Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5651-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5651-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of wheat cultivar development on biomass and subsoil carbon input: a case study along an erosion-deposition gradient
Luis Alfredo Pires Barbosa
CORRESPONDING AUTHOR
Research Area 1 “Landscape Functioning”, Working Group: Landscape Pedology, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
Research Area 4 “Simulation and Data Science”, Working group: Multi-Scale Modelling, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
Martin Leue
Research Area 1 “Landscape Functioning”, Working Group: Landscape Pedology, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
Marc Wehrhan
Research Area 1 “Landscape Functioning”, Working Group: Landscape Pedology, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
Michael Sommer
Research Area 1 “Landscape Functioning”, Working Group: Landscape Pedology, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
Institute of Environmental Science & Geography, University of Potsdam, Potsdam, 14476, Germany
Related authors
No articles found.
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Marc Wehrhan, Daniel Puppe, Danuta Kaczorek, and Michael Sommer
Biogeosciences, 18, 5163–5183, https://doi.org/10.5194/bg-18-5163-2021, https://doi.org/10.5194/bg-18-5163-2021, 2021
Short summary
Short summary
UAS remote sensing provides a promising tool for new insights into Si biogeochemistry at catchment scale. Our study on an artificial catchment shows surprisingly high silicon stocks in the biomass of two grass species (C. epigejos, 7 g m−2; P. australis, 27 g m−2). The distribution of initial sediment properties (clay, Tiron-extractable Si, nitrogen, plant-available potassium) controlled the spatial distribution of C. epigejos. Soil wetness determined the occurrence of P. australis.
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
Cited articles
Aguirrezabal, L. A. N., Pellerin, S., and Tardieu, F.: Carbon nutrition, root branching and elongation: can the present state of knowledge allow a predictive approach at a whole-plant level?, Environ. Exp. Bot., 33, 121–130, 1993.
Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., and Borrelli, P.: Global phosphorus shortage will be aggravated by soil erosion, Nat. Commun., 11, 4546, https://doi.org/10.1038/s41467-020-18326-7, 2020.
Bar-On, Y. M., Li, X., O'Sullivan, M., Wigneron, J.-P., Sitch, S., Ciais, P., Frankenberg, C., and Fischer, W. W.: Recent gains in global terrestrial carbon stocks are mostly stored in nonliving pools, Science, 387, 1291–1295, https://doi.org/10.1126/science.adk1637, 2025.
Barbosa, L. A. P., Stein, M., Gerke, H. H., and Schaller, J.: Synergistic effects of organic carbon and silica in preserving structural stability of drying soils, Sci. Rep., 14, 8330, https://doi.org/10.1038/s41598-024-58916-9, 2024.
Berhe, A. A., Harden, J. W., Torn, M. S., and Harte, J.: Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions, J. Geophys. Res.-Biogeo., 113, G04039, https://doi.org/10.1029/2008JG000751, 2008.
Berhe, A. A., Barnes, R. T., Six, J., and Marín-Spiotta, E.: Role of Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus, Annu. Rev. Earth Pl. Sc., 46, 521–548, https://doi.org/10.1146/annurev-earth-082517-010018, 2018.
Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., and VandenBygaart, A. J.: An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada, Agr. Ecosyst. Environ., 118, 29–42, https://doi.org/10.1016/j.agee.2006.05.013, 2007.
Borrelli, P., Panagos, P., Alewell, C., Ballabio, C., de Oliveira Fagundes, H., Haregeweyn, N., Lugato, E., Maerker, M., Poesen, J., Vanmaercke, M., and Robinson, D. A.: Policy implications of multiple concurrent soil erosion processes in European farmland, Nat. Sustain., 6, 103–112, https://doi.org/10.1038/s41893-022-00988-4, 2023.
Bundt, M., Widmer, F., Pesaro, M., Zeyer, J., and Blaser, P.: Preferential flow paths: Biological 'hot spots' in soils, Soil Biol. Biochem., 33, 729–738, https://doi.org/10.1016/S0038-0717(00)00218-2, 2001.
Button, E. S., Pett-Ridge, J., Murphy, D. V., Kuzyakov, Y., Chadwick, D. R., and Jones, D. L.: Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils, Soil Biol. Biochem., 170, 108697, https://doi.org/10.1016/j.soilbio.2022.108697, 2022.
