Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-6057-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6057-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and Perspectives: Potentially large but highly uncertain carbon dioxide emissions resulting from peat erosion
Thomas C. Parker
CORRESPONDING AUTHOR
The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
Chris Evans
UK Centre for Ecology and Hydrology, Bangor, LL57 2UW, UK
Martin G. Evans
Faculty of Social Sciences and Health, Durham University, Durham, DH1 3LE, UK
Miriam Glendell
The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
Richard Grayson
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
Joseph Holden
School of Geography, University of Leeds, Leeds, LS2 9JT, UK
Changjia Li
Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Pengfei Li
College of Geomatics, Xi'an University of Science and Technology, Xi'an, 70021, China
Rebekka R. E. Artz
The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
Related authors
No articles found.
Jennifer Williamson, Chris Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, Susan Waldron, and Don Monteith
Biogeosciences, 20, 3751–3766, https://doi.org/10.5194/bg-20-3751-2023, https://doi.org/10.5194/bg-20-3751-2023, 2023
Short summary
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Gustaf Granath, Christopher D. Evans, Joachim Strengbom, Jens Fölster, Achim Grelle, Johan Strömqvist, and Stephan J. Köhler
Biogeosciences, 18, 3243–3261, https://doi.org/10.5194/bg-18-3243-2021, https://doi.org/10.5194/bg-18-3243-2021, 2021
Short summary
Short summary
We measured element losses and impacts on water quality following a wildfire in Sweden. We observed the largest carbon and nitrogen losses during the fire and a strong pulse of elements 1–3 months after the fire that showed a fast (weeks) and a slow (months) release from the catchments. Total carbon export through water did not increase post-fire. Overall, we observed a rapid recovery of the biogeochemical cycling of elements within 3 years but still an annual net release of carbon dioxide.
Jennifer Williamson, Christopher Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, and Don Monteith
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-450, https://doi.org/10.5194/hess-2020-450, 2020
Manuscript not accepted for further review
Short summary
Short summary
Water companies in the UK have found that drinking water from upland reservoirs is becoming browner. This is costly to treat and if the dissolved organic matter that causes the colour isn't removed potentially harmful chemicals could be produced. Land management around reservoirs has been suggested as a way to reduce water colour. We reviewed the available literature to assess whether this would work. There is limited evidence available to date, although forestry appears to increase colour.
Cited articles
Adamczyk, B., Sietio, O. M., Strakova, P., Prommer, J., Wild, B., Hagner, M., Pihlatie, M., Fritze, H., Richter, A., and Heinonsalo, J.: Plant roots increase both decomposition and stable organic matter formation in boreal forest soil, Nat. Commun., 10, 3982, https://doi.org/10.1038/s41467-019-11993-1, 2019.
Alderson, D. M., Evans, M. G., Rothwell, J. J., Rhodes, E. J., and Boult, S.: Geomorphological controls on fluvial carbon storage in headwater peatlands, Earth Surface Processes and Landforms, 44, 1675–1693, https://doi.org/10.1002/esp.4602, 2019.
Alderson, D. M., Evans, M. G., Garnett, M. H., and Worrall, F.: Aged carbon mineralisation from headwater peatland floodplains in the Peak District, UK, Geomorphology, 461, 109271, https://doi.org/10.1016/j.geomorph.2024.109271, 2024.
Artz, R. R. E., Chapman, S. J., Jean Robertson, A. H., Potts, J. M., Laggoun-Défarge, F., Gogo, S., Comont, L., Disnar, J.-R., and Francez, A.-J.: FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands, Soil Biology and Biochemistry, 40, 515–527, https://doi.org/10.1016/j.soilbio.2007.09.019, 2008.
Artz, R. R. E., Coyle, M., Donaldson-Selby, G., and Morrison, R.: Net carbon dioxide emissions from an eroding Atlantic blanket bog, Biogeochemistry, 159, 233–250, https://doi.org/10.1007/s10533-022-00923-x, 2022.
