Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5635-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5635-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporal and spatial influences of environmental factors on the distribution of mesopelagic organisms in the North Atlantic Ocean
Jian Hui Li
Department of Marine Technology, Ocean University of China, Qingdao, China
Jie Yang
CORRESPONDING AUTHOR
Department of Marine Technology, Ocean University of China, Qingdao, China
Laoshan Laboratory, Qingdao, China
Ge Chen
State Key Laboratory of Physical Oceanography, Department of Marine Technology, Ocean University of China, Qingdao, China
Laboratory for Regional Oceanography and Numerical Modeling, Department of Ocean Big Data and Prediction, Laoshan Laboratory, Qingdao, China
Related authors
No articles found.
Fenglin Tian, Yingying Zhao, Lan Qin, Shuang Long, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-384, https://doi.org/10.5194/essd-2025-384, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Black Hole Eddy (BHE) is vital for transporting materials but were previously hard to identify efficiently. This study introduces an efficient method to identify BHE, 13 times quicker, firstly enables the creation of BHE dataset in the North Pacific from 1993 to 2023. We verified BHE maintains strong coherence and contributes to westward transport about 1.5 Sv. We found some previously unidentified coherent eddies and analyzed their coherence. This represents first comprehensive analysis of BHE.
Shuang Long, Fenglin Tian, Junwu Tang, Fangjie Yu, Fang Zhang, Wei Ma, Xinglong Zhang, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-276, https://doi.org/10.5194/essd-2025-276, 2025
Preprint under review for ESSD
Short summary
Short summary
Oceanic mesoscale eddies are known to form dipoles from time to time. When dipoles are asymmetric in strength, the stronger dipole eddies generally drive weaker ones to move around, resulting in a reduction of discrepancies in their kinematic properties, which is referred to as the “gear-like” process. An integrated observation of an asymmetric eddy dipole was conducted in the South China Sea in April 2023, which evidences the “gear-like” process.
Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng
Earth Syst. Sci. Data, 16, 5737–5752, https://doi.org/10.5194/essd-16-5737-2024, https://doi.org/10.5194/essd-16-5737-2024, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation are difficult to observe using current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Linyao Ge, Guiyu Wang, Baoxiang Huang, Chuanchuan Cao, Xiaoyan Chen, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-190, https://doi.org/10.5194/essd-2024-190, 2024
Manuscript not accepted for further review
Short summary
Short summary
High precision in reconstructing sea surface currents is vital for understanding ocean dynamics. Our paper introduces GEST (Geostrophic-Ekman-Stokes-Tide), a 15 m depth sea current product. GEST, generated by a neural network, captures Ekman, geostrophic currents, Stokes drift, and TPXO9 tidal currents. Its design accounts for complex ocean surface dynamics, surpassing OSCAR and GlobCurrent by 10.4 cm/s and 8.81 cm/s, respectively.
Meng Hou, Jie Yang, Ge Chen, Guiyan Han, Yan Wang, and Kai Wu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1735, https://doi.org/10.5194/egusphere-2023-1735, 2023
Preprint archived
Short summary
Short summary
In this study, we mainly utilized BGC-Argo data to investigate the relationships between chlorophyll levels and environmental factors (CPhyto, Nitrate, Temperature and Light) and its underlying dynamic mechanisms of mesoscale eddies in South Pacific Ocean. We show that, the mechanism of chlorophyll levels are different at different depth of seawater.
Yan Wang, Jie Yang, Kai Wu, Meng Hou, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-138, https://doi.org/10.5194/essd-2023-138, 2023
Revised manuscript not accepted
Short summary
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation struggle to observe with current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Guiyu Wang, Ge Chen, Chuanchuan Cao, Xiaoyan Chen, and Baoxiang Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-107, https://doi.org/10.5194/essd-2023-107, 2023
Revised manuscript not accepted
Short summary
Short summary
We present an accurate product of ocean surface current at 15 m depth based on multi-scale physical processes. Following a training process using remote sensing observations and in situ data, the derived current field with a 1/4° resolution captures more details neglected in the 1° ones and demonstrates higher accuracy over other global surface current products at low to middle latitudes.
