Articles | Volume 22, issue 4
https://doi.org/10.5194/bg-22-959-2025
https://doi.org/10.5194/bg-22-959-2025
Research article
 | 
19 Feb 2025
Research article |  | 19 Feb 2025

Including the invisible: deep depth-integrated chlorophyll estimates from remote sensing may assist in identifying biologically important areas in oligotrophic coastal margins

Renée P. Schoeman, Christine Erbe, and Robert D. McCauley

Data sets

IMOS – Australian National Facility for Ocean Gliders (ANFOG) – delayed mode glider deployments Ocean Gliders Facility, Integrated Marine Observing System (IMOS) https://portal.aodn.org.au/

Download
Short summary
Marine habitat models do not include deep chlorophyll maxima, which may support higher trophic level foraging in (meso-)oligotrophic habitats. We used ocean glider data to show that chlorophyll maxima form off Western Australia in September–April. At least 50 % were biomass maxima, likely supporting local krill growing sufficiently for whale consumption. We suggest including deep chlorophyll maxima in marine habitat models as deep depth-integrated estimates from satellite-derived surface values.
Share
Altmetrics
Final-revised paper
Preprint