Articles | Volume 22, issue 4
https://doi.org/10.5194/bg-22-995-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-995-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Variable inundation across Earth's terrestrial ecosystems
Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
School of the Environment, Washington State University, Pullman, WA, USA
Amy J. Burgin
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
Michelle H. Busch
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
Joshua B. Fisher
Schmid College of Science and Technology, Chapman University, Orange, CA, USA
Joshua Ladau
Arva Intelligence Inc., Houston, TX, USA
University of California, San Francisco, San Francisco, CA, USA
Jenna Abrahamson
Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
Lauren Kinsman-Costello
Biological Sciences Department, Kent State University, Kent, OH, USA
Department of Geosciences, Penn State University, State College, PA, USA
Xingyuan Chen
Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Thibault Datry
EcoFlowS Lab, National Research Institute for Agriculture, Food and Environment (INRAE), Villeurbanne, France
Nate McDowell
Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Corianne Tatariw
Environmental Science Department, Rowan University, Glassboro, NJ, USA
Anna Braswell
Fisheries and Aquatic Sciences Department, University of Florida, Gainesville, FL, USA
Jillian M. Deines
Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Julia A. Guimond
Department of Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Peter Regier
Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Kenton Rod
Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Edward K. P. Bam
International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir, Morocco
Etienne Fluet-Chouinard
Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Inke Forbrich
The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
Department of Environmental Sciences, The University of Toledo, Toledo, OH, USA
Kristin L. Jaeger
Washington Water Science Center, US Geological Survey, Tacoma, WA, USA
Teri O'Meara
Biological and Environmental Systems Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Tim Scheibe
Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Erin Seybold
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
Jon N. Sweetman
Department of Ecosystem Science and Management, Penn State University, State College, PA, USA
Jianqiu Zheng
Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Daniel C. Allen
Department of Ecosystem Science and Management, Penn State University, State College, PA, USA
Elizabeth Herndon
Biological and Environmental Systems Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Beth A. Middleton
Wetland and Aquatic Research Center, US Geological Survey, Lafayette, LA, USA
Scott Painter
Biological and Environmental Systems Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Kevin Roche
Department of Civil Engineering, Boise State University, Boise, ID, USA
Julianne Scamardo
Department of Watershed Sciences, Utah State University, Logan, UT, USA
Ross Vander Vorste
Department of Biology, University of Wisconsin–La Crosse, La Crosse, WI, USA
Kristin Boye
SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
Ellen Wohl
Geosciences Department, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA
Margaret Zimmer
Department of Soil and Environmental Sciences, University of Wisconsin–Madison, Madison, WI, USA
Kelly Hondula
Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
Maggi Laan
Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Anna Marshall
Geosciences Department, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA
Kaizad F. Patel
Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
Related authors
Maggi M. Laan, Stephanie G. Fulton, Vanessa A. Garayburu-Caruso, Morgan E. Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Amy E. Goldman, Samantha Grieger, Robert O. Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin L. M. Zionce, Sophia A. McKever, Allison Myers-Pigg, Opal Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1109, https://doi.org/10.5194/egusphere-2025-1109, 2025
Short summary
Short summary
Respiration is a process that combines carbon and oxygen to generate energy for living organisms. Within a river, respiration in sediments and water have variable contributions to respiration of the whole river system. Contrary to conventional wisdom, we found that water column respiration did not increase systematically moving from small streams to big rivers. Instead, it was locally influenced by temperature, nutrients and suspended solids.
This article is included in the Encyclopedia of Geosciences
Robert E. Danczak, Amy E. Goldman, Mikayla A. Borton, Rosalie K. Chu, Jason G. Toyoda, Vanessa A. Garayburu-Caruso, Emily B. Graham, Joseph W. Morad, Lupita Renteria, Jacqueline R. Hager, Shai Arnon, Scott Brooks, Edo Bar-Zeev, Michael Jones, Nikki Jones, Jorg Lewandowski, Christof Meile, Birgit M. Muller, John Schalles, Hanna Schulz, Adam Ward, and James C. Stegen
EGUsphere, https://doi.org/10.1101/2024.01.10.575030, https://doi.org/10.1101/2024.01.10.575030, 2025
Short summary
Short summary
As dissolved organic matter (DOM) is transported from land to the ocean through rivers, it interacts with the environment and some is converted to CO2. We used high-resolution carbon analysis to show that DOM from seven rivers exhibited ecological patterns particular to the corresponding river. These results indicate that local processes play an outsized role in shaping DOM. By understanding these interactions across environments, we can predict DOM across spatial scales or under perturbations.
This article is included in the Encyclopedia of Geosciences
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
This article is included in the Encyclopedia of Geosciences
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
This article is included in the Encyclopedia of Geosciences
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
This article is included in the Encyclopedia of Geosciences
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
This article is included in the Encyclopedia of Geosciences
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
This article is included in the Encyclopedia of Geosciences
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
This article is included in the Encyclopedia of Geosciences
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data, 17, 2985–3008, https://doi.org/10.5194/essd-17-2985-2025, https://doi.org/10.5194/essd-17-2985-2025, 2025
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the Global Inundation Extent from Multi-Satellites-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25° × 0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
This article is included in the Encyclopedia of Geosciences
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
This article is included in the Encyclopedia of Geosciences
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
Biogeosciences, 22, 2225–2238, https://doi.org/10.5194/bg-22-2225-2025, https://doi.org/10.5194/bg-22-2225-2025, 2025
Short summary
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River basin in 2015. The carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland and a relatively major role in the resilience of forest and savanna.
This article is included in the Encyclopedia of Geosciences
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
This article is included in the Encyclopedia of Geosciences
Kristin Jones, Lenaïg G. Hemery, Nicholas D. Ward, Peter J. Regier, Mallory C. Ringham, and Matthew D. Eisaman
Biogeosciences, 22, 1615–1630, https://doi.org/10.5194/bg-22-1615-2025, https://doi.org/10.5194/bg-22-1615-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement is a marine carbon dioxide removal method that aims to mitigate the effects of climate change. This method causes localized increases in ocean pH, but the biological impacts of such changes are not well known. Our study investigated the response of two nearshore invertebrate species to increased pH and found the sea hare to be sensitive to pH changes, whereas the isopod was more resilient. Understanding interactions with biology is important as this field expands.
This article is included in the Encyclopedia of Geosciences
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
This article is included in the Encyclopedia of Geosciences
Maggi M. Laan, Stephanie G. Fulton, Vanessa A. Garayburu-Caruso, Morgan E. Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Amy E. Goldman, Samantha Grieger, Robert O. Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin L. M. Zionce, Sophia A. McKever, Allison Myers-Pigg, Opal Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1109, https://doi.org/10.5194/egusphere-2025-1109, 2025
Short summary
Short summary
Respiration is a process that combines carbon and oxygen to generate energy for living organisms. Within a river, respiration in sediments and water have variable contributions to respiration of the whole river system. Contrary to conventional wisdom, we found that water column respiration did not increase systematically moving from small streams to big rivers. Instead, it was locally influenced by temperature, nutrients and suspended solids.
This article is included in the Encyclopedia of Geosciences
Kachinga Silwimba, Alejandro N. Flores, Irene Cionni, Sharon A. Billings, Pamela L. Sullivan, Hoori Ajami, Daniel R. Hirmas, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-713, https://doi.org/10.5194/egusphere-2025-713, 2025
Short summary
Short summary
This study evaluates the influence of soil hydraulic parameterizations on soil moisture simulations in CLM5 across the CONUS (1980–2010) using Empirical Orthogonal Function (EOF) analysis. Results reveal significant regional discrepancies, particularly in the Great Plains, where parameter uncertainty drives biases in soil moisture variability. Comparisons with ERA5-Land highlight seasonal mismatches, underscoring the need for improved soil parameterization to enhance land surface model accuracy.
This article is included in the Encyclopedia of Geosciences
Lena Wang, Sharon Billings, Li Li, Daniel Hirmas, Keira Johnson, Devon Kerins, Julio Pachon, Curtis Beutler, Karla Jarecke, Vaishnavi Varikuti, Micah Unruh, Hoori Ajami, Holly Barnard, Alejandro Flores, Kenneth Williams, and Pamela Sullivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-70, https://doi.org/10.5194/egusphere-2025-70, 2025
Short summary
Short summary
Our study looked at how different forest types and conditions affected soil microbes, and soil carbon and stability. Aspen organic matter led to higher microbial activity, smaller soil aggregates, and more stable soil carbon, possibly reducing dissolved organic carbon movement from hillslopes to streams. This shows the importance of models like the Microbial Efficiency – Matrix Stabilization framework for predicting CO2 release, soil carbon stability, and carbon movement.
This article is included in the Encyclopedia of Geosciences
Robert E. Danczak, Amy E. Goldman, Mikayla A. Borton, Rosalie K. Chu, Jason G. Toyoda, Vanessa A. Garayburu-Caruso, Emily B. Graham, Joseph W. Morad, Lupita Renteria, Jacqueline R. Hager, Shai Arnon, Scott Brooks, Edo Bar-Zeev, Michael Jones, Nikki Jones, Jorg Lewandowski, Christof Meile, Birgit M. Muller, John Schalles, Hanna Schulz, Adam Ward, and James C. Stegen
EGUsphere, https://doi.org/10.1101/2024.01.10.575030, https://doi.org/10.1101/2024.01.10.575030, 2025
Short summary
Short summary
As dissolved organic matter (DOM) is transported from land to the ocean through rivers, it interacts with the environment and some is converted to CO2. We used high-resolution carbon analysis to show that DOM from seven rivers exhibited ecological patterns particular to the corresponding river. These results indicate that local processes play an outsized role in shaping DOM. By understanding these interactions across environments, we can predict DOM across spatial scales or under perturbations.
This article is included in the Encyclopedia of Geosciences
Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg
EGUsphere, https://doi.org/10.5194/egusphere-2025-21, https://doi.org/10.5194/egusphere-2025-21, 2025
Short summary
Short summary
Wildfires impact nutrient cycles on land and in water. We used burning experiments to understand the types of phosphorous (P), an essential nutrient, that might be released to the environment after different types of fires. We found that the amount of P moving through the environment post-fire is dependent on the type of vegetation and degree of burning which may influence when and where this material is processed or stored.
This article is included in the Encyclopedia of Geosciences
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
This article is included in the Encyclopedia of Geosciences
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
This article is included in the Encyclopedia of Geosciences
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340, https://doi.org/10.5194/hess-2024-340, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We explore tile drainage’ impacts on the integrated hydrology-biogeochemistry-plant system, using ecosys with soil oxygen and microbe dynamics. We found that tile drainage lowers soil water content and improves soil oxygen levels, which helps crops grow better, especially during wet springs, and the developed root system also helps mitigate drought stress on dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
This article is included in the Encyclopedia of Geosciences
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
This article is included in the Encyclopedia of Geosciences
Alexandra Hamm, Erik Schytt Mannerfelt, Aaron A. Mohammed, Scott L. Painter, Ethan T. Coon, and Andrew Frampton
EGUsphere, https://doi.org/10.5194/egusphere-2024-1606, https://doi.org/10.5194/egusphere-2024-1606, 2024
Short summary
Short summary
The fate of thawing permafrost carbon is essential to our understanding of the permafrost-climate feedback and projections of future climate. Here, we modeled the transport of carbon in the groundwater within the active layer. We find that carbon transport velocities and potential microbial mineralization rates are strongly dependent on liquid saturation in the seasonally thawed active layer. In a warming climate, the rate at which permafrost thaws determines how fast carbon can be transported.
This article is included in the Encyclopedia of Geosciences
Gary Sterle, Julia Perdrial, Dustin W. Kincaid, Kristen L. Underwood, Donna M. Rizzo, Ijaz Ul Haq, Li Li, Byung Suk Lee, Thomas Adler, Hang Wen, Helena Middleton, and Adrian A. Harpold
Hydrol. Earth Syst. Sci., 28, 611–630, https://doi.org/10.5194/hess-28-611-2024, https://doi.org/10.5194/hess-28-611-2024, 2024
Short summary
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
This article is included in the Encyclopedia of Geosciences
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024, https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Short summary
Climate change can significantly impact river runoff; however, predicting future runoff is challenging. Using historical runoff gauge data to evaluate model performances in runoff simulations for the Mekong River, we quantify future runoff changes in the Mekong River with the best simulation combination. Results suggest a significant increase in the annual runoff, along with varied seasonal distributions, thus heightening the need for adapted water resource management measures.
This article is included in the Encyclopedia of Geosciences
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
This article is included in the Encyclopedia of Geosciences
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
This article is included in the Encyclopedia of Geosciences
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
This article is included in the Encyclopedia of Geosciences
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023, https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
This article is included in the Encyclopedia of Geosciences
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
This article is included in the Encyclopedia of Geosciences
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
This article is included in the Encyclopedia of Geosciences
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
This article is included in the Encyclopedia of Geosciences
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
This article is included in the Encyclopedia of Geosciences
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
This article is included in the Encyclopedia of Geosciences
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
This article is included in the Encyclopedia of Geosciences
Yunxiang Chen, Jie Bao, Yilin Fang, William A. Perkins, Huiying Ren, Xuehang Song, Zhuoran Duan, Zhangshuan Hou, Xiaoliang He, and Timothy D. Scheibe
Geosci. Model Dev., 15, 2917–2947, https://doi.org/10.5194/gmd-15-2917-2022, https://doi.org/10.5194/gmd-15-2917-2022, 2022
Short summary
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
This article is included in the Encyclopedia of Geosciences
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022, https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Short summary
We used a deep learning method called long short-term memory (LSTM) to fill gaps in data collected by hydrologic monitoring networks. LSTM accounted for correlations in space and time and nonlinear trends in data. Compared to a traditional regression-based time-series method, LSTM performed comparably when filling gaps in data with smooth patterns, while it better captured highly dynamic patterns in data. Capturing such dynamics is critical for understanding dynamic complex system behaviors.
This article is included in the Encyclopedia of Geosciences
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
This article is included in the Encyclopedia of Geosciences
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
This article is included in the Encyclopedia of Geosciences
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
This article is included in the Encyclopedia of Geosciences
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Johannes H. Uhl, Stefan Leyk, Caitlin M. McShane, Anna E. Braswell, Dylan S. Connor, and Deborah Balk
Earth Syst. Sci. Data, 13, 119–153, https://doi.org/10.5194/essd-13-119-2021, https://doi.org/10.5194/essd-13-119-2021, 2021
Short summary
Short summary
Fine-grained geospatial data on the spatial distribution of human settlements are scarce prior to the era of remote-sensing-based Earth observation. In this paper, we present datasets derived from a large, novel building stock database, enabling the spatially explicit analysis of 200 years of land development in the United States at an unprecedented spatial and temporal resolution. These datasets greatly facilitate long-term studies of socio-environmental systems in the conterminous USA.
This article is included in the Encyclopedia of Geosciences
Hang Wen, Pamela L. Sullivan, Gwendolyn L. Macpherson, Sharon A. Billings, and Li Li
Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, https://doi.org/10.5194/bg-18-55-2021, 2021
Short summary
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
This article is included in the Encyclopedia of Geosciences
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F. S., Krause, S., Hannah, D. M., Conner, L., Ellison, D., Godsey, S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R. J., Hampton, T., Gu, S., Buhman, M., Sara Sayedi, S., Ursache, O., Chapin, M., Henderson, K. D., and Pinay, G.: Human domination of the global water cycle absent from depictions and perceptions, Nat. Geosci., 12, 533–540, https://doi.org/10.1038/s41561-019-0374-y, 2019.