Bell, M. C., Ritson, J. P., Verhoef, A., Brazier, R. E., Templeton, M. R., Graham, N. J. D., Freeman, C., and Clark, J. M.: Sensitivity of peatland litter decomposition to changes in temperature and rainfall, Geoderma, 331, 29–37, 2018.
Biester, H., Knorr, K.-H., Schellekens, J., Basler, A., and Hermanns, Y.-M.: Comparison of different methods to determine the degree of peat decomposition in peat bogs, Biogeosciences, 11, 2691–2707, https://doi.org/10.5194/bg-11-2691-2014, 2014.
Billett, M. F., Charman, D. J., Clark, J. M., Evans, C. D., Evans, M. G., Ostle, N. J., Worrall, F., Burden, A., Dinsmore, K. J., Jones, T., McNamara, N. P., Parry, L., Rowson, J. G., and Rose, R.: Carbon balance of UK peatlands: current state of knowledge and future research challenges, Climate Research, 45, 13–29, https://doi.org/10.3354/cr00903, 2010.
Billett, M. F., Garnett, M. H., and Dinsmore, K. J.: Should Aquatic CO2 Evasion be Included in Contemporary Carbon Budgets for Peatland Ecosystems?, Ecosystems, 18, 471–480, https://doi.org/10.1007/s10021-014-9838-5, 2015.
Campbell, D. R., Lavoie, C., and Rochefort, L.: Wind erosion and surface stability in abandoned milled peatlands, Canadian Journal of Soil Science, 82, 85–95, https://doi.org/10.4141/S00-089, 2002.
Clay, G. D., Dixon, S., Evans, M. G., Rowson, J. G., and Worrall, F.: Carbon dioxide fluxes and DOC concentrations of eroding blanket peat gullies, Earth Surface Processes and Landforms, 37, 562–571, https://doi.org/10.1002/esp.3193, 2012.
Colhoun, E., Common, R., and Cruikshank, M.: Recent bog flows and debris slides in the north of Ireland, Scientific Proceedings of the Royal Dublin Society, Dublin, 1965.
Conway, V. M.: Stratigraphy and pollen analysis of Southern Pennine blanket peats, The Journal of Ecology, 42, 117–147, 1954.
Cotterill, D., Stott, P., Christidis, N., and Kendon, E.: Increase in the frequency of extreme daily precipitation in the United Kingdom in autumn, Weather and Climate Extremes, 33, 100340, https://doi.org/10.1016/j.wace.2021.100340, 2021.
Crowe, S., Evans, M., and Allott, T.: Geomorphological controls on the re-vegetation of erosion gullies in blanket peat: implications for bog restoration, Mires & Peat, 3, 1–14 pp., 2008.
Cumming, A. M. J.: Multi-annual carbon flux at an intensively cultivated lowland peatland in East Anglia, UK, University of Leicester, https://hdl.handle.net/2381/43148 (last access: 21 January 2025), 2018.
Daniels, S. M., Agnew, C. T., Allott, T. E. H., and Evans, M. G.: Water table variability and runoff generation in an eroded peatland, South Pennines, UK, Journal of Hydrology, 361, 214–226, https://doi.org/10.1016/j.jhydrol.2008.07.042, 2008.
Defrenne, C. E., Moore, J. A. M., Tucker, C. L., Lamit, L. J., Kane, E. S., Kolka, R. K., Chimner, R. A., Keller, J. K., and Lilleskov, E. A.: Peat loss collocates with a threshold in plant–mycorrhizal associations in drained peatlands encroached by trees, New Phytologist, 240, 412–425, https://doi.org/10.1111/nph.18954, 2023.
Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R. M., Drewer, J., and Helfter, C.: Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment, Global Change Biology, 16, 2750–2762, https://doi.org/10.1111/j.1365-2486.2009.02119.x, 2010.