Carrel, M., Beltran, M. A., Morales, V. L., Derlon, N., Morgenroth, E., Kaufmann, R., and Holzner, M.: Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools, PLoS One, 12, e0180374, https://doi.org/10.1371/journal.pone.0180374, 2017.
Cormier, F., Foulkes, J., Hirel, B., Gouache, D., Moënne-Loccoz, Y., and Le Gouis, J.: Breeding for increased nitrogen-use efficiency: A review for wheat (T. aestivum L.), Plant Breed., 135, 255–278, https://doi.org/10.1111/pbr.12371, 2016.
Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., and Fiener, P.: Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes, Earth-Sci. Rev., 154, 102–122, https://doi.org/10.1016/j.earscirev.2015.12.005, 2016.
Georgiou, K., Jackson, R. B., Vindušková, O., Abramoff, R. Z., Ahlström, A., Feng, W., Harden, J. W., Pellegrini, A. F. A., Polley, H. W., Soong, J. L., Riley, W. J., and Torn, M. S.: Global stocks and capacity of mineral-associated soil organic carbon, Nat. Commun., 13, 1–12, https://doi.org/10.1038/s41467-022-31540-9, 2022.
Géron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow, Inc., O'Reilly Media, USA, ISBN 978-1-4919-6127-8, 2017.
Harden, J. W., Sharpe, J. M., Parton, W. J., Ojima, D. S., Fries, T. L., Huntington, T. G., and Dabney, S. M.: Dynamic replacement and loss of soil carbon on eroding cropland, Global Biogeochem. Cy., 13, 885–901, https://doi.org/10.1029/1999GB900061, 1999.
Hartmann, M. and Six, J.: Soil structure and microbiome functions in agroecosystems, Nature Reviews Earth & Environment, 4, 4–18, https://doi.org/10.1038/s43017-022-00366-w, 2023.
Heinemann, H., Hirte, J., Seidel, F., and Don, A.: Increasing root biomass derived carbon input to agricultural soils by genotype selection – a review, Plant Soil, 490, 19–30, https://doi.org/10.1007/s11104-023-06068-6, 2023.
Heinemann, H., Durand-Maniclas, F., Seidel, F., Ciulla, F., Bárcena, T. G., Camenzind, M., Corrado, S., Csurös, Z., Czakó, Z., Eylenbosch, D., Ficke, A., Flamm, C., Herrera, J. M., Horáková, V., Hund, A., Lüddeke, F., Platz, F., Poós, B., Rasse, D., da Silva-Lopes, M., Toleikiene, M., Veršuliene, A., Visse-Mansiaux, M., Yu, K., Hirte, J., and Don, A.: Optimising Root and Grain Yield Through Variety Selection in Winter Wheat Across a European Climate Gradient, Eur. J. Soil Sci., 76, e70077, https://doi.org/10.1111/ejss.70077, 2025.
Herbrich, M., Gerke, H. H., and Sommer, M.: Root development of winter wheat in erosion-affected soils depending on the position in a hummocky ground moraine soil landscape, J. Plant Nutr. Soil Sci., 181, 147–157, https://doi.org/10.1002/jpln.201600536, 2018.
Hirte, J., Leifeld, J., Abiven, S., Oberholzer, H. R., and Mayer, J.: Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity, Agr. Ecosyst. Environ., 265, 556–566, https://doi.org/10.1016/j.agee.2018.07.010, 2018.
Hoffmann, M., Pohl, M., Jurisch, N., Prescher, A. K., Mendez Campa, E., Hagemann, U., Remus, R., Verch, G., Sommer, M., and Augustin, J.: Maize carbon dynamics are driven by soil erosion state and plant phenology rather than nitrogen fertilization form, Soil Till. Res., 175, 255–266, https://doi.org/10.1016/j.still.2017.09.004, 2018.
Holz, M., Lewin, S., Kolb, S., Becker, J. N., and Bergmann, J.: How to get to the N – a call for interdisciplinary research on organic N utilization pathways by plants, Plant Soil, 508, 955–969, https://doi.org/10.1007/s11104-024-06839-9, 2024.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, Update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, Food and Agriculture Organization of the United Nations (FAO), Rome, ISBN: 978-92-5-108369-7, 2015.