Cited articles
Aksnes, D. L., Dupont, N., Staby, A., Fiksen, Ø., Kaartvedt, S., and Aure, J.: Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords, Marine Ecology Progress Series, 387, 39–49, https://doi.org/10.3354/meps08120, 2009. a, b
Allan, E. A., DiBenedetto, M. H., Lavery, A. C., Govindarajan, A. F., and Zhang, W. G.: Modeling characterization of the vertical and temporal variability of environmental DNA in the mesopelagic ocean, Sci. Rep., 11, 21273, https://doi.org/10.1038/s41598-021-00288-5, 2021. a
Astthorsson, O. S., Gislason, A., and Jonsson, S.: Climate variability and the Icelandic marine ecosystem, Deep-Sea Res. Pt. II, 54, 2456–2477, https://doi.org/10.1016/j.dsr2.2007.07.030, 2007. a
Bailey, R.: Life in the Mesopelagic Zone of the Ocean, https://www.thoughtco.com/mesopelagic-zone-4685646 (last access: 18 June 2025), 2021. a
Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V., and Eiane, K.: Two hundred years of zooplankton vertical migration research, Biological Reviews, 96, 1547–1589, https://doi.org/10.1111/brv.12715, 2021. a
Behrenfeld, M. J., Gaube, P., Della Penna, A., O’malley, R. T., Burt, W. J., Hu, Y., Bontempi, P. S., Steinberg, D. K., Boss, E. S., Siegel, D. A., Hostetler, C. A., Tortell, P. D., and Doney, S. C.: Global satellite-observed daily vertical migrations of ocean animals, Nature, 576, 257–261, https://doi.org/10.1038/s41586-019-1796-9, 2019. a, b
Berge, J., Varpe, Ø., Moline, M. A., Wold, A., Renaud, P., Daase, M., and Falk-Petersen, S.: Retention of ice-associated amphipods: possible consequences for an ice-free Arctic Ocean, Biol. Lett., 8, 1012–1015, https://doi.org/10.1098/rsbl.2012.0517, 2012. a
Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K., and Stock, C. A.: Intensification of open-ocean oxygen depletion by vertically migrating animals, Nat. Geosci., 6, 545–548, https://doi.org/10.1038/NGEO1837, 2013. a
Bishop, J. K. and Wood, T.: Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites, Deep-Sea Res. Pt. I, 55, 1684–1706, https://doi.org/10.1016/j.dsr.2008.07.012, 2008. a
Bishop, J. K., Calvert, S. E., and Soon, M. Y.: Spatial and temporal variability of POC in the northeast Subarctic Pacific, Deep-Sea Res. Pt. II, 46, 2699–2733, https://doi.org/10.1016/S0967-0645(99)00081-8, 1999. a
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal origin of the thermal maxima at the Holocene and the last interglacial, Nature, 589, 548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021. a
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.: Multi-faceted particle pumps drive carbon sequestration in the ocean, Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019. a
Braun, C. D., Della Penna, A., Arostegui, M. C., Afonso, P., Berumen, M. L., Block, B. A., Brown, C. A., Fontes, J., Furtado, M., Gallagher, A. J., Golet, W. J., Kneebone, J., Macena, B. C. L., Mucientes, G., Orbesen, E. S., Queiroz, N., Shea, B. D., Schratwieser, J., Sims, D. W., Skomal, G. B., Snodgrass, D., and Thorrold, S. R.: Linking vertical movements of large pelagic predators with distribution patterns of biomass in the open ocean, P. Natl. Acad. Sci. USA, 120, e2306357120, https://doi.org/10.1073/pnas.2306357120, 2023. a
Briggs, N., Perry, M. J., Cetinić, I., Lee, C., D'Asaro, E., Gray, A. M., and Rehm, E.: High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom, Deep-Sea Res. Pt. I, 58, 1031–1039, https://doi.org/10.1016/J.DSR.2011.07.007, 2011. a, b