Acharya, B. S., Bhandari, M., Bandini, F., Pizarro, A., Perks, M., Joshi, D. R., Wang, S., Dogwiler, T., Ray, R. L., Kharel, G., and Sharma, S.: Unmanned aerial vehicles in hydrology and water management: Applications, challenges, and perspectives, Water Resour. Res., 57, e2021WR029925, https://doi.org/10.1029/2021WR029925, 2021.
Adams, R. K. and Spotila, J. A.: The form and function of headwater streams based on field and modeling investigations in the southern Appalachian Mountains, Earth Surf. Proc. Land., 30, 1521–1546, https://doi.org/10.1002/esp.1211, 2005.
Adler, P. B., White, E. P., Lauenroth, W. K., Kaufman, D. M., Rassweiler, A., and Rusak, J. A.: Evidence for a General Species-Time-Area Relationship, Ecology, 86, 2032–2039, https://doi.org/10.1890/05-0067, 2005.
Åhlén, I., Thorslund, J., Hambäck, P., Destouni, G., and Jarsjö, J.: Wetland position in the landscape: Impact on water storage and flood buffering, Ecohydrology, 15, e2458, https://doi.org/10.1002/eco.2458, 2022.
Allen, D. C., Datry, T., Boersma, K. S., Bogan, M. T., Boulton, A. J., Bruno, D., Busch, M. H., Costigan, K. H., Dodds, W. K., Fritz, K. M., Godsey, S. E., Jones, J. B., Kaletova, T., Kampf, S. K., Mims, M. C., Neeson, T. M., Olden, J. D., Pastor, A. V., Poff, N. L., Ruddell, B. L., Ruhi, A., Singer, G., Vezza, P., Ward, A. S., and Zimmer, M.: River ecosystem conceptual models and non-perennial rivers: A critical review, WIREs Water, 7, e1473, https://doi.org/10.1002/wat2.1473, 2020.
Anderson, M. G. and Burt, T. P.: The role of topography in controlling throughflow generation, Earth Surf. Process., 3, 331–344, https://doi.org/10.1002/esp.3290030402, 1978.
Angle, J. C., Morin, T. H., Solden, L. M., Narrowe, A. B., Smith, G. J., Borton, M. A., Rey-Sanchez, C., Daly, R. A., Mirfenderesgi, G., Hoyt, D. W., Riley, W. J., Miller, C. S., Bohrer, G., and Wrighton, K. C.: Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions, Nat. Commun., 8, 1567, https://doi.org/10.1038/s41467-017-01753-4, 2017.
Anon: Scientific Investigations Report, 2015.
Appels, W. M., Bogaart, P. W., and van der Zee, S. E. A. T. M.: Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity, J. Hydrol., 534, 493–504, https://doi.org/10.1016/j.jhydrol.2016.01.021, 2016.
Arce, M. I., Mendoza-Lera, C., Almagro, M., Catalán, N., Romaní, A. M., Martí, E., Gómez, R., Bernal, S., Foulquier, A., Mutz, M., Marcé, R., Zoppini, A., Gionchetta, G., Weigelhofer, G., Del Campo, R., Robinson, C. T., Gilmer, A., Rulik, M., Obrador, B., Shumilova, O., Zlatanović, S., Arnon, S., Baldrian, P., Singer, G., Datry, T., Skoulikidis, N., Tietjen, B., and Von Schiller, D.: A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science, Earth-Sci. Rev., 188, 441–453, https://doi.org/10.1016/j.earscirev.2018.12.001, 2019.
Arias-Real, R., Delgado-Baquerizo, M., Sabater, S., Gutiérrez-Cánovas, C., Valencia, E., Aragón, G., Cantón, Y., Datry, T., Giordani, P., Medina, N. G., de los Ríos, A., Romaní, A. M., Weber, B., and Hurtado, P.: Unfolding the dynamics of ecosystems undergoing alternating wet-dry transitional states, Ecol. Lett., 27, e14488, https://doi.org/10.1111/ele.14488, 2024.
Arim, M., Pinelli, V., Rodríguez-Tricot, L., Ortiz, E., Illarze, M., Fagúndez-Pachón, C., and Borthagaray, A. I.: Chance and necessity in the assembly of plant communities: Stochasticity increases with size, isolation and diversity of temporary ponds, J. Ecol., 111, 1641–1655, https://doi.org/10.1111/1365-2745.14119, 2023.
Arnesen, A. S., Silva, T. S. F., Hess, L. L., Novo, E. M. L. M., Rudorff, C. M., Chapman, B. D., and McDonald, K. C.: Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images, Remote Sens. Environ., 130, 51–61, https://doi.org/10.1016/j.rse.2012.10.035, 2013.
Arnold, W., Salazar, J. Z., Carlino, A., Giuliani, M., and Castelletti, A.: Operations eclipse sequencing in multipurpose dam planning, Earth's Future, 11, e2022EF003186, https://doi.org/10.1029/2022EF003186, 2023.
Arrigo, K. R., Van Dijken, G. L., Cameron, M. A., Van Der Grient, J., Wedding, L. M., Hazen, L., Leape, J., Leonard, G., Merkl, A., Micheli, F., Mills, M. M., Monismith, S., Ouellette, N. T., Zivian, A., Levi, M., and Bailey, R. M.: Synergistic interactions among growing stressors increase risk to an Arctic ecosystem, Nat. Commun., 11, 6255, https://doi.org/10.1038/s41467-020-19899-z, 2020.
Arscott, D. B., Tockner, K., Van Der Nat, D., and Ward, J. V.: Aquatic habitat dynamics along a braided Alpine river ecosystem (Tagliamento River, Northeast Italy), Ecosystems, 5, 0802–0814, https://doi.org/10.1007/s10021-002-0192-7, 2002.
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015.
Bain, M. B., Finn, J. T., and Booke, H. E.: Streamflow regulation and fish community structure, Ecology, 69, 382–392, https://doi.org/10.2307/1940436, 1988.
Bam, E. K. P., Ireson, A. M., Kamp, G., and Hendry, J. M.: Ephemeral ponds: Are they the dominant source of depression-focused groundwater recharge?, Water Resour. Res., 56, e2019WR02664, https://doi.org/10.1029/2019WR026640, 2020.
Banach, A. M., Banach, K., Visser, E. J. W., Stępniewska, Z., Smits, A. J. M., Roelofs, J. G. M., and Lamers, L. P. M.: Effects of summer flooding on floodplain biogeochemistry in Poland; implications for increased flooding frequency, Biogeochemistry, 92, 247–262, https://doi.org/10.1007/s10533-009-9291-2, 2009.
Baptist, M. J., Dankers, P., Cleveringa, J., Sittoni, L., Willemsen, P. W. J. M., van Puijenbroek, M. E. B., de Vries, B. M. L., Leuven, J. R. F. W., Coumou, L., Kramer, H., and Elschot, K.: Salt marsh construction as a nature-based solution in an estuarine social-ecological system, Nature-Based Solutions, 1, 100005, https://doi.org/10.1016/j.nbsj.2021.100005, 2021.
Barczok, M., Smith, C., Di Domenico, N., Kinsman-Costello, L., and Herndon, E.: Variability in soil redox response to seasonal flooding in a vernal pond, Front. Environ. Sci., 11, 1114814, https://doi.org/10.3389/fenvs.2023.1114814, 2023.
Batson, J., Noe, G. B., Hupp, C. R., Krauss, K. W., Rybicki, N. B., and Schenk, E. R.: Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland, J. Geophys. Res.-Biogeo., 120, 77–95, https://doi.org/10.1002/2014JG002817, 2015.
Beckingham, B., Callahan, T., and Vulava, V.: Stormwater Ponds in the Southeastern U.S. Coastal Plain: Hydrogeology, Contaminant Fate, and the Need for a Social-Ecological Framework, Front. Environ. Sci., 7, 1–14, https://doi.org/10.3389/fenvs.2019.00117, 2019.
Belyea, L. R. and Baird, A. J.: Beyond The limits to peat bog growth: cross-scale feedback in peatland development, Ecol. Monogr., 76, 299–322, https://doi.org/10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2, 2006.
Benstead, J. P. and Leigh, D. S.: An expanded role for river networks, Nat. Geosci., 5, 678–679, https://doi.org/10.1038/ngeo1593, 2012.
Bernhardt, E. S., Blaszczak, J. R., Ficken, C. D., Fork, M. L., Kaiser, K. E., and Seybold, E. C.: Control points in ecosystems: Moving beyond the hot spot hot moment concept, Ecosystems, 20, 665–682, https://doi.org/10.1007/s10021-016-0103-y, 2017.
Bernhardt, E. S., Savoy, P., Vlah, M. J., Appling, A. P., Koenig, L. E., Hall, R. O., Arroita, M., Blaszczak, J. R., Carter, A. M., Cohen, M., Harvey, J. W., Heffernan, J. B., Helton, A. M., Hosen, J. D., Kirk, L., McDowell, W. H., Stanley, E. H., Yackulic, C. B., and Grimm, N. B.: Light and flow regimes regulate the metabolism of rivers, P. Natl. Acad. Sci. USA, 119, e2121976119, https://doi.org/10.1073/pnas.2121976119, 2022.
Bertolini, C. and da Mosto, J.: Restoring for the climate: a review of coastal wetland restoration research in the last 30 years, Restor. Ecol., 29, e13438, https://doi.org/10.1111/rec.13438, 2021.
Betson, R. P. and Marius, J. B.: Source areas of storm runoff, Water Resour. Res., 5, 574–582, https://doi.org/10.1029/WR005i003p00574, 1969.
Bettez, N. D. and Groffman, P. M.: Denitrification potential in stormwater control structures and natural riparian zones in an urban landscape, Environ. Sci. Technol., 46, 10909–10917, https://doi.org/10.1021/es301409z, 2012.
Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G., Maraun, D., Mentaschi, L., and Feyen, L.: More meteorological events that drive compound coastal flooding are projected under climate change, Commun. Earth Environ., 1, 47, https://doi.org/10.1038/s43247-020-00044-z, 2020.
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT Mission and its capabilities for land hydrology, Surv. Geophys., 37, 307–337, https://doi.org/10.1007/s10712-015-9346-y, 2016.
Bie, W., Fei, T., Liu, X., Liu, H., and Wu, G.: Small water bodies mapped from Sentinel-2 MSI (MultiSpectral Imager) imagery with higher accuracy, Int. J. Remote Sens., 41, 7912–7930, https://doi.org/10.1080/01431161.2020.1766150, 2020.
Blaurock, K., Garthen, P., Gilfedder, B. S., Fleckenstein, J. H., Peiffer, S., and Hopp, L.: Elucidating sources and pathways of dissolved organic carbon in a small, forested catchment – A qualitative assessment of stream, soil and shallow groundwater, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15785, https://doi.org/10.5194/egusphere-egu21-15785, 2021.
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data, Science, 327, 322–325, https://doi.org/10.1126/science.1175176, 2010.
Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017.
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore pressure, WIREs Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2016.
Bogan, M. T., Chester, E. T., Datry, T., Murphy, A. L., Robson, B. J., Ruhi, A., Stubbington, R., and Whitney, J. E.: Resistance, Resilience, and Community Recovery in Intermittent Rivers and Ephemeral Streams, in: Intermittent Rivers and Ephemeral Streams, Elsevier, 349–376, https://doi.org/10.1016/B978-0-12-803835-2.00013-9, 2017a.
Bogan, M. T., Chester, E. T., Datry, T., Murphy, A. L., Robson, B. J., Ruhi, A., Stubbington, R., and Whitney, J. E.: Resistance, Resilience, and Community Recovery in Intermittent Rivers and Ephemeral Streams, in: Intermittent Rivers and Ephemeral Streams, Elsevier, 349–376, https://doi.org/10.1016/B978-0-12-803835-2.00013-9, 2017b.
Bogard, M. J., Bergamaschi, B. A., Butman, D. E., Anderson, F., Knox, S. H., and Windham-Myers, L.: Hydrologic export is a major component of coastal wetland carbon budgets, Global Biogeochem. Cy., 34, e2019GB006430, https://doi.org/10.1029/2019GB006430, 2020.
Bonada, N., Rieradevall, M., and Prat, N.: Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network, Hydrobiologia, 589, 91–106, https://doi.org/10.1007/s10750-007-0723-5, 2007.
Bonython, C. W. and Mason, B.: The Filling and Drying of Lake Eyre, Geogr. J., 119, 321–330, https://doi.org/10.2307/1790646, 1953.
Borch, T., Kretzchmar, R., Kappler, A., Van Cappellen, P., Ginder-Vogel, M., and Campbell, K.: Biogeochemical redox processes and their impact on contaminant dynamics, Environ. Sci. Technol., 44, 15–23, 2010.
Bornette, G., Amoros, C., Piegay, H., Tachet, J., and Hein, T.: Ecological complexity of wetlands within a river landscape, Biol. Conserv., 85, 35–45, https://doi.org/10.1016/S0006-3207(97)00166-3, 1998.
Bourke, S. A., Shanafield, M., Hedley, P., Chapman, S., and Dogramaci, S.: A hydrological framework for persistent pools along non-perennial rivers, Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023, 2023.
Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P. L., and Stinchcomb, G.: Toward a conceptual model relating chemical reaction fronts to water flow paths in hills, Geomorphology, 277, 100–117, https://doi.org/10.1016/j.geomorph.2016.09.027, 2017.
Braswell, A. E. and Heffernan, J. B.: Coastal wetland distributions: Delineating domains of macroscale drivers and local feedbacks, Ecosystems, 22, 1256–1270, https://doi.org/10.1007/s10021-018-0332-3, 2019.
Braswell, A. E., Leyk, S., Connor, D. S., and Uhl, J. H.: Creeping disaster along the U.S. coastline: Understanding exposure to sea level rise and hurricanes through historical development, PLoS ONE, 17, e0269741, https://doi.org/10.1371/journal.pone.0269741, 2022.
Brazier, R. E., Puttock, A., Graham, H. A., Auster, R. E., Davies, K. H., and Brown, C. M. L.: Beaver: Nature's ecosystem engineers, WIREs Water, 8, e1494, https://doi.org/10.1002/wat2.1494, 2021.
Brendonck, L., Pinceel, T., and Ortells, R.: Dormancy and dispersal as mediators of zooplankton population and community dynamics along a hydrological disturbance gradient in inland temporary pools, Hydrobiologia, 796, 201–222, https://doi.org/10.1007/s10750-016-3006-1, 2017.
Brinson, M.: A Hydrogeomorphic classification for wetlands, U.S. Army Corps of Engineers, Washington, DC, Technical report WRP-DE-4, NSN 7540-01-280-5500, 1993.
Brooks, R. T.: Weather-related effects on woodland vernal pool hydrology and hydroperiod, Wetlands, 24, 104–114, https://doi.org/10.1672/0277-5212(2004)024[0104:WEOWVP]2.0.CO;2, 2004.
Burt, T. P. and Swank, W. T.: Hursh CR and Brater EF (1941) Separating storm-hydrographs from small drainage-areas into surface- and subsurface-flow. Transactions, American Geophysical Union 22: 863–871, Progress in Physical Geography: Earth and Environment, 34, 719–726, https://doi.org/10.1177/0309133310377040, 2010.