Johnson, M. G., Tingey, D. T., Phillips, D. L., and Storm, M. J.: Advancing fine root research with minirhizotrons, Environ. Exp. Bot., 45, 263–289, https://doi.org/10.1016/S0098-8472(01)00077-6, 2001.
Juricová, A., Öttl, L. K., Wilken, F., Chuman, T., Žížala, D., Minarík, R., and Fiener, P.: Tillage erosion as an underestimated driver of carbon dynamics, Soil Till. Res., 245, 106287, https://doi.org/10.1016/j.still.2024.106287, 2025.
Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., and Menichetti, L.: Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment, Agr. Ecosyst. Environ., 141, 184–192, https://doi.org/10.1016/j.agee.2011.02.029, 2011.
Keller, T., Sandin, M., Colombi, T., Horn, R., and Or, D.: Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning, Soil Till. Res., 194, 104293, https://doi.org/10.1016/j.still.2019.104293, 2019.
Kietzer, B.: Aufklärung der Bodenverlagerung durch Bearbeitungserosion in Jungmoränenlandschaften, Dissertation (Dr.-Ing.), Fakultät VI – Planen Bauen Umwelt, Technische Universität Berlin, https://doi.org/10.14279/depositonce-1736, 2007.
Kosmas, C., Gerontidis, S., Marathianou, M., Detsis, B., Zafiriou, T., Nan Muysen, W., Govers, G., Quine, T., and Vanoost, K.: The effects of tillage displaced soil on soil properties and wheat biomass, Soil Till. Res., 58, 31–44, https://doi.org/10.1016/S0167-1987(00)00175-6, 2001.
Leue, M., Hoffmann, C., Hierold, W., and Sommer, M.: In-situ multi-sensor characterization of soil cores along an erosion-deposition gradient, Catena, 182, 104140, https://doi.org/10.1016/j.catena.2019.104140, 2019.
Leue, M., Holz, M., Gerke, H. H., Taube, R., Puppe, D., and Wirth, S.: Spatially-distributed microbial enzyme activities at intact, coated macropore surfaces in Luvisol Bt-horizons, Soil Biol. Biochem., 156, 108193, https://doi.org/10.1016/j.soilbio.2021.108193, 2021.
Lichthardt, C., Chen, T. W., Stahl, A., and Stützel, H.: Co-Evolution of Sink and Source in the Recent Breeding History of Winter Wheat in Germany, Front. Plant Sci., 10, 1–15, https://doi.org/10.3389/fpls.2019.01771, 2020.
Martre, P., Dueri, S., Guarin, J. R., Ewert, F., Webber, H., Calderini, D., Molero, G., Reynolds, M., Miralles, D., Garcia, G., Brown, H., George, M., Craigie, R., Cohan, J. P., Deswarte, J. C., Slafer, G., Giunta, F., Cammarano, D., Ferrise, R., Gaiser, T., Gao, Y., Hochman, Z., Hoogenboom, G., Hunt, L. A., Kersebaum, K. C., Nendel, C., Padovan, G., Ruane, A. C., Srivastava, A. K., Stella, T., Supit, I., Thorburn, P., Wang, E., Wolf, J., Zhao, C., Zhao, Z., and Asseng, S.: Global needs for nitrogen fertilizer to improve wheat yield under climate change, Nat. Plants, 10, 1081–1090, https://doi.org/10.1038/s41477-024-01739-3, 2024.
Milchunas, D. G.: Estimating root production: Comparison of 11 methods in shortgrass steppe and review of biases, Ecosystems, 12, 1381–1402, https://doi.org/10.1007/s10021-009-9295-8, 2009.
Nie, X. J., Zhang, H. B., and Su, Y. Y.: Soil carbon and nitrogen fraction dynamics affected by tillage erosion, Sci. Rep., 9, 1–8, https://doi.org/10.1038/s41598-019-53077-6, 2019.
Öttl, L. K., Wilken, F., Auerswald, K., Sommer, M., Wehrhan, M., and Fiener, P.: Tillage erosion as an important driver of in-field biomass patterns in an intensively used hummocky landscape, Land. Degrad. Dev., 32, 3077–3091, https://doi.org/10.1002/ldr.3968, 2021.