Briggs, N., Dall’Olmo, G., and Claustre, H.: Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans, Science, 367, 791–793, https://doi.org/10.1126/science.aay1790, 2020. a
Brun, P., Stamieszkin, K., Visser, A. W., Licandro, P., Payne, M. R., and Kiørboe, T.: Climate change has altered zooplankton-fuelled carbon export in the North Atlantic, Nat. Ecol. Evol., 3, 416–423, https://doi.org/10.1038/s41559-018-0780-3, 2019. a
Catalá, T. S., Reche, I., Álvarez, M., Khatiwala, S., Guallart, E., Benítez-Barrios, V. M., Fuentes-Lema, A., Romera-Castillo, C., Nieto-Cid, M., Pelejero, C., Fraile-Nuez, E., Ortega-Retuerta, E., Marrasé, C., and Álvarez-Salgado, X. A.: Water mass age and aging driving chromophoric dissolved organic matter in the dark global ocean, Global Biogeochem. Cycles, 29, 917–934, https://doi.org/10.1002/2014GB005048, 2015. a
Chai, F., Johnson, K. S., Claustre, H., Xing, X., Wang, Y., Boss, E., Riser, S., Fennel, K., Schofield, O., and Sutton, A.: Monitoring ocean biogeochemistry with autonomous platforms, Nat. Rev. Earth Environ., 1, 315–326, https://doi.org/10.1038/s43017-020-0053-y, 2020. a
Chawarski, J., Klevjer, T. A., Cote, D., and Geoffroy, M.: Evidence of temperature control on mesopelagic fish and zooplankton communities at high latitudes, Front. Marine Sci., 9, 917985, https://doi.org/10.3389/fmars.2022.917985, 2022. a
Chen, B., Smith, S. L., and Wirtz, K. W.: Effect of phytoplankton size diversity on primary productivity in the North Pacific: trait distributions under environmental variability, Ecol. Lett., 22, 56–66, https://doi.org/10.1111/ele.13167, 2019. a
Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the global ocean with biogeochemical-Argo, Annu. Rev. Marine Sci., 12, 23–48, https://doi.org/10.1146/annurev-marine-010419-010956, 2019. a
Dall'Olmo, G., Dingle, J., Polimene, L., Brewin, R. J., and Claustre, H.: Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump, Nat. Geosci., 9, 820–823, https://doi.org/10.1038/ngeo2818, 2016. a
Della Penna, A. and Gaube, P.: Mesoscale eddies structure mesopelagic communities, Front. Marine Sci., 7, 454, https://doi.org/10.3389/fmars.2020.00454, 2020. a
Devine, B., Fennell, S., Themelis, D., and Fisher, J. A.: Influence of anticyclonic, warm-core eddies on mesopelagic fish assemblages in the Northwest Atlantic Ocean, Deep-Sea Res. Pt. I, 173, 103555, https://doi.org/10.1016/j.dsr.2021.103555, 2021. a
Falk-Petersen, S., Mayzaud, P., Kattner, G., and Sargent, J. R.: Lipids and life strategy of Arctic Calanus, Marine Biol. Res., 5, 18–39, https://doi.org/10.1080/17451000802512267, 2009. a
Fennell, S. and Rose, G.: Oceanographic influences on deep scattering layers across the North Atlantic, Deep-Sea Res. Pt. I, 105, 132–141, https://doi.org/10.1016/J.DSR.2015.09.002, 2015. a, b
Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K., Lomas, M. W., Veneziano, D., Vera, C. S., Vrugt, J. A., and Martiny, A. C.: Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus, P. Natl. Acad. Sci. USA, 110, 9824–9829, https://doi.org/10.1073/pnas.1307701110, 2013. a
Freeman, A.: Size-dependent trait-mediated indirect interactions among sea urchin herbivores, Behavioral Ecology, 17, 182–187, https://doi.org/10.1093/beheco/arj014, 2006. a