Busch, M. H., Costigan, K. H., Fritz, K. M., Datry, T., Krabbenhoft, C. A., Hammond, J. C., Zimmer, M., Olden, J. D., Burrows, R. M., Dodds, W. K., Boersma, K. S., Shanafield, M., Kampf, S. K., Mims, M. C., Bogan, M. T., Ward, A. S., Perez Rocha, M., Godsey, S., Allen, G. H., Blaszczak, J. R., Jones, C. N., and Allen, D. C.: What's in a name? Patterns, trends, and suggestions for defining non-perennial rivers and streams, Water, 12, 1980, https://doi.org/10.3390/w12071980, 2020.
Buszka, T. T. and Reeves, D. M.: Pathways and timescales associated with nitrogen transport from septic systems in coastal aquifers intersected by canals, Hydrogeol. J., 29, 1953–1964, https://doi.org/10.1007/s10040-021-02362-8, 2021.
Calhoun, A. J. K., Mushet, D. M., Bell, K. P., Boix, D., Fitzsimons, J. A., and Isselin-Nondedeu, F.: Temporary wetlands: challenges and solutions to conserving a “disappearing” ecosystem, Biol. Conserv., 211, 3–11, https://doi.org/10.1016/j.biocon.2016.11.024, 2017.
Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A., and Kurylyk, B. L.: Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: A review, Water Resour. Res., 58, e2022WR032614, https://doi.org/10.1029/2022WR032614, 2022.
Capps, K. A., Rancatti, R., Tomczyk, N., Parr, T. B., Calhoun, A. J. K., and Hunter, M.: Biogeochemical hotspots in forested landscapes: The role of vernal pools in denitrification and organic matter processing, Ecosystems, 17, 1455–1468, https://doi.org/10.1007/s10021-014-9807-z, 2014.
Casanova, M. T. and Brock, M. A.: How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?, Plant Ecol., 147, 237–250, https://doi.org/10.1023/A:1009875226637, 2000.
Castaldelli, G., Soana, E., Racchetti, E., Vincenzi, F., Fano, E. A., and Bartoli, M.: Vegetated canals mitigate nitrogen surplus in agricultural watersheds, Agr. Ecosyst. Environ., 212, 253–262, https://doi.org/10.1016/j.agee.2015.07.009, 2015.
Castañeda-Moya, E., Rivera-Monroy, V. H., Chambers, R. M., Zhao, X., Lamb-Wotton, L., Gorsky, A., Gaiser, E. E., Troxler, T. G., Kominoski, J. S., and Hiatt, M.: Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA), P. Natl. Acad. Sci. USA, 117, 4831–4841, https://doi.org/10.1073/pnas.1908597117, 2020.
Cawley, K. M., Yamashita, Y., Maie, N., and Jaffé, R.: Using optical properties to quantify fringe mangrove inputs to the dissolved organic matter (DOM) pool in a subtropical estuary, Estuar. Coast., 37, 399–410, https://doi.org/10.1007/s12237-013-9681-5, 2014.
Celi, J. E. and Hamilton, S. K.: Measuring Floodplain Inundation Using Diel Amplitude of Temperature, Sensors, 20, 6189, https://doi.org/10.3390/s20216189, 2020.
Chambers, L. G., Steinmuller, H. E., and Breithaupt, J. L.: Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss, Ecology, 100, e02720, https://doi.org/10.1002/ecy.2720, 2019.
Chapin, T. P., Todd, A. S., and Zeigler, M. P.: Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring, Water Resour. Res., 50, 6542–6548, https://doi.org/10.1002/2013WR015158, 2014.
Chen, B. and Wise, D. H.: Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web, Ecology, 80, 761–772, https://doi.org/10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2, 1999.
Cheng, F. Y., Park, J., Kumar, M., and Basu, N. B.: Disconnectivity matters: the outsized role of small ephemeral wetlands in landscape-scale nutrient retention, Environ. Res. Lett., 18, 024018, https://doi.org/10.1088/1748-9326/acab17, 2023.
Choularton, T. W. and Perry, S. J.: A model of the orographic enhancement of snowfall by the seeder-feeder mechanism, Q. J. Roy. Meteor. Soc., 112, 335–345, https://doi.org/10.1002/qj.49711247204, 1986.
Clark, K. E., Torres, M. A., West, A. J., Hilton, R. G., New, M., Horwath, A. B., Fisher, J. B., Rapp, J. M., Robles Caceres, A., and Malhi, Y.: The hydrological regime of a forested tropical Andean catchment, Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, 2014.
Clementson, L. A., Richardson, A. J., Rochester, W. A., Oubelkheir, K., Liu, B., D'Sa, E. J., Gusmão, L. F. M., Ajani, P., Schroeder, T., Ford, P. W., Burford, M. A., Saeck, E., and Steven, A. D. L.: Effect of a once in 100-year flood on a subtropical coastal phytoplankton community, Front. Mar. Sci., 8, 580516, https://doi.org/10.3389/fmars.2021.580516, 2021.
Clifford, C. and Heffernan, J.: Artificial aquatic ecosystems, Water, 10, 1096, https://doi.org/10.3390/w10081096, 2018.
Clifford, C. C. and Heffernan, J. B.: North Carolina coastal plain ditch types support distinct hydrophytic communities, Wetlands, 43, 56, https://doi.org/10.1007/s13157-023-01703-5, 2023.
Colbert, A. J. and Soden, B. J.: Climatological variations in North Atlantic tropical cyclone tracks, J. Climate, 25, 657–673, https://doi.org/10.1175/JCLI-D-11-00034.1, 2012.
Coles, A. E., McConkey, B. G., and McDonnell, J. J.: Climate change impacts on hillslope runoff on the northern Great Plains, 1962–2013, J. Hydrol., 550, 538–548, https://doi.org/10.1016/j.jhydrol.2017.05.023, 2017.
Colmer, T. D.: Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots: Gas transport in plants, Plant Cell Environ., 26, 17–36, https://doi.org/10.1046/j.1365-3040.2003.00846.x, 2003.
Connolly, R. M.: Differences in trophodynamics of commercially important fish between artificial waterways and natural coastal wetlands, Estuar. Coast. Shelf Sci., 58, 929–936, https://doi.org/10.1016/j.ecss.2003.06.003, 2003.
Cooley, S., Smith, L., Stepan, L., and Mascaro, J.: Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery, Remote Sens., 9, 1306, https://doi.org/10.3390/rs9121306, 2017.
Coon, E. T., Moulton, J. D., Kikinzon, E., Berndt, M., Manzini, G., Garimella, R., Lipnikov, K., and Painter, S. L.: Coupling surface flow and subsurface flow in complex soil structures using mimetic finite differences, Adv. Water Resour., 144, 103701, https://doi.org/10.1016/j.advwatres.2020.103701, 2020.
Corti, R. and Datry, T.: Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France), Freshwater Sci., 31, 1187–1201, https://doi.org/10.1899/12-017.1, 2012.
Costigan, K. H., Daniels, M. D., and Dodds, W. K.: Fundamental spatial and temporal disconnections in the hydrology of an intermittent prairie headwater network, J. Hydrol., 522, 305–316, https://doi.org/10.1016/j.jhydrol.2014.12.031, 2015.
Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M., and Goebel, P. C.: Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover: Integrating Science to Understand Flow Intermittence, Ecohydrol., 9, 1141–1153, https://doi.org/10.1002/eco.1712, 2016.
Costigan, K. H., Kennard, M. J., Leigh, C., Sauquet, E., Datry, T., and Boulton, A. J.: Flow regimes in intermittent rivers and ephemeral streams, in: Intermittent Rivers and Ephemeral Streams, Elsevier, 51–78, https://doi.org/10.1016/B978-0-12-803835-2.00003-6, 2017.
Covino, T.: Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks, Geomorphology, 277, 133–144, https://doi.org/10.1016/j.geomorph.2016.09.030, 2017.
Cowardin, L. M. and Golet, F. C.: US Fish and Wildlife Service 1979 wetland classification: A review, Vegetatio, 118, 139–152, https://doi.org/10.1007/BF00045196, 1995.
Crook, D. A., Buckle, D. J., Morrongiello, J. R., Allsop, Q. A., Baldwin, W., Saunders, T. M., and Douglas, M. M.: Tracking the resource pulse: Movement responses of fish to dynamic floodplain habitat in a tropical river, J. Anim. Ecol., 89, 795–807, https://doi.org/10.1111/1365-2656.13146, 2020.
Crotty, S. M., Ortals, C., Pettengill, T. M., Shi, L., Olabarrieta, M., Joyce, M. A., Altieri, A. H., Morrison, E., Bianchi, T. S., Craft, C., Bertness, M. D., and Angelini, C.: Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes, P. Natl. Acad. Sci. USA, 117, 17891–17902, https://doi.org/10.1073/pnas.1917869117, 2020.
Crump, B. C., Fine, L. M., Fortunato, C. S., Herfort, L., Needoba, J. A., Murdock, S., and Prahl, F. G.: Quantity and quality of particulate organic matter controls bacterial production in the Columbia River estuary, Limnol. Oceanogr., 62, 2713–2731, https://doi.org/10.1002/lno.10601, 2017.
Cubley, E. S., Cooper, D. J., and Merritt, D. M.: Are riparian vegetation flow response guilds transferable between rivers?, Freshwater Biol., 68, 406–424, https://doi.org/10.1111/fwb.14034, 2023.
Culley, S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R., Giuliani, M., and Castelletti, A.: A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate, Water Resour. Res., 52, 6751–6768, https://doi.org/10.1002/2015WR018253, 2016.
Dang, C., Morrissey, E. M., Neubauer, S. C., and Franklin, R. B.: Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands, Glob. Change Biol., 25, 549–561, https://doi.org/10.1111/gcb.14486, 2019.
Daniel, J. and Rooney, R. C.: Wetland hydroperiod predicts community structure, but not the magnitude of cross-community congruence, Sci. Rep., 11, 429, https://doi.org/10.1038/s41598-020-80027-4, 2021.
Datry, T. and Larned, S. T.: River flow controls ecological processes and invertebrate assemblages in subsurface flowpaths of an ephemeral river reach, Can. J. Fish. Aquat. Sci., 65, 1532–1544, https://doi.org/10.1139/F08-075, 2008.
Datry, T., Foulquier, A., Corti, R., von Schiller, D., Tockner, K., Mendoza-Lera, C., Clément, J. C., Gessner, M. O., Moleón, M., Stubbington, R., Gücker, B., Albariño, R., Allen, D. C., Altermatt, F., Arce, M. I., Arnon, S., Banas, D., Banegas-Medina, A., Beller, E., Blanchette, M. L., Blanco-Libreros, J. F., Blessing, J. J., Boëchat, I. G., Boersma, K. S., Bogan, M. T., Bonada, N., Bond, N. R., Brintrup Barría, K. C., Bruder, A., Burrows, R. M., Cancellario, T., Canhoto, C., Carlson, S. M., Cauvy-Fraunié, S., Cid, N., Danger, M., de Freitas Terra, B., De Girolamo, A. M., de La Barra, E., del Campo, R., Diaz-Villanueva, V. D., Dyer, F., Elosegi, A., Faye, E., Febria, C., Four, B., Gafny, S., Ghate, S. D., Gómez, R., Gómez-Gener, L., Graça, M. a. S., Guareschi, S., Hoppeler, F., Hwan, J. L., Jones, J. I., Kubheka, S., Laini, A., Langhans, S. D., Leigh, C., Little, C. J., Lorenz, S., Marshall, J. C., Martín, E., McIntosh, A. R., Meyer, E. I., Miliša, M., Mlambo, M. C., Morais, M., Moya, N., Negus, P. M., Niyogi, D. K., Papatheodoulou, A., Pardo, I., Pařil, P., Pauls, S. U., Pešić, V., Polášek, M., Robinson, C. T., Rodríguez-Lozano, P., Rolls, R. J., Sánchez-Montoya, M. M., Savić, A., Shumilova, O., Sridhar, K. R., Steward, A. L., Storey, R., Taleb, A., Uzan, A., Vander Vorste, R., Waltham, N. J., Woelfle-Erskine, C., Zak, D., Zarfl, C., and Zoppini, A.: A global analysis of terrestrial plant litter dynamics in non-perennial waterways, Nat. Geosci., 11, 497–503, https://doi.org/10.1038/s41561-018-0134-4, 2018a.
Datry, T., Foulquier, A., Corti, R., Von Schiller, D., Tockner, K., Mendoza-Lera, C., Clément, J. C., Gessner, M. O., Moleón, M., Stubbington, R., Gücker, B., Albariño, R., Allen, D. C., Altermatt, F., Arce, M. I., Arnon, S., Banas, D., Banegas-Medina, A., Beller, E., Blanchette, M. L., Blanco-Libreros, J. F., Blessing, J. J., Boëchat, I. G., Boersma, K. S., Bogan, M. T., Bonada, N., Bond, N. R., Brintrup Barría, K. C., Bruder, A., Burrows, R. M., Cancellario, T., Canhoto, C., Carlson, S. M., Cauvy-Fraunié, S., Cid, N., Danger, M., De Freitas Terra, B., De Girolamo, A. M., De La Barra, E., Del Campo, R., Diaz-Villanueva, V. D., Dyer, F., Elosegi, A., Faye, E., Febria, C., Four, B., Gafny, S., Ghate, S. D., Gómez, R., Gómez-Gener, L., Graça, M. A. S., Guareschi, S., Hoppeler, F., Hwan, J. L., Jones, J. I., Kubheka, S., Laini, A., Langhans, S. D., Leigh, C., Little, C. J., Lorenz, S., Marshall, J. C., Martín, E., McIntosh, A. R., Meyer, E. I., Miliša, M., Mlambo, M. C., Morais, M., Moya, N., Negus, P. M., Niyogi, D. K., Papatheodoulou, A., Pardo, I., Pařil, P., Pauls, S. U., Pešić, V., Polášek, M., Robinson, C. T., Rodríguez-Lozano, P., Rolls, R. J., Sánchez-Montoya, M. M., Savić, A., Shumilova, O., Sridhar, K. R., Steward, A. L., Storey, R., Taleb, A., Uzan, A., Vander Vorste, R., Waltham, N. J., Woelfle-Erskine, C., Zak, D., Zarfl, C., and Zoppini, A.: A global analysis of terrestrial plant litter dynamics in non-perennial waterways, Nat. Geosci., 11, 497–503, https://doi.org/10.1038/s41561-018-0134-4, 2018b.
Datry, T., Boulton, A. J., Bonada, N., Fritz, K., Leigh, C., Sauquet, E., Tockner, K., Hugueny, B., and Dahm, C. N.: Flow intermittence and ecosystem services in rivers of the Anthropocene, J. Appl. Ecol., 55, 353–364, https://doi.org/10.1111/1365-2664.12941, 2018c.
Datry, T., Truchy, A., Olden, J. D., Busch, M. H., Stubbington, R., Dodds, W. K., Zipper, S., Yu, S., Messager, M. L., Tonkin, J. D., Kaiser, K. E., Hammond, J. C., Moody, E. K., Burrows, R. M., Sarremejane, R., DelVecchia, A. G., Fork, M. L., Little, C. J., Walker, R. H., Walters, A. W., and Allen, D.: Causes, responses, and implications of anthropogenic versus natural flow intermittence in river networks, BioScience, 73, 9–22, https://doi.org/10.1093/biosci/biac098, 2023.
Davidson, EriC. A., Belk, E., and Boone, R. D.: Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Glob. Change Biol., 4, 217–227, https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998.