Dixon, S. D., Qassim, S. M., Rowson, J. G., Worrall, F., Evans, M. G., Boothroyd, I. M., and Bonn, A.: Restoration effects on water table depths and CO2 fluxes from climatically marginal blanket bog, Biogeochemistry, 118, 159–176, 2014.
Evans, C., Allott, T., Billett, M., Burden, A., Chapman, P., Dinsmore, K., Evans, M., Freeman, C., Goulsbra, C., Holden, J., Jones, D., Jones, T., Moody, C., Palmer, S., and Worrall, F.: Towards the estimation of CO2 emissions associated with POC fluxes from drained and eroding peatlands, Centre for Ecology and Hydrology, Bangor, 2013.
Evans, C., Artz, R., Moxley, J., Smyth, M.-A., Taylor, E., Archer, E., Burden, A., Williamson, J., Donnelly, D., and Thomson, A.: Implementation of an emissions inventory for UK peatlands, Centre for Ecology and Hydrology, https://uk-air.defra.gov.uk/library/reports?report_id=980 (last access: 21 January 2025), 2017.
Evans, C. D., Callaghan, N., Jaya, A., Grinham, A., Sjogersten, S., Page, S. E., Harrison, M. E., Kusin, K., Kho, L. K., Ledger, M., Evers, S., Mitchell, Z., Williamson, J., Radbourne, A. D., and Jovani-Sancho, A. J.: A Novel Low-Cost, High-Resolution Camera System for Measuring Peat Subsidence and Water Table Dynamics, Frontiers in Environmental Science, 9, https://doi.org/10.3389/fenvs.2021.630752, 2021a.
Evans, C. D., Peacock, M., Baird, A. J., Artz, R. R. E., Burden, A., Callaghan, N., Chapman, P. J., Cooper, H. M., Coyle, M., Craig, E., Cumming, A., Dixon, S., Gauci, V., Grayson, R. P., Helfter, C., Heppell, C. M., Holden, J., Jones, D. L., Kaduk, J., Levy, P., Matthews, R., McNamara, N. P., Misselbrook, T., Oakley, S., Page, S. E., Rayment, M., Ridley, L. M., Stanley, K. M., Williamson, J. L., Worrall, F., and Morrison, R.: Overriding water table control on managed peatland greenhouse gas emissions, Nature, 593, 548–552, https://doi.org/10.1038/s41586-021-03523-1, 2021b.
Evans, C., Artz, R., Burden, A., Clilverd, H., Freeman, B., Heinemeyer, A., Lindsay, R., Morrison, R., Potts, J., and Reed, M.: Aligning the peatland code with the UK peatland inventory, report number SP0822, 2022.
Evans, M. and Warburton, J.: Geomorphology of Upland Peat: Erosion, Form and Landscape Change, Geomorphology of Upland Peat: Erosion, Form and Landscape Change, 1–262, https://doi.org/10.1002/9780470798003, 2008.
Evans, M. and Warburton, J.: Geomorphology of upland peat: erosion, form and landscape change, John Wiley & Sons, Chichester, England, https://doi.org/10.1002/9780470798003, 2011.
Evans, M., Warburton, J., and Yang, J.: Eroding blanket peat catchments: Global and local implications of upland organic sediment budgets, Geomorphology, 79, 45–57, https://doi.org/10.1016/j.geomorph.2005.09.015, 2006.
Francis, I. S.: Blanket Peat Erosion In A Mid-wales Catchment During 2 Drought Years, Earth Surface Processes and Landforms, 15, 445–456, https://doi.org/10.1002/esp.3290150507, 1990.
Frogbrook, Z. L., Bell, J., Bradley, R. I., Evans, C., Lark, R. M., Reynolds, B., Smith, P., and Towers, W.: Quantifying terrestrial carbon stocks: examining the spatial variation in two upland areas in the UK and a comparison to mapped estimates of soil carbon, Soil Use and Management, 25, 320–332, https://doi.org/10.1111/j.1475-2743.2009.00232.x, 2009.