Öttl, L. K., Wilken, F., Hupfer, A., Sommer, M., and Fiener, P.: Non-inversion conservation tillage as an underestimated driver of tillage erosion, Sci. Rep., 12, 1–12, https://doi.org/10.1038/s41598-022-24749-7, 2022.
Parry, M. A. J., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X. G., Price, G. D., Condon, A. G., and Furbank, R. T.: Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency, J. Exp. Bot., 62, 453–467, https://doi.org/10.1093/jxb/erq304, 2011.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Douchesnay, É.: Scikit-learn: Machine Learning in Python Fabian, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., Opazo, C. M., Owoo, N., Page, J. R., Prager, S. D., and Torero, M.: A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes, Nature Sustainability, 3, 809–820, https://doi.org/10.1038/s41893-020-00617-y, 2020.
Poeplau, C., Don, A., and Schneider, F.: Roots are key to increasing the mean residence time of organic carbon entering temperate agricultural soils, Glob. Change Biol., 27, 4921–4934, https://doi.org/10.1111/gcb.15787, 2021.
Poesen, J.: Soil erosion in the Anthropocene: Research needs, Earth Surf. Proc. Land., 43, 64–84, https://doi.org/10.1002/esp.4250, 2018.
Poirier, V., Roumet, C., and Munson, A. D.: The root of the matter: Linking root traits and soil organic matter stabilization processes, Soil Biol. Biochem., 120, 246–259, https://doi.org/10.1016/j.soilbio.2018.02.016, 2018.
Popova, L., Van Dusschoten, D., Nagel, K. A., Fiorani, F., and Mazzolai, B.: Plant root tortuosity: An indicator of root path formation in soil with different composition and density, Ann. Bot., 118, 685–698, https://doi.org/10.1093/aob/mcw057, 2016.
Qiao, L., Wang, X., Smith, P., Fan, J., Lu, Y., Emmett, B., Li, R., Dorling, S., Chen, H., Liu, S., Benton, T. G., Wang, Y., Ma, Y., Jiang, R., Zhang, F., Piao, S., M?ller, C., Yang, H., Hao, Y., Li, W., and Fan, M.: Soil quality both increases crop production and improves resilience to climate change, Nat. Clim. Chang., 12, 574–580, https://doi.org/10.1038/s41558-022-01376-8, 2022.
Qin, T., Feng, J., Zhang, X., Li, C., Fan, J., Zhang, C., Dong, B., Wang, H., and Yan, D.: Continued decline of global soil moisture content, with obvious soil stratification and regional difference, Sci. Total Environ., 864, 160982, https://doi.org/10.1016/j.scitotenv.2022.160982, 2023.
Quinton, J. N., Govers, G., Van Oost, K., and Bardgett, R. D.: The impact of agricultural soil erosion on biogeochemical cycling, Nat. Geosci., 3, 311–314, https://doi.org/10.1038/ngeo838, 2010.
Quinton, J. N., Öttl, L. K., and Fiener, P.: Tillage exacerbates the vulnerability of cereal crops to drought, Nat. Food, 3, 472–479, https://doi.org/10.1038/s43016-022-00533-8, 2022.
R Core Team: R: A Language and Environment for Statistical Computing, R Found. Stat. Comput., Vienna, Austria, https://www.R-project.org/ (last access: 12 June 2024), 2017.
Remus, R. and Augustin, J.: Dynamic linking of 14C partitioning with shoot growth allows a precise determination of plant-derived C input to soil, Plant Soil, 408, 493–513, https://doi.org/10.1007/s11104-016-3006-y, 2016.
Remus, R., Kaiser, M., Kleber, M., Augustin, J., and Sommer, M.: Demonstration of the rapid incorporation of carbon into protective, mineral-associated organic carbon fractions in an eroded soil from the CarboZALF experimental site, Plant Soil, 430, 329–348, https://doi.org/10.1007/s11104-018-3724-4, 2018.
Robinson, D.: Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil, Plant Soil, 232, 41–50, https://doi.org/10.1023/A:1010377818094, 2001.