Davidson, N. C., Fluet-Chouinard, E., and Finlayson, C. M.: Global extent and distribution of wetlands: trends and issues, Mar. Freshwater Res., 69, 620–627, https://doi.org/10.1071/MF17019, 2018.
Davidson, T. A., Mackay, A. W., Wolski, P., Mazebedi, R., Murray-Hudson, M., and Todd, M.: Seasonal and spatial hydrological variability drives aquatic biodiversity in a flood-pulsed, sub-tropical wetland, Freshwater Biology, 57, 1253–1265, https://doi.org/10.1111/j.1365-2427.2012.02795.x, 2012.
Davis, C. A., Dvorett, D., and Bidwell, J. R.: Hydrogeomorphic classification and functional assessment, in: Wetland Techniques: Volume 3: Applications and Management, edited by: Anderson, J. T. and Davis, C. A., Springer Netherlands, Dordrecht, 29–68, https://doi.org/10.1007/978-94-007-6907-6_2, 2013.
Day, J. A., Malan, H. L., Malijani, E., and Abegunde, A. P.: Review: Water quality in non-perennial rivers (with erratum), Water SA, 45, 487–500, https://doi.org/10.17159/wsa/2019.v45.i3.6746, 2019.
De Jager, N. R., Thomsen, M., and Yin, Y.: Threshold effects of flood duration on the vegetation and soils of the Upper Mississippi River floodplain, USA, Forest Ecol. Manag., 270, 135–146, https://doi.org/10.1016/j.foreco.2012.01.023, 2012.
De Sassi, C., Lewis, O. T., and Tylianakis, J. M.: Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community, Ecology, 93, 1892–1901, https://doi.org/10.1890/11-1839.1, 2012.
De Vries, M. E., Rodenburg, J., Bado, B. V., Sow, A., Leffelaar, P. A., and Giller, K. E.: Rice production with less irrigation water is possible in a Sahelian environment, Field Crop. Res., 116, 154–164, https://doi.org/10.1016/j.fcr.2009.12.006, 2010.
Dee, M. M. and Tank, J. L.: Inundation time mediates denitrification end products and carbon limitation in constructed floodplains of an agricultural stream, Biogeochemistry, 149, 141–158, https://doi.org/10.1007/s10533-020-00670-x, 2020.
Del Campo, R., Corti, R., and Singer, G.: Flow intermittence alters carbon processing in rivers through chemical diversification of leaf litter, Limnol. Oceanogr., 6, 232–242, https://doi.org/10.1002/lol2.10206, 2021.
Della Rocca, F., Vignoli, L., and Bologna, M. A.: The reproductive biology of Salamandrina terdigitata (Caudata, Salamandridae), Herpetol. J., 15, 273–278, 2005.
DelVecchia, A. G., Shanafield, M., Zimmer, M. A., Busch, M. H., Krabbenhoft, C. A., Stubbington, R., Kaiser, K. E., Burrows, R. M., Hosen, J., Datry, T., Kampf, S. K., Zipper, S. C., Fritz, K., Costigan, K., and Allen, D. C.: Reconceptualizing the hyporheic zone for nonperennial rivers and streams, Freshwater Sci., 41, 167–182, https://doi.org/10.1086/720071, 2022.
Dietze, M. C., Averill, C., Foster, J., and Wheeler, K.: Ecological Forecasting, Princeton University Press, https://doi.org/10.1093/OBO/97801998300600205, 2017.
Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, C. S., Keitt, T. H., Kenney, M. A., Laney, C. M., Larsen, L. G., Loescher, H. W., Lunch, C. K., Pijanowski, B. C., Randerson, J. T., Read, E. K., Tredennick, A. T., Vargas, R., Weathers, K. C., and White, E. P.: Iterative near-term ecological forecasting: Needs, opportunities, and challenges, P. Natl. Acad. Sci. USA, 115, 1424–1432, https://doi.org/10.1073/pnas.1710231115, 2018.
van Dijk, G., Smolders, A. J. P., Loeb, R., Bout, A., Roelofs, J. G. M., and Lamers, L. P. M.: Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry, Biogeochemistry, 126, 71–84, https://doi.org/10.1007/s10533-015-0140-1, 2015.
Dissanayake, P., Brown, J., Wisse, P., and Karunarathna, H.: Effects of storm clustering on beach/dune evolution, Mar. Geol., 370, 63–75, https://doi.org/10.1016/j.margeo.2015.10.010, 2015.
Döll, P. and Schmied, H. M.: How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis, Environ. Res. Lett., 7, 014037, https://doi.org/10.1088/1748-9326/7/1/014037, 2012.
Du, J., Shen, J., Zhang, Y. J., Ye, F., Liu, Z., Wang, Z., Wang, Y. P., Yu, X., Sisson, M., and Wang, H. V.: Tidal response to sea-level rise in different types of estuaries: The importance of length, bathymetry, and geometry, Geophys. Res. Lett., 45, 227–235, https://doi.org/10.1002/2017GL075963, 2018.
Dube, K., Nhamo, G., and Chikodzi, D.: Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa, GeoJournal, 87, 453–468, https://doi.org/10.1007/s10708-021-10460-z, 2021.
Dugdale, S. J., Klaus, J., and Hannah, D. M.: Looking to the Skies: Realising the Combined Potential of Drones and Thermal Infrared Imagery to Advance Hydrological Process Understanding in Headwaters, Water Resour. Res., 58, e2021WR031168, https://doi.org/10.1029/2021WR031168, 2022.
Ekici, A., Lee, H., Lawrence, D. M., Swenson, S. C., and Prigent, C.: Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5, Geosci. Model Dev., 12, 5291–5300, https://doi.org/10.5194/gmd-12-5291-2019, 2019.
Elberling, B., Askaer, L., Jørgensen, C. J., Joensen, H. P., Kühl, M., Glud, R. N., and Lauritsen, F. R.: Linking Soil O2, CO2, and CH4 Concentrations in a Wetland Soil: Implications for CO2 and CH4 Fluxes, Environ. Sci. Technol., 45, 3393–3399, https://doi.org/10.1021/es103540k, 2011.
Elberling, B. B., Kovács, G. M., Hansen, H. F. E., Fensholt, R., Ambus, P., Tong, X., Gominski, D., Mueller, C. W., Poultney, D. M. N., and Oehmcke, S.: High nitrous oxide emissions from temporary flooded depressions within croplands, Commun. Earth Environ., 4, 463, https://doi.org/10.1038/s43247-023-01095-8, 2023.
Ensign, S. H. and Noe, G. B.: Tidal extension and sea-level rise: recommendations for a research agenda, Front. Ecol. Environ., 16, 37–43, https://doi.org/10.1002/fee.1745, 2018.
Eppinga, M. B., Rietkerk, M., Borren, W., Lapshina, E. D., Bleuten, W., and Wassen, M. J.: Regular surface patterning of peatlands: Confronting theory with field data, Ecosystems, 11, 520–536, https://doi.org/10.1007/s10021-008-9138-z, 2008.
Euliss, N. H., LaBaugh, J. W., Fredrickson, L. H., Mushet, D. M., Laubhan, M. K., Swanson, G. A., Winter, T. C., Rosenberry, D. O., and Nelson, R. D.: The wetland continuum: A conceptual framework for interpreting biological studies, Wetlands, 24, 448–458, https://doi.org/10.1672/0277-5212(2004)024[0448:TWCACF]2.0.CO;2, 2004.
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R., Temmerman, S., D'Alpaos, A., Van De Koppel, J., Rybczyk, J. M., Reyes, E., Craft, C., and Clough, J.: Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors, Rev. Geophys., 50, RG1002, https://doi.org/10.1029/2011RG000359, 2012.
Fan, Y. and Miguez-Macho, G.: A simple hydrologic framework for simulating wetlands in climate and earth system models, Clim. Dynam., 37, 253–278, https://doi.org/10.1007/s00382-010-0829-8, 2011.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen, C., Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope hydrology in global change research and earth system modeling, Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D.: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology, J. Hydrol., 537, 45–60, https://doi.org/10.1016/j.jhydrol.2016.03.026, 2016.
Finlayson, C. M. and Van Der Valk, A. G. (Eds.): Classification and Inventory of the World's Wetlands, Dordrecht, https://doi.org/10.1007/978-94-011-0427-2, 1995.
Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B., Cawse-Nicholson, K., Wang, A., Anderson, R. G., Aragon, B., Arain, M. A., Baldocchi, D. D., Baker, J. M., Barral, H., Bernacchi, C. J., Bernhofer, C., Biraud, S. C., Bohrer, G., Brunsell, N., Cappelaere, B., Castro-Contreras, S., Chun, J., Conrad, B. J., Cremonese, E., Demarty, J., Desai, A. R., De Ligne, A., Foltýnová, L., Goulden, M. L., Griffis, T. J., Grünwald, T., Johnson, M. S., Kang, M., Kelbe, D., Kowalska, N., Lim, J., Maïnassara, I., McCabe, M. F., Missik, J. E. C., Mohanty, B. P., Moore, C. E., Morillas, L., Morrison, R., Munger, J. W., Posse, G., Richardson, A. D., Russell, E. S., Ryu, Y., Sanchez-Azofeifa, A., Schmidt, M., Schwartz, E., Sharp, I., Šigut, L., Tang, Y., Hulley, G., Anderson, M., Hain, C., French, A., Wood, E., and Hook, S.: ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the international space station, Water Resour. Res., 56, e2019WR02605, https://doi.org/10.1029/2019WR026058, 2020.
Flick, R. E., Chadwick, D. B., Briscoe, J., and Harper, K. C.: “Flooding” versus “inundation,” Eos, Transactions American Geophysical Union, 93, 365–366, https://doi.org/10.1029/2012EO380009, 2012.
Florencio, M., Fernández-Zamudio, R., Lozano, M., and Díaz-Paniagua, C.: Interannual variation in filling season affects zooplankton diversity in Mediterranean temporary ponds, Hydrobiologia, 847, 1195–1205, https://doi.org/10.1007/s10750-019-04163-3, 2020.
Fortesa, J., Ricci, G. F., García-Comendador, J., Gentile, F., Estrany, J., Sauquet, E., Datry, T., and De Girolamo, A. M.: Analysing hydrological and sediment transport regime in two Mediterranean intermittent rivers, Catena, 196, 104865, https://doi.org/10.1016/j.catena.2020.104865, 2021.
Fournier, R. J., De Mendoza, G., Sarremejane, R., and Ruhi, A.: Isolation controls reestablishment mechanisms and post-drying community structure in an intermittent stream, Ecology, 104, e3911, https://doi.org/10.1002/ecy.3911, 2023.
Fredrickson, L. and Taylor, T. S.: Management of seasonally flooded impoundments for wildlife. Resource Publication 148, U.S. Fish and Wildlife Service, 29 pp., 1982.
Freeze, R. A.: Streamflow generation, Rev. Geophys., 12, 627–647, https://doi.org/10.1029/RG012i004p00627, 1974.
Fryirs, K. and Brierley, G.: Assemblages of geomorphic units: A building block approach to analysis and interpretation of river character, behaviour, condition and recovery, Earth Surf. Proc. Land., 47, 92–108, https://doi.org/10.1002/esp.5264, 2022.
Gallant, A.: The challenges of remote monitoring of wetlands, Remote Sens., 7, 10938–10950, https://doi.org/10.3390/rs70810938, 2015.
Garayburu-Caruso, V. A., Danczak, R. E., Stegen, J. C., Renteria, L., Mccall, M., Goldman, A. E., Chu, R. K., Toyoda, J., Resch, C. T., Torgeson, J. M., Wells, J., Fansler, S., Kumar, S., and Graham, E. B.: Using community science to reveal the global chemogeography of river metabolomes, Metabolites, 10, 518, https://doi.org/10.3390/metabo10120518, 2020.
Gates, J. B., Chittaro, P. M., and Veggerby, K. B.: Standard operating procedures for measuring bulk stable isotope values of nitrogen and carbon in marine biota by isotope ratio mass spectrometry (IRMS), U.S. Department of Commerce, NOAA Processed Report NMFS-NWFSC-PR-2020-04, https://doi.org/10.25923/3MWP-CE02, 2020.
Gendreau, K. L., Buxton, V., Moore, C. E., and Mims, M.: Temperature loggers capture intraregional variation of inundation timing for intermittent ponds, Water Resour. Res., 57, e2021WR029958, https://doi.org/10.1029/2021WR029958, 2021.
Gittman, R. K., Fodrie, F. J., Popowich, A. M., Keller, D. A., Bruno, J. F., Currin, C. A., Peterson, C. H., and Piehler, M. F.: Engineering away our natural defenses: an analysis of shoreline hardening in the US, Front. Ecol. Environ., 13, 301–307, https://doi.org/10.1890/150065, 2015.
Glaser, B., Hopp, L., Partington, D., Brunner, P., Therrien, R., and Klaus, J.: Sources of surface water in space and time: Identification of delivery processes and geographical sources with hydraulic mixing-cell modeling, Water Resour. Res., 57, e2021WR030332, https://doi.org/10.1029/2021WR030332, 2021.
Gleason, J. E. and Rooney, R. C.: Pond permanence is a key determinant of aquatic macroinvertebrate community structure in wetlands, Freshw. Biol., 63, 264–277, https://doi.org/10.1111/fwb.13057, 2018.
Goldman, A. E., Graham, E. B., Crump, A. R., Kennedy, D. W., Romero, E. B., Anderson, C. G., Dana, K. L., Resch, C. T., Fredrickson, J. K., and Stegen, J. C.: Biogeochemical cycling at the aquatic–terrestrial interface is linked to parafluvial hyporheic zone inundation history, Biogeosciences, 14, 4229–4241, https://doi.org/10.5194/bg-14-4229-2017, 2017.
Goldman, A. E., Emani, S. R., Pérez-Angel, L. C., Rodríguez-Ramos, J. A., and Stegen, J. C.: Integrated, coordinated, open, and networked (ICON) science to advance the geosciences: Introduction and synthesis of a special collection of commentary articles, Earth Space Sci., 9, e2021EA002099, https://doi.org/10.1029/2021EA002099, 2022.
Gomez, J. D., Wilson, J. L., and Cardenas, M. B.: Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects, Water Resour. Res., 48, W09533, https://doi.org/10.1029/2012WR012180, 2012.
Gómez-Gener, L., Siebers, A. R., Arce, M. I., Arnon, S., Bernal, S., Bolpagni, R., Datry, T., Gionchetta, G., Grossart, H.-P., Mendoza-Lera, C., Pohl, V., Risse-Buhl, U., Shumilova, O., Tzoraki, O., Von Schiller, D., Weigand, A., Weigelhofer, G., Zak, D., and Zoppini, A.: Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams, Earth-Sci. Rev., 220, 103724, https://doi.org/10.1016/j.earscirev.2021.103724, 2021.
González, E., Sher, A. A., Tabacchi, E., Masip, A., and Poulin, M.: Restoration of riparian vegetation: A global review of implementation and evaluation approaches in the international, peer-reviewed literature, J. Environ. Manage., 158, 85–94, https://doi.org/10.1016/j.jenvman.2015.04.033, 2015.
Guimond, J. A. and Michael, H. A.: Effects of marsh migration on flooding, saltwater intrusion, and crop yield in coastal agricultural land subject to storm surge inundation, Water Res., 57, e2020WR028326, https://doi.org/10.1029/2020WR028326, 2021.
Hale, R. L., Turnbull, L., Earl, S. R., Childers, D. L., and Grimm, N. B.: Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds, Ecosystems, 18, 62–75, https://doi.org/10.1007/s10021-014-9812-2, 2015.
