Articles | Volume 22, issue 21
https://doi.org/10.5194/bg-22-6225-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6225-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Respiration rates of marine prokaryotes and implications for the in vivo INT method
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
Kevin Vikström
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
Jonathan D. Todd
School of Biological Sciences, University of East Anglia, Norwich, UK
MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
Stephen J. Giovannoni
Department of Microbiology, Oregon State University, Corvallis, USA
E. Elena García-Martín
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
Ocean BioGeosciences, National Oceanography Centre, Southampton, UK
Robert Utting
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
Carol Robinson
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
Related authors
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Cited articles
Aranguren-Gassis, M., Teira, E., Serret, P., Martínez-García, S., and Fernández, E.: Potential overestimation of bacterial respiration rates in oligotrophic plankton communities, Mar. Ecol. Prog. Ser., 453, 1–10, https://doi.org/10.3354/meps09707, 2012.
Arístegui, J. and Montero, M. F.: The relationship between community respiration and ETS activity in the ocean, J. Plankton Res., 17, 1563–1571, https://doi.org/10.1093/plankt/17.7.1563, 1995.
Baños, I., Montero, M. F., Benavides, M., and Aristegui, J.: INT Toxicity over Natural Bacterial Assemblages from Surface Oligotrophic Waters: Implications for the Assessment of Respiratory Activity, Microb. Ecol., 80, 237–242, https://doi.org/10.1007/s00248-019-01479-4, 2020.
Baumann, L., Baumann, P., Mandel, M., and Allen, R. D.: Taxonomy of Aerobic Marine Eubacteria, J. Bacteriol., 110, 402–429, https://doi.org/10.1128/jb.110.1.402-429.1972, 1972.
Berridge, M. V., Herst, P. M., and Tan, A. S.: Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction, Biotechnol. Annu. Rev., 11, 127–152, https://doi.org/10.1016/S1387-2656(05)11004-7, 2005.
Carini, P., Steindler, L., Beszteri, S., and Giovannoni, S. J.: Nutrient requirements for growth of the extreme oligotroph 'Candidatus Pelagibacter ubique' HTCC1062 on a defined medium, The ISME journal, 7, 592–602, https://doi.org/10.1038/ismej.2012.122, 2013.
Carpenter, J. H.: THE ACCURACY OF THE WINKLER METHOD FOR DISSOLVED OXYGEN ANALYSIS, Limnol. Oceanogr., 10, 135–140, https://doi.org/10.4319/lo.1965.10.1.0135, 1965.
Cermak, N., Becker, J. W., Knudsen, S. M., Chisholm, S. W., Manalis, S. R., and Polz, M. F.: Direct single-cell biomass estimates for marine bacteria via Archimedes' principle, The ISME journal, 11, 825–828, https://doi.org/10.1038/ismej.2016.161, 2017.
Chan, L. K., Newton, R. J., Sharma, S., Smith, C. B., Rayapati, P., Limardo, A. J., Meile, C., and Moran, M. A.: Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium, Front. Microbiol., 3, 159, https://doi.org/10.3389/fmicb.2012.00159, 2012.
Christie-Oleza, J. A., Scanlan, D. J., and Armengaud, J.: ”You produce while I clean up”, a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions, Proteomics, 15, 3454–3462, https://doi.org/10.1002/pmic.201400562, 2015.
Cramer, W. A., Zhang, H., Yan, J., Kurisu, G., and Smith, J. L.: Transmembrane traffic in the cytochrome b6f complex, Annu. Rev. Biochem., 75, 769–790, https://doi.org/10.1146/annurev.biochem.75.103004.142756, 2006.
Domínguez-Martín, M. A., López-Lozano, A., Melero-Rubio, Y., Gómez-Baena, G., Jiménez-Estrada, J. A., Kukil, K., Diez, J., and García-Fernández, J. M.: Marine Synechococcus sp. Strain WH7803 Shows Specific Adaptative Responses to Assimilate Nanomolar Concentrations of Nitrate, Microbiology Spectrum, 10, e00187–00122, https://doi.org/10.1128/spectrum.00187-22, 2022.
Dunn, A. K.: Alternative oxidase in bacteria, Biochim. Biophys. Acta, 1864, https://doi.org/10.1016/j.bbabio.2022.148929, 2023.
Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C. S., Vrugt, J. A., and Martiny, A. C.: Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus, Proceedings of the National Academy of Sciences, 110, 9824–9829, https://doi.org/10.1073/pnas.1307701110, 2013.
García-Martín, E. E., Aranguren-Gassis, M., Hartmann, M., Zubkov, M. V., and Serret, P.: Contribution of bacterial respiration to plankton respiration from 50° N to 44° S in the Atlantic Ocean, Prog. Oceanogr., 158, 99–108, https://doi.org/10.1016/j.pocean.2016.11.006, 2017.
García-Martín, E. E., Aranguren-Gassis, M., Karl, D. M., Martínez-García, S., Robinson, C., Serret, P., and Teira, E.: Validation of the in vivo Iodo-Nitro-Tetrazolium (INT) Salt Reduction Method as a Proxy for Plankton Respiration, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00220, 2019a.
García-Martín, E. E., Daniels, C. J., Davidson, K., Davis, C. E., Mahaffey, C., Mayers, K. M. J., McNeill, S., Poulton, A. J., Purdie, D. A., Tarran, G. A., and Robinson, C.: Seasonal changes in plankton respiration and bacterial metabolism in a temperate shelf sea, Prog. Oceanogr., 177, https://doi.org/10.1016/j.pocean.2017.12.002, 2019b.
García-Martín, E. E., Seguro, I., and Robinson, C.: INT reduction is a valid proxy for eukaryotic plankton respiration despite the inherent toxicity of INT and differences in cell wall structure, PloS one, 14, e0225954, https://doi.org/10.1371/journal.pone.0225954, 2019c.
Gasol, J. M. and Arístegui, J.: Cytometric evidence reconciling the toxicity and usefulness of CTC as a marker of bacterial activity, Aquat. Microb. Ecol., 46, 71–83, 2007.
Giovannoni, S., Chan, F., Davis, E., Deutsch, C., and Wolf, S.: Biochemical Barriers on the Path to Ocean Anoxia?, mBio, 12, e0133221, https://doi.org/10.1128/mBio.01332-21, 2021.
Giovannoni, S. J.: SAR11 Bacteria: The Most Abundant Plankton in the Oceans, Annual review of marine science, 9, 231–255, https://doi.org/10.1146/annurev-marine-010814-015934, 2017.
Gomez-Pereira, P. R., Hartmann, M., Grob, C., Tarran, G. A., Martin, A. P., Fuchs, B. M., Scanlan, D. J., and Zubkov, M. V.: Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre, The ISME journal, 7, 603–614, https://doi.org/10.1038/ismej.2012.126, 2013.
Hayaishi, O.: Oxygenases, in: Encyclopedia of Biological Chemistry, Elsevier, 371–374, https://doi.org/10.1016/b978-0-12-378630-2.00127-4, 2013.
Henson, S., Baker, C. A., Halloran, P., McQuatters-Gollop, A., Painter, S., Planchat, A., and Tagliabue, A.: Knowledge Gaps in Quantifying the Climate Change Response of Biological Storage of Carbon in the Ocean, Earth's Future, 12, https://doi.org/10.1029/2023ef004375, 2024.
Hernández-León, S. and Gómez, M.: Factors affecting the respiration/ETS ratio in marine zooplankton, J. Plankton Res., 18, 239–255, https://doi.org/10.1093/plankt/18.2.239, 1996.
Kaur, A., Hernandez-Fernaud, J. R., Aguilo-Ferretjans, M. D. M., Wellington, E. M., and Christie-Oleza, J. A.: 100 Days of marine Synechococcus-Ruegeria pomeroyi interaction: A detailed analysis of the exoproteome, Environ. Microbiol., 20, 785–799, https://doi.org/10.1111/1462-2920.14012, 2018.
Kitidis, V., Tilstone, G. H., Serret, P., Smyth, T. J., Torres, R., and Robinson, C.: Oxygen photolysis in the Mauritanian upwelling: Implications for net community production, Limnol. Oceanogr., 59, 299–310, https://doi.org/10.4319/lo.2014.59.2.0299, 2014.
Koch, A. L.: Oligotrophs versus copiotrophs, Bioessays, 23, 657–661, https://doi.org/10.1002/bies.1091, 2001.
Kubo, T., Ohtani, E., Kondo, T., Kato, T., Toma, M., Hosoya, T., Sano, A., Kikegawa, T., and Nagase, T.: Metastable garnet in oceanic crust at the top of the lower mantle, Nature, 420, 803–806, https://doi.org/10.1038/nature01281, 2002.