Gatis, N., Benaud, P., Ashe, J., Luscombe, D. J., Grand-Clement, E., Hartley, I. P., Anderson, K., and Brazier, R. E.: Assessing the impact of peat erosion on growing season CO2 fluxes by comparing erosional peat pans and surrounding vegetated haggs, Wetlands Ecology and Management, 27, 187–205, https://doi.org/10.1007/s11273-019-09652-9, 2019.
Glendell, M., McShane, G., Farrow, L., James, M. R., Quinton, J., Anderson, K., Evans, M., Benaud, P., Rawlins, B., Morgan, D., Jones, L., Kirkham, M., DeBell, L., Quine, T. A., Lark, M., Rickson, J., and Brazier, R. E.: Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion, Earth Surface Processes and Landforms, 42, 1871, https://doi.org/10.1002/esp.4142, 2017.
Harris, A. and Baird, A. J.: Microtopographic Drivers of Vegetation Patterning in Blanket Peatlands Recovering from Erosion, Ecosystems, 22, 1035–1054, https://doi.org/10.1007/s10021-018-0321-6, 2019.
Holden, J., Gascoign, M., and Bosanko, N. R.: Erosion and natural revegetation associated with surface land drains in upland peatlands, Earth Surface Processes and Landforms, 32, 1547–1557, https://doi.org/10.1002/esp.1476, 2007.
Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., and Anshari, G.: Subsidence and carbon loss in drained tropical peatlands, Biogeosciences, 9, 1053–1071, https://doi.org/10.5194/bg-9-1053-2012, 2012.
Hutchinson, J. N.: The Record of Peat Wastage in the East Anglian Fenlands at Holme Post, 1848–1978 A.D, Journal of Ecology, 68, 229–249, https://doi.org/10.2307/2259253, 1980.
IPCC: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, IPCC, Switzerland, ISBN 978-92-9169-139-5, 2014.
Kagawa, H., Yamamoto, K., Sutikno, S., Haidar, M., Basir, N., Koyama, A., Kanno, A., Akamatsu, Y., and Suzuki, M.: Estimation of particulate organic carbon export to the ocean from lateral degradations of tropical peatland coasts, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3547, 2024.
Lamoureux, S. F., Lafrenière, M. J., and Favaro, E. A.: Erosion dynamics following localized permafrost slope disturbances, Geophysical Research Letters, 41, 5499–5505, https://doi.org/10.1002/2014GL060677, 2014.
Lantuit, H. and Pollard, W. H.: Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada, Geomorphology, 95, 84–102, https://doi.org/10.1016/j.geomorph.2006.07.040, 2008.
Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F., Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D. L., Graves-Gaylord, A., Grigoriev, M., Hubberten, H.-W., Jordan, J., Jorgenson, T., Ødegård, R. S., Ogorodov, S., Pollard, W. H., Rachold, V., Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., and Vasiliev, A.: The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines, Estuaries and Coasts, 35, 383–400, https://doi.org/10.1007/s12237-010-9362-6, 2012.
Li, C., Grayson, R., Holden, J., and Li, P.: Erosion in peatlands: Recent research progress and future directions, Earth-Science Reviews, 185, 870–886, https://doi.org/10.1016/j.earscirev.2018.08.005, 2018a.
Li, C., Holden, J., and Grayson, R.: Effects of Needle Ice on Peat Erosion Processes During Overland Flow Events, Journal of Geophysical Research: Earth Surface, 123, 2107–2122, https://doi.org/10.1029/2017JF004508, 2018b.
Li, C. J., Grayson, R., Smith, M., and Holden, J.: Patterns and drivers of peat topographic changes determined from Structure-from-Motion photogrammetry at field plot and laboratory scales, Earth Surface Processes and Landforms, 44, 1274–1294, https://doi.org/10.1002/esp.4571, 2019.
Li, P., Holden, J., Irvine, B., and Mu, X.: Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change, Geophysical Research Letters, 44, 3615–3623, https://doi.org/10.1002/2017GL072590, 2017.