Hamilton, S. K., Sippel, S. J., and Melack, J. M.: Comparison of inundation patterns among major South American floodplains, J. Geophys. Res.-Atmos., 107, LBA 5-1–LBA 5-14, https://doi.org/10.1029/2000JD000306, 2002.
Hammond, J. C., Zimmer, M., Shanafield, M., Kaiser, K., Godsey, S. E., Mims, M. C., Zipper, S. C., Burrows, R. M., Kampf, S. K., Dodds, W., Jones, C. N., Krabbenhoft, C. A., Boersma, K. S., Datry, T., Olden, J. D., Allen, G. H., Price, A. N., Costigan, K., Hale, R., Ward, A. S., and Allen, D. C.: Spatial patterns and drivers of nonperennial flow regimes in the contiguous United States, Geophys. Res. Lett., 48, e2020GL090794, https://doi.org/10.1029/2020GL090794, 2021.
Hanson, P. J., Riggs, J. S., Nettles, W. R., Phillips, J. R., Krassovski, M. B., Hook, L. A., Gu, L., Richardson, A. D., Aubrecht, D. M., Ricciuto, D. M., Warren, J. M., and Barbier, C.: Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere, Biogeosciences, 14, 861–883, https://doi.org/10.5194/bg-14-861-2017, 2017.
Hayashi, M., Van Der Kamp, G., and Rosenberry, D. O.: Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes, Wetlands, 36, 237–254, https://doi.org/10.1007/s13157-016-0797-9, 2016.
Herbert, E. R., Schubauer-Berigan, J., and Craft, C. B.: Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling, Biogeochemistry, 138, 137–154, https://doi.org/10.1007/s10533-018-0436-z, 2018.
Herndon, E. M., Dere, A. L., Sullivan, P. L., Norris, D., Reynolds, B., and Brantley, S. L.: Landscape heterogeneity drives contrasting concentration–discharge relationships in shale headwater catchments, Hydrol. Earth Syst. Sci., 19, 3333–3347, https://doi.org/10.5194/hess-19-3333-2015, 2015.
Herndon, E. M., Steinhoefel, G., Dere, A. L. D., and Sullivan, P. L.: Perennial flow through convergent hillslopes explains chemodynamic solute behavior in a shale headwater catchment, Chem. Geol., 493, 413–425, https://doi.org/10.1016/j.chemgeo.2018.06.019, 2018.
Herzon, I. and Helenius, J.: Agricultural drainage ditches, their biological importance and functioning, Biol. Conserv., 141, 1171–1183, https://doi.org/10.1016/j.biocon.2008.03.005, 2008.
Hess, L. L., Melack, J. M., Affonso, A. G., Barbosa, C., Gastil-Buhl, M., and Novo, E. M. L. M.: Wetlands of the Lowland Amazon Basin: Extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar, Wetlands, 35, 745–756, https://doi.org/10.1007/s13157-015-0666-y, 2015.
Hill, M. J., Hassall, C., Oertli, B., Fahrig, L., Robson, B. J., Biggs, J., Samways, M. J., Usio, N., Takamura, N., Krishnaswamy, J., and Wood, P. J.: New policy directions for global pond conservation, Conserv. Lett., 11, e12447, https://doi.org/10.1111/conl.12447, 2018.
Hill, M. J., Greaves, H. M., Sayer, C. D., Hassall, C., Milin, M., Milner, V. S., Marazzi, L., Hall, R., Harper, L. R., Thornhill, I., Walton, R., Biggs, J., Ewald, N., Law, A., Willby, N., White, J. C., Briers, R. A., Mathers, K. L., Jeffries, M. J., and Wood, P. J.: Pond ecology and conservation: research priorities and knowledge gaps, Ecosphere, 12, e03853, https://doi.org/10.1002/ecs2.3853, 2021.
Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann, A.: Coastal flood damage and adaptation costs under 21st century sea-level rise, P. Natl. Acad. Sci. USA, 111, 3292–3297, https://doi.org/10.1073/pnas.1222469111, 2014.
Hinshaw, S. E., Tatariw, C., Flournoy, N., Kleinhuizen, A., Taylor, C., Sobecky, P. A., and Mortazavi, B.: Vegetation loss decreases salt marsh denitrification capacity: Implications for marsh erosion, Environ. Sci. Technol., 51, 8245–8253, https://doi.org/10.1021/acs.est.7b00618, 2017.
Hladyz, S., Watkins, S. C., Whitworth, K. L., and Baldwin, D. S.: Flows and hypoxic blackwater events in managed ephemeral river channels, J. Hydrol., 401, 117–125, https://doi.org/10.1016/j.jhydrol.2011.02.014, 2011.
Hofmeister, K. L., Eggert, S. L., Palik, B. J., Morley, D., Creighton, E., Rye, M., and Kolka, R. K.: The identification, mapping, and management of seasonal ponds in forests of the Great Lakes Region, Wetlands, 42, 1–23, https://doi.org/10.1007/s13157-021-01526-2, 2022.
Hondula, K. L., Jones, C. N., and Palmer, M. A.: Effects of seasonal inundation on methane fluxes from forested freshwater wetlands, Environ. Res. Lett., 16, 084016, https://doi.org/10.1088/1748-9326/ac1193, 2021a.
Hondula, K. L., DeVries, B., Jones, C. N., and Palmer, M. A.: Effects of using high resolution satellite-based inundation time series to estimate methane fluxes from forested wetlands, Geophys. Res. Lett., 48, e2021GL092556, https://doi.org/10.1029/2021GL092556, 2021b.
Hooley-Underwood, Z. E., Stevens, S. B., Salinas, N. R., and Thompson, K. G.: An intermittent stream supports extensive spawning of large-river native fishes, T. Am. Fish. Soc., 148, 426–441, https://doi.org/10.1002/tafs.10141, 2019.
Hopple, A. M., Pennington, S. C., Megonigal, J. P., Bailey, V., and Bond-Lamberty, B.: Disturbance legacies regulate coastal forest soil stability to changing salinity and inundation: A soil transplant experiment, Soil Biol. Biochem., 169, 108675, https://doi.org/10.1016/j.soilbio.2022.108675, 2022.
Hopple, A. M., Doro, K. O., Bailey, V. L., Bond-Lamberty, B., McDowell, N., Morris, K. A., Myers-Pigg, A., Pennington, S. C., Regier, P., Rich, R., Sengupta, A., Smith, R., Stegen, J., Ward, N. D., Woodard, S. C., and Megonigal, J. P.: Attaining freshwater and estuarine-water soil saturation in an ecosystem-scale coastal flooding experiment, Environ. Monit. Assess., 195, 425, https://doi.org/10.1007/s10661-022-10807-0, 2023.
Horton, R. E.: An approach toward a physical interpretation of infiltration capacity, Soil Sci. Soc. Am. J., 5, 339–417, https://doi.org/10.2136/sssaj1941.036159950005000C0075x, 1940.
Houser, C. and Hamilton, S.: Sensitivity of post-hurricane beach and dune recovery to event frequency, Earth Surf. Proc. Land., 34, 613–628, https://doi.org/10.1002/esp.1730, 2009.
Huang, C., Gascuel-Odoux, C., and Cros-Cayot, S.: Hillslope topographic and hydrologic effects on overland flow and erosion, Catena, 46, 177–188, https://doi.org/10.1016/S0341-8162(01)00165-5, 2002.
Huang, W., Wang, K., Ye, C., Hockaday, W. C., Wang, G., and Hall, S. J.: High carbon losses from oxygen-limited soils challenge biogeochemical theory and model assumptions, Glob. Change Biol., 27, 6166–6180, https://doi.org/10.1111/gcb.15867, 2021.
Hutchinson, G. E.: Introduction to population ecology, Yale University Press, New Haven, CT, USA, ISBN-10 0300021550, 1978.
Hwang, T., Band, L. E., Vose, J. M., and Tague, C.: Ecosystem processes at the watershed scale: Hydrologic vegetation gradient as an indicator for lateral hydrologic connectivity of headwater catchments, Water Resour. Res., 48, W06514, https://doi.org/10.1029/2011WR011301, 2012.
Ivory, S. J., McGlue, M. M., Spera, S., Silva, A., and Bergier, I.: Vegetation, rainfall, and pulsing hydrology in the Pantanal, the world's largest tropical wetland, Environ. Res. Lett., 14, 124017, https://doi.org/10.1088/1748-9326/ab4ffe, 2019.
Jarecke, K. M., Loecke, T. D., and Burgin, A. J.: Coupled soil oxygen and greenhouse gas dynamics under variable hydrology, Soil Biol. Biochem., 95, 164–172, https://doi.org/10.1016/j.soilbio.2015.12.018, 2016.
Jeffries, M.: The spatial and temporal heterogeneity of macrophyte communities in thirty small, temporary ponds over a period of ten years, Ecography, 31, 765–775, https://doi.org/10.1111/j.0906-7590.2008.05487.x, 2008.
Jones, C. N., Evenson, G. R., McLaughlin, D. L., Vanderhoof, M. K., Lang, M. W., McCarty, G. W., Golden, H. E., Lane, C. R., and Alexander, L. C.: Estimating restorable wetland water storage at landscape scales, Hydrol. Process., 32, 305–313, https://doi.org/10.1002/hyp.11405, 2018.
Jones, J.: Improved automated detection of subpixel-scale inundation: Revised dynamic surface water extent (DSWE) partial surface water tests, Remote Sens., 11, 374, https://doi.org/10.3390/rs11040374, 2019.
Junk, W., Bayley, P., and Sparks, R.: The flood pulse concept in river-floodplain systems, in: Proceedings of the International Large River Symposium (LARS), edited by: Dodge, D. P., Canadian Journal of Fisheries and Aquatic Sciences Special Publication 106, NRC research press, Ottawa, 110–127, 1989.
Kampf, S. K., Dwire, K. A., Fairchild, M. P., Dunham, J., Snyder, C. D., Jaeger, K. L., Luce, C. H., Hammond, J. C., Wilson, C., Zimmer, M. A., and Sidell, M.: Managing nonperennial headwater streams in temperate forests of the United States, Forest Ecol. Manag., 497, 119523, https://doi.org/10.1016/j.foreco.2021.119523, 2021.
Kaushal, S. S., Reimer, J. E., Mayer, P. M., Shatkay, R. R., Maas, C. M., Nguyen, W. D., Boger, W. L., Yaculak, A. M., Doody, T. R., Pennino, M. J., Bailey, N. W., Galella, J. G., Weingrad, A., Collison, D. C., Wood, K. L., Haq, S., Newcomer-Johnson, T. A., Duan, S., and Belt, K. T.: Freshwater salinization syndrome alters retention and release of chemical cocktails along flowpaths: From stormwater management to urban streams, Freshwater Sci., 41, 420–441, https://doi.org/10.1086/721469, 2022.
Kirkby, M., Bracken, L., and Reaney, S.: The influence of land use, soils and topography on the delivery of hillslope runoff to channels in SE Spain, Earth Surf. Proc. Land., 27, 1459–1473, https://doi.org/10.1002/esp.441, 2002.
Kirwan, M. L. and Gedan, K. B.: Sea-level driven land conversion and the formation of ghost forests, Nat. Clim. Chang., 9, 450–457, https://doi.org/10.1038/s41558-019-0488-7, 2019.
Kiss, T., Nagy, J., Fehérváry, I., and Vaszkó, C.: (Mis) management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels, Sci. Total Environ., 686, 931–945, https://doi.org/10.1016/j.scitotenv.2019.06.006, 2019.
Kneitel, J. M.: Inundation timing, more than duration, affects the community structure of California vernal pool mesocosms, Hydrobiologia, 732, 71–83, https://doi.org/10.1007/s10750-014-1845-1, 2014.
Kollet, S. J. and Maxwell, R. M.: Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model, Adv. Water Resour., 29, 945–958, https://doi.org/10.1016/j.advwatres.2005.08.006, 2006.
Konapala, G., Mishra, A. K., Wada, Y., and Mann, M. E.: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation, Nat. Commun., 11, 3044, https://doi.org/10.1038/s41467-020-16757-w, 2020.
Koschorreck, M., Downing, A. S., Hejzlar, J., Marcé, R., Laas, A., Arndt, W. G., Keller, P. S., Smolders, A. J. P., van Dijk, G., and Kosten, S.: Hidden treasures: Human-made aquatic ecosystems harbour unexplored opportunities, Ambio, 49, 531–540, https://doi.org/10.1007/s13280-019-01199-6, 2020.
Krabbenhoft, C. A., Allen, G. H., Lin, P., Godsey, S. E., Allen, D. C., Burrows, R. M., DelVecchia, A. G., Fritz, K. M., Shanafield, M., Burgin, A. J., Zimmer, M. A., Datry, T., Dodds, W. K., Jones, C. N., Mims, M. C., Franklin, C., Hammond, J. C., Zipper, S., Ward, A. S., Costigan, K. H., Beck, H. E., and Olden, J. D.: Assessing placement bias of the global river gauge network, Nat. Sustain., 5, 586–592, https://doi.org/10.1038/s41893-022-00873-0, 2022.
Kundel, D., Meyer, S., Birkhofer, H., Fliessbach, A., Mäder, P., Scheu, S., van Kleunen, M., and Birkhofer, K.: Design and manual to construct rainout-shelters for climate shange experiments in agroecosystems, Front. Environ. Sci., 6, 14, https://doi.org/10.3389/fenvs.2018.00014, 2018.
Ladau, J. and Eloe-Fadrosh, E. A.: Spatial, temporal, and phylogenetic scales of microbial ecology, Trends Microbiol., 27, 662–669, https://doi.org/10.1016/j.tim.2019.03.003, 2019.
Lalli, K., Soenen, S., Fisher, J. B., McGlinchy, J., Kleynhans, T., Eon, R., and Moreau, L. M.: VanZyl-1: demonstrating SmallSat measurement capabilities for land surface temperature and evapotranspiration, in: CubeSats and SmallSats for Remote Sensing VI, CubeSats and SmallSats for Remote Sensing VI, San Diego, United States, 8, https://doi.org/10.1117/12.2632565, 2022.
Lane, C. R. and D'Amico, E.: Identification of putative geographically isolated wetlands of the conterminous United States, J. Am. Water Resour. Assoc., 52, 705–722, https://doi.org/10.1111/1752-1688.12421, 2016.
Lane, K., Charles-Guzman, K., Wheeler, K., Abid, Z., Graber, N., and Matte, T.: Health effects of coastal storms and flooding in urban areas: A review and vulnerability assessment, J. Environ. Pub. He., 2013, 913064, https://doi.org/10.1155/2013/913064, 2013.
Laronne, J. B. and Reid, L.: Very high rates of bedload sediment transport by ephemeral desert rivers, Nature, 366, 148–150, https://doi.org/10.1038/366148a0, 1993.
Larsen, L., Aumen, N., Bernhardt, C., Engel, V., Givnish, T., Hagerthey, S., Harvey, J., Leonard, L., McCormick, P., Mcvoy, C., Noe, G., Nungesser, M., Rutchey, K., Sklar, F., Troxler, T., Volin, J., and Willard, D.: Recent and historic drivers of landscape change in the Everglades Ridge, slough, and tree island mosaic, Crit. Rev. Env. Sci. Tec., 41, 344–381, https://doi.org/10.1080/10643389.2010.531219, 2011.