Langdon, C.: Determination of Dissolved Oxygen in Seawater By Winkler Titration using Amperometric Technique, in: The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines, Version 1, edited by: Hood, E. M., Sabine, C. L., and Sloyan, B. M., 18 pp., IOCCP Report Number 14, ICPO Publication Series Number 134, https://doi.org/10.25607/OBP-1350, 2010.
Lea-Smith, D. J., Summerfield, T. C., Ducat, D. C., Lu, X., McCormick, A. J., and Purton, S.: Editorial: Exploring the Growing Role of Cyanobacteria in Industrial Biotechnology and Sustainability, Front. Microbiol., 12, 725128, https://doi.org/10.3389/fmicb.2021.725128, 2021.
Liu, J., Liu, J., Zhang, S. H., Liang, J., Lin, H., Song, D., Yang, G. P., Todd, J. D., and Zhang, X. H.: Novel Insights Into Bacterial Dimethylsulfoniopropionate Catabolism in the East China Sea, Front. Microbiol., 9, 3206, https://doi.org/10.3389/fmicb.2018.03206, 2018.
Maldonado, F., Packard, T. T., and Gómez, M.: Understanding tetrazolium reduction and the importance of substrates in measuring respiratory electron transport activity, J. Exp. Mar. Biol. Ecol., 434–435, 110–118, https://doi.org/10.1016/j.jembe.2012.08.010, 2012.
Martínez-García, S.: Microbial respiration in the mesopelagic zone at Station ALOHA, Limnol. Oceanogr., 62, 320–333, https://doi.org/10.1002/lno.10397, 2016.
Martínez-García, S. and Karl, D. M.: Microbial respiration in the euphotic zone at Station ALOHA, Limnol. Oceanogr., 60, 1039–1050, https://doi.org/10.1002/lno.10072, 2015.
Martínez-García, S., Fernández, E., Aranguren-Gassis, M., and Teira, E.: In vivo electron transport system activity: a method to estimate respiration in natural marine microbial planktonic communities, Limnol. Oceanogr. Methods, 7, 459–469, doi.org/10.4319/lom.2009.7.459, 2009.
Martínez-García, S., Fernández, E., del Valle, D. A., Karl, D. M., and Teira, E.: Experimental assessment of marine bacterial respiration, Aquat. Microb. Ecol., 70, 189–205, https://doi.org/10.3354/ame01644, 2013.
Mayilraj, S., Suresh, K., Schumann, P., Kroppenstedt, R. M., and Saini, H. S.: Agrococcus lahaulensis sp. nov., isolated from a cold desert of the Indian Himalayas, Int. J. Syst. Evol. Microbiol., 56, 1807–1810, https://doi.org/10.1099/ijs.0.64247-0, 2006.
Mella-Flores, D., Six, C., Ratin, M., Partensky, F., Boutte, C., Le Corguille, G., Marie, D., Blot, N., Gourvil, P., Kolowrat, C., and Garczarek, L.: Prochlorococcus and Synechococcus have Evolved Different Adaptive Mechanisms to Cope with Light and UV Stress, Front Microbiol, 3, 285, https://doi.org/10.3389/fmicb.2012.00285, 2012.
Mitchell, P.: Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism, Nature, 191, 144–148, https://doi.org/10.1038/191144a0, 1961.
Moore, L. R., Coe, A., Zinser, E. R., Saito, M. A., Sullivan, M. B., Lindell, D., Frois-Moniz, K., Waterbury, J., and Chisholm, S. W.: Culturing the marine cyanobacterium Prochlorococcus, Limnol. Oceanogr. Methods, 5, 353–362, doi.org/10.4319/lom.2007.5.353, 2007.
Morris, R. M., Rappé, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., Carlson, C. A., and Giovannoni, S. J.: SAR11 clade dominates ocean surface bacterioplankton communities, Nature, 420, 806–810, https://doi.org/10.1038/nature01240, 2002.
Nikaido, H.: Molecular basis of bacterial outer membrane permeability revisited, Microbiol. Mol. Biol. Rev., 67, 593–656, https://doi.org/10.1128/mmbr.67.4.593-656.2003, 2003.
Packard, T. T.: The measurement of respiratory electron-transport activity in marine phytoplankton, J. Mar. Res., 3, 235–244, 1971.