Galí, M., Falls, M., Claustre, H., Aumont, O., and Bernardello, R.: Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean, Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, 2022. a
Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E. B., Cheripka, A., Rigor, I., Caballero, A., Chiba, S., Báez, J. C., Zielinski, T., and Abraham, J. P.: An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation), Front. Marine Sci., 8, 642372, https://doi.org/10.3389/fmars.2021.642372, 2021. a
Gardner, W. D., Richardson, M. J., and Smith Jr., W. O.: Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica, Deep-Sea Res. Pt. II, 47, 3423–3449, https://doi.org/10.1016/S0967-0645(00)00074-6, 2000. a
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L.: Effects of size and temperature on metabolic rate, Science, 293, 2248–2251, https://doi.org/10.1126/science.1061967, 2001. a
Govindarajan, A. F., Llopiz, J. K., Caiger, P. E., Jech, J. M., Lavery, A. C., McMonagle, H., Wiebe, P. H., and Zhang, W.: Assessing mesopelagic fish diversity and diel vertical migration with environmental DNA, Front. Marine Sci., 10, 1219993, https://doi.org/10.3389/fmars.2023.1219993, 2023. a
Grimaldo, E., Grimsmo, L., Alvarez, P., Herrmann, B., Møen Tveit, G., Tiller, R., Slizyte, R., Aldanondo, N., Guldberg, T., Toldnes, B., Carvajal, A., Schei, M., and Selnes, M.: Investigating the potential for a commercial fishery in the Northeast Atlantic utilizing mesopelagic species, ICES Journal of Marine Science, 77, 2541–2556, https://doi.org/10.1093/icesjms/fsaa114, 2020. a
Gu, Q., Gervais, M., Danabasoglu, G., Kim, W. M., Castruccio, F., Maroon, E., and Xie, S.-P.: Wide range of possible trajectories of North Atlantic climate in a warming world, Nat. Commun., 15, 4221, https://doi.org/10.1038/s41467-024-48401-2, 2024. a
Hansell, D. A., Carlson, C. A., and Suzuki, Y.: Dissolved organic carbon export with North Pacific Intermediate Water formation, Global Biogeochem. Cycles, 16, 7–1, https://doi.org/10.1029/2000GB001361, 2002. a
Hauss, H., Christiansen, S., Schütte, F., Kiko, R., Edvam Lima, M., Rodrigues, E., Karstensen, J., Löscher, C. R., Körtzinger, A., and Fiedler, B.: Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies, Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, 2016. a
Hays, G. C.: A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations, Hydrobiologia, 503, 163–170, https://doi.org/10.1023/B:HYDR.0000008476.23617.b0, 2003. a, b
Hazen, E. L.: Climate change “heard” in the ocean depths, Nat. Clim. Change, 12, 891–892, https://doi.org/10.1038/s41558-022-01484-5, 2022. a
Henson, S. A., Sanders, R., and Madsen, E.: Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean, Global Biogeochem. Cycles, 26, https://doi.org/10.1029/2011GB004099, 2012. a, b
Holte, J., Talley, L. D., Gilson, J., and Roemmich, D.: An Argo mixed layer climatology and database, Geophys. Res. Lett., 44, 5618–5626, https://doi.org/10.1002/2017GL073426, 2017. a
Honjo, S. and Manganini, S. J.: Annual biogenic particle fluxes to the interior of the North Atlantic Ocean; studied at 34 N 21 W and 48 N 21 W, Deep-Sea Res. Pt. II, 40, 587–607, https://doi.org/10.1016/0967-0645(93)90034-K, 1993. a
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, Journal of Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2020. a