Lei, Y., Liu, C., Zhang, L., and Luo, S.: How smallholder farmers adapt to agricultural drought in a changing climate: A case study in southern China, Land Use Policy, 55, 300–308, https://doi.org/10.1016/j.landusepol.2016.04.012, 2016.
Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E. W., Brantley, S. L., Dietrich, W. E., Mayer, K. U., Steefel, C. I., Valocchi, A., Zachara, J., Kocar, B., Mcintosh, J., Tutolo, B. M., Kumar, M., Sonnenthal, E., Bao, C., and Beisman, J.: Expanding the role of reactive transport models in critical zone processes, Earth-Sci. Rev., 165, 280–301, https://doi.org/10.1016/j.earscirev.2016.09.001, 2017.
Li, L., Sullivan, P. L., Benettin, P., Cirpka, O. A., Bishop, K., Brantley, S. L., Knapp, J. L. A., Meerveld, I., Rinaldo, A., Seibert, J., Wen, H., and Kirchner, J. W.: Toward catchment hydro-biogeochemical theories, WIREs Water, 8, e1495, https://doi.org/10.1002/wat2.1495, 2021.
Li, S., Wang, G., Zhu, C., Lu, J., Ullah, W., Hagan, D. F. T., Kattel, G., and Peng, J.: Attribution of global evapotranspiration trends based on the Budyko framework, Hydrol. Earth Syst. Sci., 26, 3691–3707, https://doi.org/10.5194/hess-26-3691-2022, 2022a.
Li, Z., Gao, S., Chen, M., Gourley, J. J., and Hong, Y.: Spatiotemporal characteristics of US floods: Current status and forecast under a future warmer climate, Earth's Future, 10, e2022EF002700, https://doi.org/10.1029/2022EF002700, 2022b.
Liberato, M. L. R., Pinto, J. G., Trigo, R. M., Ludwig, P., Ordóñez, P., Yuen, D., and Trigo, I. F.: Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean, Nat. Hazards Earth Syst. Sci., 13, 2239–2251, https://doi.org/10.5194/nhess-13-2239-2013, 2013.
Lisenby, P. E., Tooth, S., and Ralph, T. J.: Product vs. process? The role of geomorphology in wetland characterization, Sci. Total Environ., 663, 980–991, https://doi.org/10.1016/j.scitotenv.2019.01.399, 2019.
Lohse, K. A., Brooks, P. D., McIntosh, J. C., Meixner, T., and Huxman, T. E.: Interactions between biogeochemistry and hydrologic systems, Annu. Rev. Env. Resour., 34, 65–96, https://doi.org/10.1146/annurev.environ.33.031207.111141, 2009.
Londe, D. W., Dvorett, D., Davis, C. A., Loss, S. R., and Robertson, E. P.: Inundation of depressional wetlands declines under a changing climate, Clim. Change, 172, 1–19, https://doi.org/10.1007/s10584-022-03386-z, 2022.
Lovelock, C. E. and Reef, R.: Variable impacts of climate change on blue carbon, One Earth, 3, 195–211, https://doi.org/10.1016/j.oneear.2020.07.010, 2020.
Lugo, A. E.: Visible and invisible effects of hurricanes on forest ecosystems: an international review, Austral. Ecol., 33, 368–398, https://doi.org/10.1111/j.1442-9993.2008.01894.x, 2008.
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S.: The state of the world's beaches, Sci. Rep., 8, 6641, https://doi.org/10.1038/s41598-018-24630-6, 2018.
Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H., Seneviratne, S. I., Vargas, R., Ammann, C., Arain, M. A., Cescatti, A., Janssens, I. A., Migliavacca, M., Montagnani, L., and Richardson, A. D.: Global convergence in the temperature sensitivity of respiration at ecosystem level, Science, 329, 838–840, https://doi.org/10.1126/science.1189587, 2010.
Mandishona, E. and Knight, J.: Inland wetlands in Africa: A review of their typologies and ecosystem services, Progress in Physical Geography: Earth and Environment, 46, 547–565, https://doi.org/10.1177/03091333221075328, 2022.
Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., De Lima, M. I., De Lima, J. L. M. P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., Ruiz-Pérez, G., Su, Z., Vico, G., and Toth, B.: On the use of unmanned aerial systems for environmental monitoring, Remote Sens., 10, 641, https://doi.org/10.3390/rs10040641, 2018.
Maris, S. C., Teira-Esmatges, M. R., and Català, M. M.: Influence of irrigation frequency on greenhouse gases emission from a paddy soil, Paddy Water Environ., 14, 199–210, https://doi.org/10.1007/s10333-015-0490-2, 2016.
Marton, J. M., Creed, I. F., Lewis, D. B., Lane, C. R., Basu, N. B., Cohen, M. J., and Craft, C. B.: Geographically isolated wetlands are important biogeochemical reactors on the landscape, BioScience, 65, 408–418, https://doi.org/10.1093/biosci/biv009, 2015.
Matthews, J.: Anthropogenic climate change impacts on ponds: a thermal mass perspective, BioRisk, 5, 193–209, https://doi.org/10.3897/biorisk.5.849, 2010.
Maul, G. A. and Duedall, I. W.: Demography of coastal populations, in: Encyclopedia of Coastal Science, edited by: Finkl, C. W. and Makowski, C., Springer International Publishing, Cham, 692–700, https://doi.org/10.1007/978-3-319-93806-6_115, 2019.
McCarthy, J. K., Dwyer, J. M., and Mokany, K.: A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties, P. Roy. Soc. B., 286, 20192221, https://doi.org/10.1098/rspb.2019.2221, 2019.
McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., and Pinay, G.: Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems, Ecosystems, 6, 301–312, https://doi.org/10.1007/s10021-003-0161-9, 2003.
McDaniel, P. A., Regan, M. P., Brooks, E., Boll, J., Barndt, S., Falen, A., Young, S. K., and Hammel, J. E.: Linking fragipans, perched water tables, and catchment-scale hydrological processes, Catena, 73, 166–173, https://doi.org/10.1016/j.catena.2007.05.011, 2008.
McDonnell, J. J., Hewlett, J. D., and Hibbert, A. R.: Factors affecting the response of small watersheds to precipitation in humid areas, in: Forest hydrology, edidet by: Sopper, W. E. and Lull, H. W., New York, Pergamon Press, 275—290, Progress in Physical Geography: Earth and Environment, 33, 288–293, https://doi.org/10.1177/0309133309338118, 2009.
McDowell, N. G., Ball, M., Bond-Lamberty, B., Kirwan, M. L., Krauss, K. W., Megonigal, J. P., Mencuccini, M., Ward, N. D., Weintraub, M. N., and Bailey, V.: Processes and mechanisms of coastal woody-plant mortality, Glob. Change Biol., 28, 5881–5900, https://doi.org/10.1111/gcb.16297, 2022.
McDowell, N. G., Anderson-Teixeira, K., Biederman, J. A., Breshears, D. D., Fang, Y., Fernández-de-Uña, L., Graham, E. B., Mackay, D. S., McDonnell, J. J., Moore, G. W., Nehemy, M. F., Stevens Rumann, C. S., Stegen, J., Tague, N., Turner, M. G., and Chen, X.: Ecohydrological decoupling under changing disturbances and climate, One Earth, 6, 251–266, https://doi.org/10.1016/j.oneear.2023.02.007, 2023.
McGrane, S. J.: Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review, Hydrolog. Sci. J., 61, 2295–2311, https://doi.org/10.1080/02626667.2015.1128084, 2016.
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., and Seibert, J.: The role of topography on catchment-scale water residence time, Water Resour. Res., 41, W05002, https://doi.org/10.1029/2004WR003657, 2005.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
McVicar, T. R., Van Niel, T. G., Li, L., Hutchinson, M. F., Mu, X., and Liu, Z.: Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences, J. Hydrol., 338, 196–220, https://doi.org/10.1016/j.jhydrol.2007.02.018, 2007.
Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, 2013.
Merritt, D. M. and Wohl, E. E.: Processes governing hydrochory along rivers: Hydraulics, hydrology and dispersal phenology, Ecol. Appl., 12, 1071–1087, https://doi.org/10.1890/1051-0761(2002)012[1071:PGHARH]2.0.CO;2, 2002.
Mertes, L. A. K.: Inland flood hazards: Human, riparian, and aquatic communities, in: Inundation hydrology, Cambridge University Press, Cambridge, UK, 145–166, 2011.
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global prevalence of non-perennial rivers and streams, Nature, 594, 391–397, https://doi.org/10.1038/s41586-021-03565-5, 2021.
Mikac, S., Žmegač, A., Trlin, D., Paulić, V., Oršanić, M., and Anić, I.: Drought-induced shift in tree response to climate in floodplain forests of Southeastern Europe, Sci. Rep., 8, 16495, https://doi.org/10.1038/s41598-018-34875-w, 2018.
Molins, S., Svyatsky, D., Xu, Z., Coon, E. T., and Moulton, J. D.: A multicomponent reactive transport model for integrated surface-subsurface hydrology problems, Water Resour. Res., 58, e2022WR032074, https://doi.org/10.1029/2022WR032074, 2022.
Moomaw, W. R., Chmura, G. L., Davies, G. T., Finlayson, C. M., Middleton, B. A., Natali, S. M., Perry, J. E., Roulet, N., and Sutton-Grier, A. E.: Wetlands In a changing climate: Science, policy and management, Wetlands, 38, 183–205, https://doi.org/10.1007/s13157-018-1023-8, 2018.
Morrissey, E. M. and Franklin, R. B.: Evolutionary history influences the salinity preference of bacterial taxa in wetland soils, Front. Microbiol., 6, 1013, https://doi.org/10.3389/fmicb.2015.01013, 2015.
Murray, N. J., Bunting, P., Canto, R. F., Hilarides, L., Kennedy, E. V., Lucas, R. M., Lyons, M. B., Navarro, A., Roelfsema, C. M., Rosenqvist, A., Spalding, M. D., Toor, M., and Worthington, T. A.: coastTrain: A global feference library for coastal ecosystems, Remote Sens., 14, 5766, https://doi.org/10.3390/rs14225766, 2022a.
Murray, N. J., Worthington, T. A., Bunting, P., Duce, S., Hagger, V., Lovelock, C. E., Lucas, R., Saunders, M. I., Sheaves, M., Spalding, M., Waltham, N. J., and Lyons, M. B.: High-resolution mapping of losses and gains of Earth's tidal wetlands, Science, 376, 744–749, https://doi.org/10.1126/science.abm9583, 2022b.
Nanson, G. and Croke, J.: A genetic classification of floodplains, Geomorphology, 4, 459–486, 1992.
Nardi, F., Vivoni, E. R., and Grimaldi, S.: Investigating a floodplain scaling relation using a hydrogeomorphic delineation method, Water Resour. Res., 42, https://doi.org/10.1029/2005WR004155, 2006.
Nelson, T. M., Streten, C., Gibb, K. S., and Chariton, A. A.: Saltwater intrusion history shapes the response of bacterial communities upon rehydration, Sci. Total Environ., 502, 143–148, https://doi.org/10.1016/j.scitotenv.2014.08.109, 2015.
Neubauer, S. C. and Megonigal, J. P.: Moving beyond global warming potentials to quantify the climatic role of ecosystems, Ecosystems, 18, 1000–1013, https://doi.org/10.1007/s10021-015-9879-4, 2015.
Ode, P. R., Fetscher, A. E., and Busse, L. B.: Standard operating procedures for the collection of field data for bioassessments of California wadeable streams: Benthic macroinvertebrates, algae, and physical habitat, California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 004, SCCWRP Technical Report 835, 2016.
O'Mara, K., Olley, J. M., Fry, B., and Burford, M.: Catchment soils supply ammonium to the coastal zone – Flood impacts on nutrient flux in estuaries, Sci. Total Environ., 654, 583–592, https://doi.org/10.1016/j.scitotenv.2018.11.077, 2019.
O'Meara, T. A., Hillman, J. R., and Thrush, S. F.: Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions, Sci. Rep., 7, 10218, https://doi.org/10.1038/s41598-017-11058-7, 2017.
Orozco-López, E., Muñoz-Carpena, R., Gao, B., and Fox, G. A.: Riparian Vadose Zone preferential flow: Review of concepts, limitations, and perspectives, Vadose Zone J., 17, 180031, https://doi.org/10.2136/vzj2018.02.0031, 2018.
Palmer, M. A. and Hondula, K. L.: Restoration as mitigation: Analysis of stream mitigation for coal mining impacts in Southern Appalachia, Environ. Sci. Technol., 48, 10552–10560, https://doi.org/10.1021/es503052f, 2014.
Palmer, M. A., Hondula, K. L., and Koch, B. J.: Ecological restoration of streams and rivers: Shifting strategies and shifting goals, Annu. Rev. Ecol. Evol. Syst., 45, 247–269, https://doi.org/10.1146/annurev-ecolsys-120213-091935, 2014.
Palta, M. M., Ehrenfeld, J. G., and Groffman, P. M.: “Hotspots” and “Hot Moments” of denitrification in urban Brownfield Wetlands, Ecosystems, 17, 1121–1137, https://doi.org/10.1007/s10021-014-9778-0, 2014.
Palta, M. M., Grimm, N. B., and Groffman, P. M.: “Accidental” urban wetlands: Ecosystem functions in unexpected places, Front. Ecol. Environ., 15, 248–256, https://doi.org/10.1002/fee.1494, 2017.
Pan, J., Liu, Y., Zhong, X., Lampayan, R. M., Singleton, G. R., Huang, N., Liang, K., Peng, B., and Tian, K.: Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China, Agr. Water Manag., 184, 191–200, https://doi.org/10.1016/j.agwat.2017.01.013, 2017.
Pascolini-Campbell, M., Fisher, J. B., and Reager, J. T.: GRACE-FO and ECOSTRESS synergies constrain fine-scale impacts on the water balance, Geophys. Res. Lett., 48, e2021GL093984, https://doi.org/10.1029/2021GL093984, 2021.
Patel, K. F., Tatariw, C., MacRae, J. D., Ohno, T., Nelson, S. J., and Fernandez, I. J.: Snowmelt periods as hot moments for soil N dynamics: a case study in Maine, USA, Environ. Monit. Assess., 192, 777, https://doi.org/10.1007/s10661-020-08733-0, 2020.
Patel, K. F., Rod, K. A., Zheng, J., Regier, P. J., Machado-Silva, F., Bond-Lamberty, B., Chen, X., Day, D., Doro, K. O., Kaufman, M., Kovach, M., McDowell, N., McKever, S. A., Megonigal, P. J., Norris, C. G., O’Meara, T., Rich, R., Thornton, P., Kemner, K. M., Ward, N. D., Weintraub, M. N., and Bailey, V. L.: Time to anoxia: Observations and predictions of oxygen drawdown following coastal flood events, Geoderma, 444, 116854, https://doi.org/10.1016/j.geoderma.2024.116854, 2024.
Patel, N., Gahlaud, S., Saxena, A., Thakur, B., Bharti, N., Dabhi, A., Bhushan, R., and Agnihotri, R.: Revised chronology and stable isotopic (carbon and nitrogen) characterization of Lahuradewa lake sediment (Ganga-plain, India): Insights into biogeochemistry leading to peat formation in the lake, J. Palaeontol. Soc. Ind., 67, 113–125, 2022.