Packard, T. T.: Measurements of electron transport activity of microplankton, Advance Aquatic Microbiology, 3, 207–261, 1985.
Ribeiro, I., Antunes, J. T., Alexandrino, D. A. M., Tomasino, M. P., Almeida, E., Hilário, A., Urbatzka, R., Leão, P. N., Mucha, A. P., and Carvalho, M. F.: Actinobacteria from Arctic and Atlantic deep-sea sediments-Biodiversity and bioactive potential, Front Microbiol, 14, 1158441, https://doi.org/10.3389/fmicb.2023.1158441, 2023.
Rippka, R., Coursin, T., Hess, W., Lichtlé, C., Scanlan, D. J., Palinska, K. A., Iteman, I., Partensky, F., Houmard, J., and Herdman, M.: Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria), Int. J. Syst. Evol. Microbiol., 50, 1833–1847, https://doi.org/10.1099/00207713-50-5-1833, 2000.
Robinson, C.: Heterotrophic Bacterial Respiration, in: Microbial Ecology of the Oceans, edited by: Kirchman, D. L., Wiley Online Library, 299–334, https://doi.org/10.1002/9780470281840.ch9, 2008.
Robinson, C.: Microbial Respiration, the Engine of Ocean Deoxygenation, Frontiers in Marine Science, 5, https://doi.org/10.3389/fmars.2018.00533, 2019.
Robinson, C. and Williams, P. J. l. B.: Plankton net community production and dark respiration in the Arabian Sea during September 1994, Deep Sea Research Part II, 46, 745–765, doi.org/10.1016/S0967-0645(98)00126-X, 1999.
Robinson, C., Serret, P., Tilstone, G., Teira, E., Zubkov, M. V., Rees, A. P., and Woodward, E. M. S.: Plankton respiration in the Eastern Atlantic Ocean, Deep Sea Research Part I, 49, 787–813, doi.org/10.1016/S0967-0637(01)00083-8, 2002.
Robinson, C., Tilstone, G. H., Rees, A. P., Smyth, T. J., Fishwick, J. R., Tarran, G. A., Luz, B., Barkan, E., and David, E.: Comparison of in vitro and in situ plankton production determinations, Aquat. Microb. Ecol., 54, 13–34, https://doi.org/10.3354/ame01250, 2009.
Rocap, G., Larimer, F. W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N. A., Arellano, A., Coleman, M., Hauser, L., Hess, W. R., Johnson, Z. I., Land, M., Lindell, D., Post, A. F., Regala, W., Shah, M., Shaw, S. L., Steglich, C., Sullivan, M. B., Ting, C. S., Tolonen, A., Webb, E. A., Zinser, E. R., and Chisholm, S. W.: Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation, Nature, 424, 1042–1047, https://doi.org/10.1038/nature01947, 2003.
Schober, I., Koblitz, J., Sarda Carbasse, J., Ebeling, C., Schmidt, M. L., Podstawka, A., Gupta, R., Ilangovan, V., Chamanara, J., Overmann, J., and Reimer, L. C.: BacDive in 2025: the core database for prokaryotic strain data, Nucleic Acids Res., 53, D748–D756, https://doi.org/10.1093/nar/gkae959, 2025.
Schwalbach, M. S., Tripp, H. J., Steindler, L., Smith, D. P., and Giovannoni, S. J.: The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity, Environ. Microbiol., 12, 490–500, https://doi.org/10.1111/j.1462-2920.2009.02092.x, 2010.
Seguro, I., Robinson, C., and Vikström, K.: Respiration measurements of prokaryoplankton cultures with the INT method and oxygen consumption during laboratory experiments, May 2021–May 2022, NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/2be8f599-592c-5de2-e063-7086abc02acd, 2025.
Serret, P., Robinson, C., Aranguren-Gassis, M., García-Martín, E. E., Gist, N., Kitidis, V., Lozano, J., Stephens, J., Harris, C., and Thomas, R.: Both respiration and photosynthesis determine the scaling of plankton metabolism in the oligotrophic ocean, Nature Communications, 6, 6961, https://doi.org/10.1038/ncomms7961, 2015.
Silhavy, T. J., Kahne, D., and Walker, S.: The bacterial cell envelope, Cold Spring Harb Perspect Biol, 2, a000414, https://doi.org/10.1101/cshperspect.a000414, 2010.