Ingvaldsen, R. B., Eriksen, E., Gjøsæter, H., Engås, A., Schuppe, B. K., Assmann, K. M., Cannaby, H., Dalpadado, P., and Bluhm, B. A.: Under-ice observations by trawls and multi-frequency acoustics in the Central Arctic Ocean reveals abundance and composition of pelagic fauna, Sci. Rep., 13, 1000, https://doi.org/10.1038/s41598-023-27957-x, 2023. a
Irigoien, X., Klevjer, T. A., Røstad, A., Martinez, U., Boyra, G., Acuña, J. L., Bode, A., Echevarria, F., Gonzalez-Gordillo, J. I., Hernandez-Leon, S., Agusti, S., Aksnes, D. L., Duarte, C. M., and Kaartvedt, S.: Large mesopelagic fishes biomass and trophic efficiency in the open ocean, Nat. Commun., 5, 3271, https://doi.org/10.1038/ncomms4271, 2014. a
Kaartvedt, S.: Photoperiod may constrain the effect of global warming in arctic marine systems, J. Plankton Res., 30, 1203–1206, https://doi.org/10.1093/plankt/fbn075, 2008. a, b, c
Kapelonis, Z., Siapatis, A., Machias, A., Somarakis, S., Markakis, K., Giannoulaki, M., Badouvas, N., and Tsagarakis, K.: Seasonal patterns in the mesopelagic fish community and associated deep scattering layers of an enclosed deep basin, Sci. Rep., 13, 17890, https://doi.org/10.21203/rs.3.rs-2947537/v1, 2023. a
Klevjer, T., Norheim, E., Aksnes, D., Strand, E., Knutsen, T., Melle, W., and Wiebe, P.: Zooplankton and micronekton vertical distribution and diel vertical migration behaviour in the Northern North Atlantic Ocean, International Council for the Exploration of the Sea (ICES), ICES CM 2015/S:11, 2015. a
Klevjer, T. A., Irigoien, X., Røstad, A., Fraile-Nuez, E., Benítez-Barrios, V. M., and Kaartvedt, S.: Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers, Sci. Rep., 6, 19873, https://doi.org/10.1038/srep19873, 2016. a, b, c
Klevjer, T. A., Melle, W., Knutsen, T., and Aksnes, D. L.: Vertical distribution and migration of mesopelagic scatterers in four north Atlantic basins, Deep-Sea Res. Pt. II, 180, 104811, https://doi.org/10.1016/j.dsr2.2020.104811, 2020. a, b, c, d
Kruse, S., Brey, T., and Bathmann, U.: Role of midwater chaetognaths in Southern Ocean pelagic energy flow, Marine Ecology Progress Series, 416, 105–113, https://doi.org/10.3354/meps08773, 2010. a
Lampert, W., Fleckner, W., Pott, E., Schober, U., and Strkel, K. U.: Herbicide effects on planktonic systems of different complexity, Hydrobiologia, 188–189, 415–424, 1989. a
Lampitt, R.: Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Res. Pt. A, 32, 885–897, https://doi.org/10.1016/0198-0149(85)90034-2, 1985. a
Langbehn, T. J., Aksnes, D. L., Kaartvedt, S., Fiksen, Ø., Ljungström, G., and Jørgensen, C.: Poleward distribution of mesopelagic fishes is constrained by seasonality in light, Global Ecology and Biogeography, 31, 546–561, https://doi.org/10.1111/geb.13446, 2022. a, b
Lin, H.-Y. and Costello, M. J.: Body size and trophic level increase with latitude, and decrease in the deep-sea and Antarctica, for marine fish species, PeerJ, 11, e15880, https://doi.org/10.7717/peerj.15880, 2023. a
Liu, R.: Progress of marine biodiversity studies in China seas, Biodiversity Science, 19, 614, https://doi.org/10.17520/biods.2022526, 2011. a
Loisel, H., Nicolas, J.-M., Deschamps, P.-Y., and Frouin, R.: Seasonal and inter-annual variability of particulate organic matter in the global ocean, Geophys. Res. Lett., 29, 49–1, https://doi.org/10.1029/2002GL015948, 2002. a