Peacock, M., Audet, J., Bastviken, D., Futter, M. N., Gauci, V., Grinham, A., Harrison, J. A., Kent, M. S., Kosten, S., Lovelock, C. E., Veraart, A. J., and Evans, C. D.: Global importance of methane emissions from drainage ditches and canals, Environ. Res. Lett., 16, 044010, https://doi.org/10.1088/1748-9326/abeb36, 2021.
Pedersen, O., Sauter, M., Colmer, T. D., and Nakazono, M.: Regulation of root adaptive anatomical and morphological traits during low soil oxygen, New Phytol., 229, 42–49, https://doi.org/10.1111/nph.16375, 2021.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016.
Peng, S., Lin, X., Thompson, R. L., Xi, Y., Liu, G., Hauglustaine, D., Lan, X., Poulter, B., Ramonet, M., Saunois, M., Yin, Y., Zhang, Z., Zheng, B., and Ciais, P.: Wetland emission and atmospheric sink changes explain methane growth in 2020, Nature, 612, 477–482, https://doi.org/10.1038/s41586-022-05447-w, 2022.
Perks, M. T., Russell, A. J., and Large, A. R. G.: Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs), Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016, 2016.
Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M., and Guzzetti, F.: Rainfall thresholds for possible landslide occurrence in Italy, Geomorphology, 290, 39–57, https://doi.org/10.1016/j.geomorph.2017.03.031, 2017.
Pezeshki, S. R. and DeLaune, R. D.: Soil oxidation-reduction in wetlands and Its impact on plant functioning, Biology (Basel), 1, 196–221, https://doi.org/10.3390/biology1020196, 2012.
Pickering, M. D., Horsburgh, K. J., Blundell, J. R., Hirschi, J. J.-M., Nicholls, R. J., Verlaan, M., and Wells, N. C.: The impact of future sea-level rise on the global tides, Cont. Shelf Res., 142, 50–68, https://doi.org/10.1016/j.csr.2017.02.004, 2017.
Plum, N.: Terrestrial invertebrates in flooded grassland: A literature review, Wetlands, 25, 721–737, https://doi.org/10.1672/0277-5212(2005)025[0721:TIIFGA]2.0.CO;2, 2005.
Pool, S., Francés, F., Garcia-Prats, A., Pulido-Velazquez, M., Sanchis-Ibor, C., Schirmer, M., Yang, H., and Jiménez-Martínez, J.: From flood to drip irrigation under climate change: Impacts on evapotranspiration and groundwater recharge in the mediterranean region of Valencia (Spain), Earth's Future, 9, e2020EF001859, https://doi.org/10.1029/2020EF001859, 2021.
Popper, K. R.: Conjectures and refutations: the growth of scientific knowledge, Repr. Routledge, London, 608 pp., ISBN 9780415285940, 2014.
Price, A. N., Jones, C. N., Hammond, J. C., Zimmer, M. A., and Zipper, S. C.: The drying regimes of non-perennial rivers and streams, Geophys. Res. Lett., 48, e2021GL093298, https://doi.org/10.1029/2021GL093298, 2021.
Pumo, D., Caracciolo, D., Viola, F., and Noto, L. V.: Climate change effects on the hydrological regime of small non-perennial river basins, Sci. Total Environ., 542, 76–92, https://doi.org/10.1016/j.scitotenv.2015.10.109, 2016.
Quinn, J. D., Reed, P. M., Giuliani, M., Castelletti, A., Oyler, J. W., and Nicholas, R. E.: Exploring how changing monsoonal dynamics and human pressures challenge multireservoir management for flood protection, hydropower production, and agricultural water supply, Water Resour. Res., 54, 4638–4662, https://doi.org/10.1029/2018WR022743, 2018.
Rameshwaran, P., Bell, V. A., Davies, H. N., and Kay, A. L.: How might climate change affect river flows across West Africa?, Clim. Change, 169, 1–27, https://doi.org/10.1007/s10584-021-03256-0, 2021.
Ramsar Secretariat: An Introduction to the Convention on Wetlands (previously The Ramsar Convention Manual), 7th ed., Ramsar Convention Secretariat, Gland, Switzerland, 100 pp., 2016.
Rasmussen, T. C., Deemy, J. B., and Long, S. L.: Wetland Hydrology, in: The Wetland Book, edited by: Finlayson, C. M., Everard, M., Irvine, K., McInnes, R. J., Middleton, B. A., Van Dam, A. A., and Davidson, N. C., Springer Netherlands, Dordrecht, 1–16, https://doi.org/10.1007/978-94-007-6172-8_71-1, 2016.
Regier, P., Ward, N. D., Indivero, J., Wiese Moore, C., Norwood, M., and Myers-Pigg, A.: Biogeochemical control points of connectivity between a tidal creek and its floodplain, Limnol. Oceanogr., 6, 134–142, https://doi.org/10.1002/lol2.10183, 2021.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Reis, V., Hermoso, V., Hamilton, S. K., Ward, D., Fluet-Chouinard, E., Lehner, B., and Linke, S.: A global assessment of inland wetland conservation status, BioScience, 67, 523–533, https://doi.org/10.1093/biosci/bix045, 2017.
Reisinger, A. J., Groffman, P. M., and Rosi-Marshall, E. J.: Nitrogen cycling process rates across urban ecosystems, FEMS Microbiol. Ecol., 92, fiw198, https://doi.org/10.1093/femsec/fiw198, 2016.
Renwick, W., Sleezer, R., Buddemeier, R., and Smith, S.: Small artificial ponds in the United States: Impacts on sedimentation and carbon budget, in: Proceedings of the Eighth Federal Interagency Sedimentation Conference, 2–6 April 2006, Reno, NV, USA, 738–744, 2006.
Resetarits, W. J.: Oviposition site choice and life history evolution, Am. Zool., 36, 205–215, https://doi.org/10.1093/icb/36.2.205, 1996.
Reverey, F., Ganzert, L., Lischeid, G., Ulrich, A., Premke, K., and Grossart, H.-P.: Dry-wet cycles of kettle hole sediments leave a microbial and biogeochemical legacy, Sci. Total Environ., 627, 985–996, https://doi.org/10.1016/j.scitotenv.2018.01.220, 2018.
Ribolzi, O., Patin, J., Bresson, L. M., Latsachack, K. O., Mouche, E., Sengtaheuanghoung, O., Silvera, N., Thiébaux, J. P., and Valentin, C.: Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos, Geomorphology, 127, 53–63, https://doi.org/10.1016/j.geomorph.2010.12.004, 2011.
Richardson, D. C., Holgerson, M. A., Farragher, M. J., Hoffman, K. K., King, K. B. S., Alfonso, M. B., Andersen, M. R., Cheruveil, K. S., Coleman, K. A., Farruggia, M. J., Fernandez, R. L., Hondula, K. L., López Moreira Mazacotte, G. A., Paul, K., Peierls, B. L., Rabaey, J. S., Sadro, S., Sánchez, M. L., Smyth, R. L., and Sweetman, J. N.: A functional definition to distinguish ponds from lakes and wetlands, Sci. Rep., 12, 10472, https://doi.org/10.1038/s41598-022-14569-0, 2022a.
Richardson, D. C., Holgerson, M. A., Farragher, M. J., Hoffman, K. K., King, K. B. S., Alfonso, M. B., Andersen, M. R., Cheruveil, K. S., Coleman, K. A., Farruggia, M. J., Fernandez, R. L., Hondula, K. L., López Moreira Mazacotte, G. A., Paul, K., Peierls, B. L., Rabaey, J. S., Sadro, S., Sánchez, M. L., Smyth, R. L., and Sweetman, J. N.: A functional definition to distinguish ponds from lakes and wetlands, Sci. Rep., 12, 10472, https://doi.org/10.1038/s41598-022-14569-0, 2022b.
Richey, A. S., Thomas, B. F., Lo, M., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., and Rodell, M.: Quantifying renewable groundwater stress with GRACE, Water Resour. Res., 51, 5217–5238, https://doi.org/10.1002/2015WR017349, 2015.
Ripley, B. J. and Simovich, M. A.: Species richness on islands in time: Variation in ephemeral pond crustacean communities in relation to habitat duration and size, Hydrobiologia, 617, 181–196, https://doi.org/10.1007/s10750-008-9548-0, 2009.
Robinson, C. T., Tockner, K., and Ward, J. V.: The fauna of dynamic riverine landscapes: Fauna of riverine landscapes, Freshwater Biol., 47, 661–677, https://doi.org/10.1046/j.1365-2427.2002.00921.x, 2002.
Rosado, J., Morais, M., and Tockner, K.: Mass dispersal of terrestrial organisms during first flush events in a temporary stream: Mass dispersal of terrestrial organisms, River Res. Appl., 31, 912–917, https://doi.org/10.1002/rra.2791, 2015.
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., and Eyre, B. D.: Half of global methane emissions come from highly variable aquatic ecosystem sources, Nat. Geosci., 14, 225–230, https://doi.org/10.1038/s41561-021-00715-2, 2021.
Ruel, J. J. and Ayres, M. P.: Jensen's inequality predicts effects of environmental variation, Trends Ecol. Evol., 14, 361–366, https://doi.org/10.1016/s0169-5347(99)01664-x, 1999.
Rullens, V., Mangan, S., Stephenson, F., Clark, D. E., Bulmer, R. H., Berthelsen, A., Crawshaw, J., Gladstone-Gallagher, R. V., Thomas, S., Ellis, J. I., and Pilditch, C. A.: Understanding the consequences of sea level rise: the ecological implications of losing intertidal habitat, New Zeal. J. Mar. Fresh., 56, 353–370, https://doi.org/10.1080/00288330.2022.2086587, 2022.
Saadat, S., Frankenberger, J., Bowling, L., and Ale, S.: Evaluation of surface ponding and runoff generation in a seasonally frozen drained agricultural field, J. Hydrol., 588, 124985, https://doi.org/10.1016/j.jhydrol.2020.124985, 2020.
Saltarelli, W. A., Cunha, D. G. F., Freixa, A., Perujo, N., López-Doval, J. C., Acuña, V., and Sabater, S.: Nutrient stream attenuation is altered by the duration and frequency of flow intermittency, Ecohydrology, 15, e2351, https://doi.org/10.1002/eco.2351, 2022.
Sarremejane, R., Mykrä, H., Bonada, N., Aroviita, J., and Muotka, T.: Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks, Freshwater Biol., 62, 1073–1082, https://doi.org/10.1111/fwb.12926, 2017.
Sarremejane, R., Stubbington, R., England, J., Sefton, C. E. M., Eastman, M., Parry, S., and Ruhi, A.: Drought effects on invertebrate metapopulation dynamics and quasi-extinction risk in an intermittent river network, Glob. Change Biol., 27, 4024–4039, https://doi.org/10.1111/gcb.15720, 2021.
Schaffer-Smith, D., Myint, S. W., Muenich, R. L., Tong, D., and DeMeester, J. E.: Repeated hurricanes reveal risks and opportunities for social-ecological resilience to flooding and water quality problems, Environ. Sci. Technol., 54, 7194–7204, https://doi.org/10.1021/acs.est.9b07815, 2020.
Schimel, D. S., Kittel, T. G. F., and Parton, W. J.: Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology, Tellus A, 43, 188–203, https://doi.org/10.1034/j.1600-0870.1991.00017.x, 1991.
Schimel, J. P.: Life in dry soils: Effects of drought on soil microbial communities and processes, Annu. Rev. Ecol. Evol. S., 49, 409–432, https://doi.org/10.1146/annurev-ecolsys-110617-062614, 2018.
Schlesinger, W. H. and Bernhardt, E. S.: The atmosphere, in: Biogeochemistry, Elsevier, 51–97, https://doi.org/10.1016/B978-0-12-814608-8.00003-7, 2020.
Schumann, G. J.-P. and Moller, D. K.: Microwave remote sensing of flood inundation, Phys. Chem. Earth, 83–84, 84–95, https://doi.org/10.1016/j.pce.2015.05.002, 2015.
Schuwirth, N., Borgwardt, F., Domisch, S., Friedrichs, M., Kattwinkel, M., Kneis, D., Kuemmerlen, M., Langhans, S. D., Martínez-López, J., and Vermeiren, P.: How to make ecological models useful for environmental management, Ecol. Model., 411, 108784, https://doi.org/10.1016/j.ecolmodel.2019.108784, 2019.
Semeniuk, C. and Semeniuk, V.: A comprehensive classification of inland wetlands of Western Australia using the geomorphic-hydrologic approach, Journal of the Royal Society of Western Australia, 94, 449–464, 2011.
Semeniuk, C. A. and Semeniuk, V.: A geomorphic approach to global classification for inland wetlands, in: Advances in Vegetation Science, Vegetatio, 118, 103–124, https://doi.org/10.1007/BF00045193, 1995.
Shaeri Karimi, S., Saintilan, N., Wen, L., and Cox, J.: Spatio-temporal effects of inundation and climate on vegetation greenness dynamics in dryland floodplains, Ecohydrology, 15, e2378, https://doi.org/10.1002/eco.2378, 2022.
Shanafield, M., Bourke, S. A., Zimmer, M. A., and Costigan, K. H.: An overview of the hydrology of non-perennial rivers and streams, WIREs Water, 8, e1504, https://doi.org/10.1002/wat2.1504, 2021.
Shi, X., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, J., Sebestyen, S. D., Griffiths, N. A., and Bisht, G.: Representing northern peatland microtopography and hydrology within the Community Land Model, Biogeosciences, 12, 6463–6477, https://doi.org/10.5194/bg-12-6463-2015, 2015.
Shumilova, O., Zak, D., Datry, T., von Schiller, D., Corti, R., Foulquier, A., Obrador, B., Tockner, K., Allan, D. C., Altermatt, F., Arce, M. I., Arnon, S., Banas, D., Banegas-Medina, A., Beller, E., Blanchette, M. L., Blanco-Libreros, J. F., Blessing, J., Boëchat, I. G., Boersma, K., Bogan, M. T., Bonada, N., Bond, N. R., Brintrup, K., Bruder, A., Burrows, R., Cancellario, T., Carlson, S. M., Cauvy-Fraunié, S., Cid, N., Danger, M., de Freitas Terra, B., Girolamo, A. M. D., del Campo, R., Dyer, F., Elosegi, A., Faye, E., Febria, C., Figueroa, R., Four, B., Gessner, M. O., Gnohossou, P., Cerezo, R. G., Gomez-Gener, L., Graça, M. A. S., Guareschi, S., Gücker, B., Hwan, J. L., Kubheka, S., Langhans, S. D., Leigh, C., Little, C. J., Lorenz, S., Marshall, J., McIntosh, A., Mendoza-Lera, C., Meyer, E. I., Miliša, M., Mlambo, M. C., Moleón, M., Negus, P., Niyogi, D., Papatheodoulou, A., Pardo, I., Paril, P., Pešić, V., Rodriguez-Lozano, P., Rolls, R. J., Sanchez-Montoya, M. M., Savić, A., Steward, A., Stubbington, R., Taleb, A., Vorste, R. V., Waltham, N., Zoppini, A., and Zarfl, C.: Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter, Glob. Change Biol., 25, 1591–1611, https://doi.org/10.1111/gcb.14537, 2019.
Siebert, S., Portmann, F. T., and Döll, P.: Global patterns of cropland use intensity, Remote Sens., 2, 1625–1643, https://doi.org/10.3390/rs2071625, 2010.
Siev, S., Paringit, E. C., Yoshimura, C., and Hul, S.: Modelling inundation patterns and sediment dynamics in the extensive floodplain along the Tonle Sap River, River Res. Appl., 35, 1387–1401, https://doi.org/10.1002/rra.3491, 2019.