Li, Y., Liu, Y., Chen, J., Dang, H., Zhang, S., Mei, Q., Zhao, J., Wang, J., Dong, T., and Zhao, Y.: Advances in retrogressive thaw slump research in permafrost regions, Permafrost and Periglacial Processes, 35, 125–142, https://doi.org/10.1002/ppp.2218, 2024.
Macfarlane, F., Robb, C., Coull, M., McKeen, M., Wardell-Johnson, D., Miller, D., Parker, T. C., Artz, R. R. E., Matthews, K., and Aitkenhead, M. J.: A deep learning approach for high-resolution mapping of Scottish peatland degradation, European Journal of Soil Science, 75, e13538, https://doi.org/10.1111/ejss.13538, 2024.
Marttila, H. and Klove, B.: Dynamics of erosion and suspended sediment transport from drained peatland forestry, Journal of Hydrology, 388, 414–425, https://doi.org/10.1016/j.jhydrol.2010.05.026, 2010.
McNamara, N. P., Plant, T., Oakley, S., Ward, S., Wood, C., and Ostle, N.: Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland, Science of The Total Environment, 404, 354–360, https://doi.org/10.1016/j.scitotenv.2008.03.015, 2008.
Milner, A. M., Baird, A. J., Green, S. M., Swindles, G. T., Young, D. M., Sanderson, N. K., Timmins, M. S. I., and Galka, M.: A regime shift from erosion to carbon accumulation in a temperate northern peatland, Journal of Ecology, 109, 125–138, https://doi.org/10.1111/1365-2745.13453, 2021.
Palmer, S. M., Evans, C. D., Chapman, P. J., Burden, A., Jones, T. G., Allott, T. E. H., Evans, M. G., Moody, C. S., Worrall, F., and Holden, J.: Sporadic hotspots for physico-chemical retention of aquatic organic carbon: from peatland headwater source to sea, Aquatic Sciences, 78, 491–504, https://doi.org/10.1007/s00027-015-0448-x, 2016.
Pawson, R.: Assessing the role of particulates in the fluvial organic carbon flux from eroding peatland systems, Faculty of Humanities, University of Manchester, 304 pp., 2008.
Pawson, R. R., Lord, D. R., Evans, M. G., and Allott, T. E. H.: Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK, Hydrol. Earth Syst. Sci., 12, 625–634, https://doi.org/10.5194/hess-12-625-2008, 2008.
Pearsall, W.: Two blanket-bogs in Sutherland, Journal of Ecology, 44, 493–516, 1956.
Pizano, C., Barón, A. F., Schuur, E. A. G., Crummer, K. G., and Mack, M. C.: Effects of thermo-erosional disturbance on surface soil carbon and nitrogen dynamics in upland arctic tundra, Environmental Research Letters, 9, 075006, https://doi.org/10.1088/1748-9326/9/7/075006, 2014.
Rankin, T., Strachan, I. B., and Strack, M.: Carbon dioxide and methane exchange at a post-extraction, unrestored peatland, Ecological Engineering, 122, 241–251, 2018.
Robinson, C. H., Ritson, J. P., Alderson, D. M., Malik, A. A., Griffiths, R. I., Heinemeyer, A., Gallego-Sala, A. V., Quillet, A., Robroek, B. J., and Evans, C.: Aspects of microbial communities in peatland carbon cycling under changing climate and land use pressures, Mires and Peat, 29, 2, 2023.
Rosset, T., Binet, S., Rigal, F., and Gandois, L.: Peatland Dissolved Organic Carbon Export to Surface Waters: Global Significance and Effects of Anthropogenic Disturbance, Geophysical Research Letters, 49, e2021GL096616, https://doi.org/10.1029/2021GL096616, 2022.
Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys, E. R., and Bubier, J.: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland, Global Change Biology, 13, 397–411, https://doi.org/10.1111/j.1365-2486.2006.01292.x, 2007.