Longhurst, A.: Ecological Geography of the Sea, Academic Press, https://doi.org/10.1016/B978-0-12-455521-1.X5000-1, 2007. a
Lourenço, S. and Jany, M.: Zooplankton Diel Vertical Migration impact on particulate matter flux in the Atlantic, Ph.D. thesis, WASCAL, 2021. a
Luo, J., Ortner, P. B., Forcucci, D., and Cummings, S. R.: Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea, Deep-Sea Res. Pt. II, 47, 1451–1473, https://doi.org/10.1016/S0967-0645(99)00150-2, 2000. a
Lusher, A. L., O'Donnell, C., Officer, R., and O'Connor, I.: Microplastic interactions with North Atlantic mesopelagic fish, ICES Journal of marine science, 73, 1214–1225, https://doi.org/10.1093/ICESJMS/FSV241, 2016. a
Lutz, M. J., Caldeira, K., Dunbar, R. B., and Behrenfeld, M. J.: Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean, J. Geophys. Res.-Oceans, 112, https://doi.org/10.1029/2006JC003706, 2007. a, b
Lynch-Stieglitz, J., Vollmer, T. D., Valley, S. G., Blackmon, E., Gu, S., and Marchitto, T. M.: A diminished North Atlantic nutrient stream during Younger Dryas climate reversal, Science, 384, 693–696, https://doi.org/10.1126/science.adi5543, 2024. a
Marohn, L., Schaber, M., Freese, M., Pohlmann, J.-D., Wysujack, K., Czudaj, S., Blancke, T., and Hanel, R.: Distribution and diel vertical migration of mesopelagic fishes in the Southern Sargasso Sea – observations through hydroacoustics and stratified catches, Marine Biodiversity, 51, 1–24, https://doi.org/10.1007/s12526-021-01216-6, 2021. a
Martin, A.: Phytoplankton patchiness: the role of lateral stirring and mixing, Prog. Oceanogr., 57, 125–174, https://doi.org/10.1016/S0079-6611(03)00085-5, 2003. a
Nakao, L. T. H., Krueger, C. P., and Bleninger, T.: Benchmarking for using an acoustic Doppler current profiler for bathymetric survey, Environmental Monitoring and Assessment, 193, 356, https://doi.org/10.1007/s10661-021-09073-3, 2021. a
Nelson, N. B. and Siegel, D. A.: The global distribution and dynamics of chromophoric dissolved organic matter, Annual review of marine science, 5, 447–476, https://doi.org/10.1146/annurev-marine-120710-100751, 2013. a
Norheim, E., Klevjer, T. A., and Aksnes, D. L.: Evidence for light-controlled migration amplitude of a sound scattering layer in the Norwegian Sea, Marine Ecology Progress Series, 551, 45–52, https://doi.org/10.3354/meps11731, 2016. a
Owen, R. W.: Fronts and eddies in the sea: mechanisms, interactions and biological effects, Analysis of marine ecosystems, 98, 3–5, 1981. a
Parra, D., Valverde, L., Pino, F. J., and Patel, M. K.: A review on the role, cost and value of hydrogen energy systems for deep decarbonisation, Renewable and Sustainable Energy Reviews, 101, 279–294, https://doi.org/10.1016/j.rser.2018.11.010, 2019. a
Petit, F.: Developement and exploitation of new approaches for observation of phytoplankton community composition from BGC-Argo floats in open ocean, Ph.D. thesis, Sorbonne Université, 2023. a
Petrusevich, V. Y., Dmitrenko, I. A., Niemi, A., Kirillov, S. A., Kamula, C. M., Kuzyk, Z. Z. A., Barber, D. G., and Ehn, J. K.: Impact of tidal dynamics on diel vertical migration of zooplankton in Hudson Bay, Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, 2020. a
