 633–641, https://doi.org/10.1016/s0038-0717(03)00010-5, 2003.
Tie, L. H., Fu, R., Penuelas, J., Sardans, J., Zhang, S. B., Zhou, S. X., Hu, J. X., and Huang, C. D.: The additions of nitrogen and sulfur synergistically decrease the release of carbon and nitrogen from litter in a subtropical forest, Forests, 11, 1280, https://doi.org/10.3390/f11121280, 2020.
van Spanning, R. J. M., Guan, Q., Melkonian, C., Gallant, J., Polerecky, L., Flot, J. F., Brandt, B. W., Braster, M., Iturbe Espinoza, P., Aerts, J. W., Meima-Franke, M. M., Piersma, S. R., Bunduc, C. M., Ummels, R., Pain, A., Fleming, E. J., van der Wel, N. N., Gherman, V. D., Sarbu, S. M., Bodelier, P. L. E., and Bitter, W.: Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem, Nat. Microbiol., 7, 2089–2100, https://doi.org/10.1038/s41564-022-01252-3, 2022.
Veraart, A. J., Steenbergh, A. K., Ho, A., Kim, S. Y., and Bodelier, P. L. E.: Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments, Geoderma, 259–260, 337–346, https://doi.org/10.1016/j.geoderma.2015.03.025, 2015.
Walsh, C., O'Regan, B., and Moles, R.: Incorporating methane into ecological footprint analysis: A case study of Ireland, Ecol. Econ., 68, 1952–1962, https://doi.org/10.1016/j.ecolecon.2008.07.008, 2009.
Wang, Q., Kwak, J.-H., Choi, W.-J., and Chang, S. X.: Decomposition of trembling aspen leaf litter under long-term nitrogen and sulfur deposition: effects of litter chemistry and forest floor microbial properties, Forest Ecol. Manage., 412, 53–61, https://doi.org/10.1016/j.foreco.2018.01.042, 2018.
Wang, Z. P. and Ineson, P.: Methane oxidation in a temperate coniferous forest soil: effects of inorganic N, Soil Biol. Biochem., 35, 427–433, https://doi.org/10.1016/s0038-0717(02)00294-8, 2003.
Wright, R. F. and Henriksen, A.: Chemistry of small Norwegian lakes, with special reference to acid precipitation, Limnol. Oceanogr., 23, 487–498, https://doi.org/10.4319/lo.1978.23.3.0487, 1978.
Xu, Y. H., Fan, J. L., Ding, W. X., Gunina, A., Chen, Z. M., Bol, R., Luo, J. F., and Bolan, N.: Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: links to microbial community composition and activity, Geoderma, 286, 116–124, https://doi.org/10.1016/j.geoderma.2016.10.032, 2017.
Zhang, L. H., Yuan, F. H., Bai, J. H., Duan, H. T., Gu, X. Y., Hou, L. Y., Huang, Y., Yang, M. G., He, J. S., Zhang, Z. H., Yu, L. J., Song, C. C., Lipson, D. A., Zona, D., Oechel, W., Janssens, I. A., and Xu, X. F.: Phosphorus alleviation of nitrogen-suppressed methane sink in global grasslands, Ecol. Lett., 23, 821–830, https://doi.org/10.1111/ele.13480, 2020.
Zhang, T., Zhu, W., Mo, J., Liu, L., and Dong, S.: Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China, Biogeosciences, 8, 2805–2813, https://doi.org/10.5194/bg-8-2805-2011, 2011.
Short summary
This research examines the effect of sulfate on methane oxidation in soil, finding that sulfate may facilitate methane oxidation. Considering methane's role as a greenhouse gas and rising sulfate deposition, the study aims to predict changes in methane oxidation due to acid deposition. Future experiments will explore microbial mechanisms, as sulfate reduces methane emissions while also enhancing its consumption, providing insights for mitigation strategies.
This research examines the effect of sulfate on methane oxidation in soil, finding that sulfate...
Altmetrics
Final-revised paper
Preprint