Smith, J. J. and McFeters, G. A.: Mechanisms of INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride), and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli K-12, J. Microbiol. Methods, 29, 161–175, https://doi.org/10.1016/S0167-7012(97)00036-5, 1997.
Sun, J., Rutherford, S. T., Silhavy, T. J., and Huang, K. C.: Physical properties of the bacterial outer membrane, Nat. Rev. Microbiol., 20, 236–248, https://doi.org/10.1038/s41579-021-00638-0, 2022.
Teira, E., Martínez-García, S., Fernández, E., Calvo-Díaz, A., and Morán, X. A. G.: Lagrangian study of microbial plankton respiration in the subtropical North Atlantic Ocean: bacterial contribution and short-term temporal variability, Aquat. Microb. Ecol., 61, 31–43, https://doi.org/10.3354/ame01438, 2010.
Teira, E., Hernando-Morales, V., Fernández, A., Martínez-García, S., Álvarez-Salgado, X. A., Bode, A., and Varela, M. M.: Local differences in phytoplankton-bacterioplankton coupling in the coastal upwelling off Galicia (NW Spain), Mar. Ecol. Prog. Ser., 528, 53–69, https://doi.org/10.3354/meps11228, 2015.
Todd, J. D., Curson, A. R., Kirkwood, M., Sullivan, M. J., Green, R. T., and Johnston, A. W.: DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria, Environ. Microbiol., 13, 427–438, https://doi.org/10.1111/j.1462-2920.2010.02348.x, 2011.
Villegas-Mendoza, J., Cajal-Medrano, R., and Maske, H.: INT (2-(4-Iodophenyl)-3-(4-Nitrophenyl)-5-(Phenyl) Tetrazolium Chloride) Is Toxic to Prokaryote Cells Precluding Its Use with Whole Cells as a Proxy for In Vivo Respiration, Microb. Ecol., 70, 1004–1011, https://doi.org/10.1007/s00248-015-0626-3, 2015.
Villegas-Mendoza, J., Cajal-Medrano, R., and Maske, H.: The Chemical Transformation of the Cellular Toxin INT (2-(4-Iodophenyl)-3-(4-Nitrophenyl)-5-(Phenyl) Tetrazolium Chloride) as an Indicator of Prior Respiratory Activity in Aquatic Bacteria, Int. J. Mol. Sci., 20, 782, https://doi.org/10.3390/ijms20030782, 2019.
Wagner-Dobler, I. and Biebl, H.: Environmental biology of the marine Roseobacter lineage, Annu. Rev. Microbiol., 60, 255–280, https://doi.org/10.1146/annurev.micro.60.080805.142115, 2006.
White, A. E., Giovannoni, S. J., Zhao, Y., Vergin, K., and Carlson, C. A.: Elemental content and stoichiometry of SAR11 chemoheterotrophic marine bacteria, Limnology and Oceanography Letters, 4, 44–51, https://doi.org/10.1002/lol2.10103, 2019.
White, R. A., Gavelis, G., Soles, S. A., Gosselin, E., Slater, G. F., Lim, D. S. S., Leander, B., and Suttle, C. A.: The Complete Genome and Physiological Analysis of the Microbialite-Dwelling Agrococcus pavilionensis sp. nov; Reveals Genetic Promiscuity and Predicted Adaptations to Environmental Stress, Front. Microbiol., 9, 2180, https://doi.org/10.3389/fmicb.2018.02180, 2018.
Wilson, W. H., Carr, N. G., and Mann, N. H.: The Effect of Phosphate Status on the Kinetics of Cyanophage Infection in the Oceanic Cyanobacterium Synechococcus Sp. Wh78031, J. Phycol., 32, 506–516, https://doi.org/10.1111/j.0022-3646.1996.00506.x, 1996.
Short summary
This study is the first to test the iodonitrotetrazolium reduction (INTR) method for respiration in prokaryotes. The method was successfully used with γ-proteobacteria, α-proteobacteria (including SAR11), actinobacteria and cyanobacteria. We show that the current use of a single conversion from INTR to oxygen consumption may not be universally applicable but should be determined for each community. The results provide further confidence in the INT method to determine plankton respiration.
This study is the first to test the iodonitrotetrazolium reduction (INTR) method for respiration...
Altmetrics
Final-revised paper
Preprint