Powell, J. R. and Ohman, M. D.: Changes in zooplankton habitat, behavior, and acoustic scattering characteristics across glider-resolved fronts in the Southern California Current System, Prog. Oceanogr., 134, 77–92, https://doi.org/10.1016/j.pocean.2014.12.011, 2015. a, b
Puerta, P., Johnson, C., Carreiro-Silva, M., Henry, L.-A., Kenchington, E., Morato, T., Kazanidis, G., Rueda, J. L., Urra, J., Ross, S., Wei, C.-L., González-Irusta, J. M., Arnaud-Haond, S., and Orejas, C.: Influence of water masses on the biodiversity and biogeography of deep-sea benthic ecosystems in the North Atlantic, Front. Marine Sci., 7, 239, https://doi.org/10.3389/fmars.2020.00239, 2020. a
Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C. R., Levin, L. A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy, B. E., Smith, C. R., Tittensor, D. P., Tyler, P. A., Vanreusel, A., and Vecchione, M.: Deep, diverse and definitely different: unique attributes of the world's largest ecosystem, Biogeosciences, 7, 2851–2899, https://doi.org/10.5194/bg-7-2851-2010, 2010. a
Rembauville, M., Briggs, N., Ardyna, M., Uitz, J., Catala, P., Penkerc'h, C., Poteau, A., Claustre, H., and Blain, S.: Plankton assemblage estimated with BGC-Argo floats in the Southern Ocean: Implications for seasonal successions and particle export, J. Geophys. Res.-Oceans, 122, 8278–8292, https://doi.org/10.1002/2017jc013067, 2017. a, b
Robinson, C., Steinberg, D. K., Anderson, T. R., Arístegui, J., Carlson, C. A., Frost, J. R., Ghiglione, J.-F., Hernández-León, S., Jackson, G. A., Koppelmann, R., Quéguiner, B., Ragueneau, O., Rassoulzadegan, F., Robison, B. H., Tamburini, C., Tanaka, T., Wishner, K. F., and Zhang, J.: Mesopelagic zone ecology and biogeochemistry–a synthesis, Deep-Sea Res. Pt. II, 57, 1504–1518, https://doi.org/10.1016/j.dsr2.2010.02.018, 2010. a, b
Sallée, J.-B., Pellichero, V., Akhoudas, C., Pauthenet, E., Vignes, L., Schmidtko, S., Garabato, A. N., Sutherland, P., and Kuusela, M.: Summertime increases in upper-ocean stratification and mixed-layer depth, Nature, 591, 592–598, https://doi.org/10.1038/s41586-021-03303-x, 2021. a
Sameoto, D.: Influence of the biological and physical environment on the vertical distribution of mesozooplankton and micronekton in the eastern tropical Pacific, Marine Biology, 93, 263–279, https://doi.org/10.1016/j.dsr2.2010.02.018, 1986. a
Sarant, L.: Little mesopelagic fish have big carbon capture impact, Nature Middle East, https://api.semanticscholar.org/CorpusID:87615417 (last access: 19 June 2025), 2014. a
Saupe, E. E., Myers, C. E., Townsend Peterson, A., Soberón, J., Singarayer, J., Valdes, P., and Qiao, H.: Spatio-temporal climate change contributes to latitudinal diversity gradients, Nat. Ecol. Evol., 3, 1419–1429, https://doi.org/10.1038/s41559-019-0962-7, 2019. a
Sikder, M. N. A., Abdullah Al, M., Xu, G., Hu, G., and Xu, H.: Spatial variations in trophic-functional patterns of periphytic ciliates and indications to water quality in coastal waters of the Yellow Sea, Environmental Science and Pollution Research, 26, 2592–2602, https://doi.org/10.1007/s11356-018-3744-x, 2019. a
Sorochan, K., Plourde, S., and Johnson, C.: Near-bottom aggregations of Calanus spp. copepods in the southern Gulf of St. Lawrence in summer: significance for North Atlantic right whale foraging, ICES Journal of Marine Science, 80, 787–802, https://doi.org/10.1093/icesjms/fsad003, 2023. a