Sloan, T. J., Payne, R. J., Anderson, A. R., Gilbert, P., Mauquoy, D., Newton, A., and Andersen, R.: Ground surface subsidence in an afforested peatland fifty years after drainage and planting, Mires and Peat, 4–18 pp., 2019.
Swindles, G. T., Morris, P. J., Mullan, D., Watson, E. J., Turner, T. E., Roland, T. P., Amesbury, M. J., Kokfelt, U., Schoning, K., Pratte, S., Gallego-Sala, A., Charman, D. J., Sanderson, N., Garneau, M., Carrivick, J. L., Woulds, C., Holden, J., Parry, L., and Galloway, J. M.: The long-term fate of permafrost peatlands under rapid climate warming, Scientific Reports, 5, 17951, https://doi.org/10.1038/srep17951, 2015.
Wang, D., Li, Z., Li, Z., and You, Y.: Organic Carbon Flux in Ditches during the Growing Season in a Drained Alpine Peatland, Ecohydrology, 12, e2161, https://doi.org/10.1002/eco.2161, 2019.
Warburton, J.: Wind-splash erosion of bare peat on UK upland moorlands, Catena, 52, 191–207, https://doi.org/10.1016/s0341-8162(03)00014-6, 2003.
Williamson, J., Rowe, E., Reed, D., Ruffino, L., Jones, P., Dolan, R., Buckingham, H., Norris, D., Astbury, S., and Evans, C. D.: Historical peat loss explains limited short-term response of drained blanket bogs to rewetting, Journal of Environmental Management, 188, 278–286, https://doi.org/10.1016/j.jenvman.2016.12.018, 2017.
Wilson, P., Clark, R., McAdam, J. H., and Cooper, E. A.: Soil erosion in the Falkland Islands: an assessment, Applied Geography, 13, 329–352, https://doi.org/10.1016/0143-6228(93)90036-Z, 1993.
Worrall, F. and Evans, M.: The carbon budget of upland peat soils, in: Drivers of environmental change in uplands, edited by: Bonn, A., Allott, T., Hubacek, K., and Stewart, J., Routledge, Oxon, 448–474, ISBN 1134061641, 2009.
Yallop, A., Clutterbuck, B., and Thacker, J.: The history and ecology of managed fires in the uplands, in: Drivers of Environmental Change in Uplands, edited by: Bonn, A., Allot, T., Hubacek, K., and Stewart, J., Routledge, Oxon, https://doi.org/10.4324/9780203886724, 2009.
Yeloff, D., Labadz, J., and Hunt, C.: Causes of degradation and erosion of a blanket mire in the southern Pennines, UK, Mires and Peat, 104, 4–18, 2006.
Zhang, D., Hui, D., Luo, Y., and Zhou, G.: Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, Journal of Plant Ecology, 1, 85–93, https://doi.org/10.1093/jpe/rtn002, 2008.
Zhao, Y., Zhu, D., Wu, Z., and Cao, Z.: Extreme rainfall erosivity: Research advances and future perspectives, Science of The Total Environment, 917, 170425, https://doi.org/10.1016/j.scitotenv.2024.170425, 2024.
Zhou, Y., Evans, C. D., Chen, Y., Chang, K. Y., and Martin, P.: Extensive remineralization of peatland-derived dissolved organic carbon and ocean acidification in the Sunda Shelf Sea, Southeast Asia, Journal of Geophysical Research: Oceans, 126, e2021JC017292, https://doi.org/10.1029/2021JC017292, 2021.
Short summary
Many peatlands around the world are eroding and causing carbon losses to the atmosphere and to freshwater systems. To accurately report emissions from peatlands we need to understand how much of the eroded peat is converted to CO2 once exposed to the atmosphere. We need more direct measurements of this process and a better understanding of the environmental conditions that peat is exposed to after it erodes. This information will help quantify the emissions savings from peatland restoration.
Many peatlands around the world are eroding and causing carbon losses to the atmosphere and to...
Altmetrics
Final-revised paper
Preprint