Rose, L.: Pitfalls in root trait calculations: How ignoring diameter heterogeneity can lead to overestimation of functional traits, Front. Plant Sci., 8, 1–5, https://doi.org/10.3389/fpls.2017.00898, 2017.
Rouch, L., Follain, S., Pimet, E., Bizouard, F., Cognard, E., Mathieu, O., and Blouin, M.: Ancient and modern wheat varieties: A trade-off between soil CO2 emissions and grain yield?, J. Sustain. Agric. Environ., 2, 238–250, https://doi.org/10.1002/sae2.12048, 2023.
Sanchez-Garcia, M., Álvaro, F., Peremarti, A., Trevaskis, B., Martín-Sánchez, J. A., and Royo, C.: Breeding effects on dry matter accumulation and partitioning in Spanish bread wheat during the 20th century, Euphytica, 203, 321–336, https://doi.org/10.1007/s10681-014-1268-0, 2015.
Schlichting, E., Blume, H. P., and Stahr, K.: Bodenkunde praktisch [Soils Practical], Berlin, Germany, Wien, Austria, Blackwell Wissenschafts-Verlag, ISBN: 978-3-8263-3034-0, 1995 (in German).
Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., and York, L. M.: RhizoVision Explorer: Open-source software for root image analysis and measurement standardization, AoB Plants, 13, 1–15, https://doi.org/10.1093/aobpla/plab056, 2021.
Smith, A. G., Han, E., Petersen, J., Olsen, N. A. F., Giese, C., Athmann, M., Dresbøll, D. B., and Thorup-Kristensen, K.: RootPainter: deep learning segmentation of biological images with corrective annotation, New Phytol., 236, 774–791, https://doi.org/10.1111/nph.18387, 2022.
Sommer, M., Gerke, H. H., and Deumlich, D.: Modelling soil landscape genesis – A “time split” approach for hummocky agricultural landscapes, Geoderma, 145, 480–493, https://doi.org/10.1016/j.geoderma.2008.01.012, 2008.
Sommer, M., Augustin, J., and Kleber, M.: Feedbacks of soil erosion on SOC patterns and carbon dynamics in agricultural landscapes – The CarboZALF experiment, Soil Till. Res., 156, 182–184, https://doi.org/10.1016/j.still.2015.09.015, 2016.
Stock, O., Bens, O., and Hüttl, R. F.: The interrelationship between the cultivation of crops and soil-strength dynamics, J. Plant Nutr. Soil Sci., 170, 713–720, https://doi.org/10.1002/jpln.200625009, 2007.
Swinnen, J., Van Veen, J. A., and Merckx, R.: Rhizosphere carbon fluxes in field-grown spring wheat: Model calculations based on 14C partitioning after pulse-labelling, Soil Biol. Biochem., 26, 171–182, https://doi.org/10.1016/0038-0717(94)90160-0, 1994.
van der Meij, W. M., Reimann, T., Vornehm, V. K., Temme, A. J. A. M., Wallinga, J., van Beek, R., and Sommer, M.: Reconstructing rates and patterns of colluvial soil redistribution in agrarian (hummocky) landscapes, Earth Surf. Proc. Land., 44, 2408–2422, https://doi.org/10.1002/esp.4671, 2019.
Van Oost, K., Govers, G., de Alba, S., and Quine, T. A.: Tillage erosion: A review of controlling factors and implications for soil quality, Prog. Phys. Geogr., 30, 443–466, https://doi.org/10.1191/0309133306pp487ra, 2006.
Wilken, F., Ketterer, M., Koszinski, S., Sommer, M., and Fiener, P.: Wilken, F., Ketterer, M., Koszinski, S., Sommer, M., and Fiener, P.: Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling, SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, 2020.
Short summary
Healthy soils rely on plant biomass, especially roots. We studied how wheat cultivar development interacts with soil erosion-deposition in carbon inputs. Tillage erosion reduced total biomass, while modern varieties yielded more grain but returned less carbon. Simulations showed newer cultivars are more drought-sensitive, revealing a trade-off between high yields and soil health.
Healthy soils rely on plant biomass, especially roots. We studied how wheat cultivar development...
Altmetrics
Final-revised paper
Preprint