Sutton, T.: Vertical ecology of the pelagic ocean: classical patterns and new perspectives, Journal of fish biology, 83, 1508–1527, https://doi.org/10.1111/jfb.12263, 2013. a
Sutton, T. T., Clark, M. R., Dunn, D. C., Halpin, P. N., Rogers, A. D., Guinotte, J., Bograd, S. J., Angel, M. V., Perez, J. A. A., Wishner, K., Haedrich, R. L., Lindsay, D. J., Drazen, J. C., Vereshchaka, A., Piatkowski, U., Morato, T., Błachowiak-Samołyk, K., Robison, B. H., Gjerde, K. M., Pierrot-Bults, A., and Heino, M.: A global biogeographic classification of the mesopelagic zone, Deep-Sea Res. Pt. I, 126, 85–102, https://doi.org/10.1016/j.dsr.2017.05.006, 2017. a
Tang, W.: A long-term and high-resolution global gridded photosynthetically active radiation product (1984–2018), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/RemoteSen.tpdc.271909, 2021. a
Tang, W., Qin, J., Yang, K., Jiang, Y., and Pan, W.: Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data, Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022, 2022. a
Trueman, C., Johnston, G., O'hea, B., and MacKenzie, K.: Trophic interactions of fish communities at midwater depths enhance long-term carbon storage and benthic production on continental slopes, P. Roy. Soc. B, 281, 20140669, https://doi.org/10.1098/rspb.2014.0669, 2014. a
Underwood, M. J., García-Seoane, E., Klevjer, T. A., Macaulay, G. J., and Melle, W.: An acoustic method to observe the distribution and behaviour of mesopelagic organisms in front of a trawl, Deep-Sea Res. Pt. II, 180, 104873, https://doi.org/10.1016/j.dsr2.2020.104873, 2020. a, b
Vedenin, A., Musaeva, E., and Vereshchaka, A.: Three-dimensional distribution of mesoplankton assemblages in the Central Atlantic, Global Ecology and Biogeography, 31, 1345–1365, https://doi.org/10.1111/geb.13509, 2022. a
Wang, B. and Fennel, K.: Biogeochemical-Argo data suggest significant contributions of small particles to the vertical carbon flux in the subpolar North Atlantic, Limnol. Oceanogr., 67, 2405–2417, https://doi.org/10.1002/lno.12209, 2022. a
Woodd-Walker, R. S., Ward, P., and Clarke, A.: Large-scale patterns in diversity and community structure of surface water copepods from the Atlantic Ocean, Marine Ecology Progress Series, 236, 189–203, https://doi.org/10.3354/meps236189, 2002. a, b
Xing, X., Wells, M. L., Chen, S., Lin, S., and Chai, F.: Enhanced winter carbon export observed by BGC-Argo in the Northwest Pacific Ocean, Geophys. Res. Lett., 47, e2020GL089847, https://doi.org/10.1029/2020GL089847, 2020. a
Yin, Z., Zhang, X., Wang, S., and Xu, Y.: Spatiotemporal variation of dissolved oxygen concentration in the northern Gulf of Mexico during the period of 1992–2017, Marine Pollution Bulletin, 198, 115771, https://doi.org/10.1016/j.marpolbul.2023.115771, 2024. a, b
Short summary
This study examines how environmental factors, particularly temperature, affect the seasonal and spatial distribution of mesopelagic organisms in the North Atlantic. Using data from 720 BGC-Argo floats, we identified distinct daily and seasonal migration patterns. Temperature was the key driver, followed by salinity and dissolved oxygen. These findings enhance our understanding of mesopelagic ecosystems, with potential implications for fisheries management.
This study examines how environmental factors, particularly temperature, affect the seasonal and...
Altmetrics
Final-revised paper
Preprint