Slater, L., Villarini, G., Archfield, S., Faulkner, D., Lamb, R., Khouakhi, A., and Yin, J.: Global Changes in 20-Year, 50-Year, and 100-Year River Floods, Geophys. Res. Lett., 48, e2020GL091824, https://doi.org/10.1029/2020GL091824, 2021.
Smith, A. P., Bond-Lamberty, B., Benscoter, B. W., Tfaily, M. M., Hinkle, C. R., Liu, C., and Bailey, V. L.: Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought, Nat. Commun., 8, 1335, https://doi.org/10.1038/s41467-017-01320-x, 2017.
Smith, J. A. M., Rossner, K. J., and Duran, D. P.: New opportunities for conservation of a rare tiger beetle on developed barrier island beaches, J. Insect. Conserv., 25, 733–745, https://doi.org/10.1007/s10841-021-00339-2, 2021.
Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., and Rey, A.: Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes, Eur. J. Soil Sci., 69, 10–20, https://doi.org/10.1111/ejss.12539, 2018.
Smyth, A. R., Loecke, T. D., Franz, T. E., and Burgin, A. J.: Using high-frequency soil oxygen sensors to predict greenhouse gas emissions from wetlands, Soil Biol. Biochem., 128, 182–192, https://doi.org/10.1016/j.soilbio.2018.10.020, 2019.
Song, X., Chen, X., Stegen, J., Hammond, G., Song, H., Dai, H., Graham, E., and Zachara, J. M.: Drought Conditions Maximize the Impact of High-Frequency Flow Variations on Thermal Regimes and Biogeochemical Function in the Hyporheic Zone, Water Resour. Res., 54, 7361–7382, https://doi.org/10.1029/2018WR022586, 2018.
Soupir, M. L., Mostaghimi, S., and Mitchem Jr., C. E.: A comparative study of stream-gaging techniques for low-flow measurements in two Virginia tributaries, J. Am. Water Resour. As., 45, 110–122, https://doi.org/10.1111/j.1752-1688.2008.00264.x, 2009.
Speir, S. L., Tank, J. L., and Mahl, U. H.: Quantifying denitrification following floodplain restoration via the two-stage ditch in an agricultural watershed, Ecol. Eng., 155, 105945, https://doi.org/10.1016/j.ecoleng.2020.105945, 2020.
Stallins, J. A. and Parker, A. J.: The influence of complex systems interactions on barrier island dune vegetation pattern and process, Ann. Assoc. Am. Geogr., 93, 13–29, 2003.
Stanford, J. A., Lorang, M. S., and Hauer, F. R.: The shifting habitat mosaic of river ecosystems, SIL Proceedings, 1922–2010, 29, 123–136, https://doi.org/10.1080/03680770.2005.11901979, 2005.
Stanley, E. H., Powers, S. M., Lottig, N. R., Buffam, I., and Crawford, J. T.: Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management?, Freshwater Biol., 57, 26–42, https://doi.org/10.1111/j.1365-2427.2011.02613.x, 2012.
Stewart, B., Shanley, J. B., Kirchner, J. W., Norris, D., Adler, T., Bristol, C., Harpold, A. A., Perdrial, J. N., Rizzo, D. M., Sterle, G., Underwood, K. L., Wen, H., and Li, L.: Streams as mirrors: Reading subsurface water chemistry from stream chemistry, Water Resour. Res., 58, e2021WR029931, https://doi.org/10.1029/2021WR029931, 2022.
Stewart, R. D., Bhaskar, A. S., Parolari, A. J., Herrmann, D. L., Jian, J., Schifman, L. A., and Shuster, W. D.: An analytical approach to ascertain saturation-excess versus infiltration-excess overland flow in urban and reference landscapes, Hydrol. Process., 33, 3349–3363, https://doi.org/10.1002/hyp.13562, 2019.
Sullivan, P., Rains, M. C., and Rodewald, A. D.: The proposed change to the definition of “waters of the United States” flouts sound science, P. Natl. Acad. Sci. USA, 116, 11558–11561, https://doi.org/10.1073/pnas.1907489116, 2019.
Sun, B., Jiang, M., Han, G., Zhang, L., Zhou, J., Bian, C., Du, Y., Yan, L., and Xia, J.: Experimental warming reduces ecosystem resistance and resilience to severe flooding in a wetland, Sci. Adv., 8, eabl9526, https://doi.org/10.1126/sciadv.abl9526, 2022a.
Sun, Z., Sandoval, L., Crystal-Ornelas, R., Mousavi, S. M., Wang, J., Lin, C., Cristea, N., Tong, D., Carande, W. H., Ma, X., Rao, Y., Bednar, J. A., Tan, A., Wang, J., Purushotham, S., Gill, T. E., Chastang, J., Howard, D., Holt, B., Gangodagamage, C., Zhao, P., Rivas, P., Chester, Z., Orduz, J., and John, A.: A review of Earth artificial intelligence, Comput. Geosci., 159, 105034, https://doi.org/10.1016/j.cageo.2022.105034, 2022b.
Svensson, J. R., Lindegarth, M., Jonsson, P. R., and Pavia, H.: Disturbance–diversity models: what do they really predict and how are they tested?, P. Roy. Soc. B, 279, 2163–2170, https://doi.org/10.1098/rspb.2011.2620, 2012.
Sweet, W., Park, J., Marra, J., Zervas, C., and Gill, S.: Sea level rise and nuisance flood frequency changes around the United States, NOAA technical report NOS CO-OPS, https://repository.library.noaa.gov/view/noaa/30823 (last access: 5 February 2025), 2014.
Swenson, L. J., Zipper, S., Peterson, D. M., Jones, C. N., Burgin, A. J., Seybold, E., Kirk, M. F., and Hatley, C.: Changes in Water Age During Dry-Down of a Non-Perennial Stream, Water Resour. Res., 60, e2023WR034623, https://doi.org/10.1029/2023WR034623, 2024.
Tagestad, J., Ward, N. D., Butman, D., and Stegen, J.: Small streams dominate US tidal reaches and will be disproportionately impacted by sea-level rise, Sci. Total Environ., 753, 141944, https://doi.org/10.1016/j.scitotenv.2020.141944, 2021.
Tai, X., Anderegg, W. R. L., Blanken, P. D., Burns, S. P., Christensen, L., and Brooks, P. D.: Hillslope hydrology influences the spatial and temporal patterns of remotely sensed ecosystem productivity, Water Resour. Res., 56, e2020WR027630, https://doi.org/10.1029/2020WR027630, 2020.
Thomas, M. A., Mirus, B. B., and Smith, J. B.: Hillslopes in humid-tropical climates aren't always wet: Implications for hydrologic response and landslide initiation in Puerto Rico, Hydrol. Process., 34, 4307–4318, https://doi.org/10.1002/hyp.13885, 2020.
Tiner, R. W.: Tidal wetlands primer: An introduction to their ecology, natural history, status, and conservation, University of Massachusetts Press, Amherst, 560 pp., ISBN-10 1625340222, 2013.
Tiner, R. W.: Wetland indicators: A guide to wetland identification, delineation, classification, and mapping, Second edition, Taylor & Francis, Boca Raton, https://doi.org/10.1201/9781315374710, 2016.
Trochim, E. D., Prakash, A., Kane, D. L., and Romanovsky, V. E.: Remote sensing of water tracks, Earth Space Sci., 3, 106–122, https://doi.org/10.1002/2015EA000112, 2016.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis: Threshold flow relations, Water Resour. Res., 42, W02411, https://doi.org/10.1029/2004WR003800, 2006.
Tsoi, W., Growns, I., Southwell, M., Mika, S., Lewis, S., Ryder, D., and Frazier, P.: Effects of inundation on water quality and invertebrates in semiarid floodplain wetlands, Inland Waters, 12, 397–406, https://doi.org/10.1080/20442041.2022.2057164, 2022.
Tweedley, J.: The contrasting ecology of temperate macrotidal and microtidal estuaries, Oceanography and Marine Biology, 1st Edition, CRC Press, 100 pp., ISBN 9781315368597, 2016.
U.S. Geological Survey: Cottonwood Lake Study Area – Aerial Imagery: U.S. Geological Survey data release, https://doi.org/10.5066/F7DZ06GR, 2017.
US Army Corps of Engineers: Definitions of Terms https://www.nap.usace.army.mil/Missions/Regulatory/Definitions/, last access: 14 August 2024.
Valett, H. M., Baker, M. A., Morrice, J. A., Crawford, C. S., Molles Jr., M. C., Dahm, C. N., Moyer, D. L., Thibault, J. R., and Ellis, L. M.: Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain, Ecology, 86, 220–234, https://doi.org/10.1890/03-4091, 2005.
Van Appledorn, M., De Jager, N. R., and Rohweder, J. J.: Quantifying and mapping inundation regimes within a large river-floodplain ecosystem for ecological and management applications, River Res. Appl., 37, 241–255, https://doi.org/10.1002/rra.3628, 2021.
Van Meerveld, H. J. I., Sauquet, E., Gallart, F., Sefton, C., Seibert, J., and Bishop, K.: Aqua temporaria incognita, Hydrol. Process., 34, 5704–5711, https://doi.org/10.1002/hyp.13979, 2020.
VanZomeren, C. M., Berkowitz, J. F., Piercy, C. D., and White, J. R.: Restoring a degraded marsh using thin layer sediment placement: Short term effects on soil physical and biogeochemical properties, Ecol. Eng., 120, 61–67, https://doi.org/10.1016/j.ecoleng.2018.05.012, 2018.
Venterink, H. O., Pieterse, N. M., Belgers, J. D. M., Wassen, M. J., and De Ruiter, P. C.: N, P, and K budgets along nutrient availability and productivity gradients in wetlands, Ecol. Appl., 12, 1010–1026, https://doi.org/10.1890/1051-0761(2002)012[1010:NPAKBA]2.0.CO;2, 2002.
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and Storlazzi, C. D.: Doubling of coastal flooding frequency within decades due to sea-level rise, Sci. Rep., 7, 1399, https://doi.org/10.1038/s41598-017-01362-7, 2017.
Vorste, R. V., Corti, R., Sagouis, A., and Datry, T.: Invertebrate communities in gravel-bed, braided rivers are highly resilient to flow intermittence, Freshwater Sci., 35, 164–177, https://doi.org/10.1086/683274, 2016.
von Schiller, D., Datry, T., Corti, R., Foulquier, A., Tockner, K., Marcé, R., García-Baquero, G., Odriozola, I., Obrador, B., Elosegi, A., Mendoza-Lera, C., Gessner, M. O., Stubbington, R., Albariño, R., Allen, D. C., Altermatt, F., Arce, M. I., Arnon, S., Banas, D., Banegas-Medina, A., Beller, E., Blanchette, M. L., Blanco-Libreros, J. F., Blessing, J., Boëchat, I. G., Boersma, K. S., Bogan, M. T., Bonada, N., Bond, N. R., Brintrup, K., Bruder, A., Burrows, R. M., Cancellario, T., Carlson, S. M., Cauvy-Fraunié, S., Cid, N., Danger, M., de Freitas Terra, B., Dehedin, A., De Girolamo, A. M., del Campo, R., Díaz-Villanueva, V., Duerdoth, C. P., Dyer, F., Faye, E., Febria, C., Figueroa, R., Four, B., Gafny, S., Gómez, R., Gómez-Gener, L., Graça, M. a. S., Guareschi, S., Gücker, B., Hoppeler, F., Hwan, J. L., Kubheka, S., Laini, A., Langhans, S. D., Leigh, C., Little, C. J., Lorenz, S., Marshall, J., Martín, E. J., McIntosh, A., Meyer, E. I., Miliša, M., Mlambo, M. C., Moleón, M., Morais, M., Negus, P., Niyogi, D., Papatheodoulou, A., Pardo, I., Pařil, P., Pešić, V., Piscart, C., Polášek, M., Rodríguez-Lozano, P., Rolls, R. J., Sánchez-Montoya, M. M., Savić, A., Shumilova, O., Steward, A., Taleb, A., Uzan, A., Vander Vorste, R., Waltham, N., Woelfle-Erskine, C., Zak, D., Zarfl, C., and Zoppini, A.: Sediment respiration pulses in intermittent rivers and ephemeral streams, Global Biogeochem. Cy., 33, 1251–1263, https://doi.org/10.1029/2019GB006276, 2019.
Vousdoukas, M. I., Voukouvalas, E., Mentaschi, L., Dottori, F., Giardino, A., Bouziotas, D., Bianchi, A., Salamon, P., and Feyen, L.: Developments in large-scale coastal flood hazard mapping, Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, 2016.
Waltham, N. J. and Connolly, R. M.: Global extent and distribution of artificial, residential waterways in estuaries, Estuar. Coast. Shelf Sci., 94, 192–197, https://doi.org/10.1016/j.ecss.2011.06.003, 2011.
Wang, X., Wang, W., and Tong, C.: A review on impact of typhoons and hurricanes on coastal wetland ecosystems, Acta Ecologica Sinica, 36, 23–29, https://doi.org/10.1016/j.chnaes.2015.12.006, 2016.
Wantzen, K., Alves, C., Badiane, S., Bala, R., Blettler, M., Callisto, M., Cao, Y., Kolb, M., Kondolf, G., Leite, M., Macedo, D., Mahdi, O., Neves, M., Peralta, M., Rotgé, V., Rueda-Delgado, G., Scharager, A., Serra-Llobet, A., Yengué, J.-L., and Zingraff-Hamed, A.: Urban stream and wetland restoration in the Global South–A DPSIR analysis, Sustainability, 11, 4975, https://doi.org/10.3390/su11184975, 2019.
Ward, J. V., Tockner, K., and Schiemer, F.: Biodiversity of floodplain river ecosystems: ecotones and connectivity1, Regul. Rivers Res. Mgmt., 15, 125–139, https://doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E, 1999.
Ward, J. V., Tockner, K., Arscott, D. B., and Claret, C.: Riverine landscape diversity, Freshwater Biol., 47, 517–539, https://doi.org/10.1046/j.1365-2427.2002.00893.x, 2002.
Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., Diefenderfer, H., Ganju, N. K., Goñi, M. A., Graham, E. B., Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G., Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J., Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R., Weisenhorn, P. B., and Windham-Myers, L.: Representing the function and sensitivity of coastal interfaces in Earth system models, Nat. Commun., 11, 2458, https://doi.org/10.1038/s41467-020-16236-2, 2020.
Watts, J. D., Kimball, J. S., Bartsch, A., and McDonald, K. C.: Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions, Environ. Res. Lett., 9, 075001, https://doi.org/10.1088/1748-9326/9/7/075001, 2014.
Weird Bristol [WeirdBristol]: “With a difference of 15-metres/49-foot between high and low tide, the River Avon has the second largest tidal range in the world. Only the Bay of Fundy in Canada has a higher tide, with an average of 16.8 metres/55-foot, #Bristol”, Twitter https://twitter.com/WeirdBristol/status/1015732213730758658 (last access: 5 February 2025), 7 July 2018.
Wen, H., Perdrial, J., Abbott, B. W., Bernal, S., Dupas, R., Godsey, S. E., Harpold, A., Rizzo, D., Underwood, K., Adler, T., Sterle, G., and Li, L.: Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale, Hydrol. Earth Syst. Sci., 24, 945–966, https://doi.org/10.5194/hess-24-945-2020, 2020.
Weyman, D. R.: Measurements of the downslope flow of water in a soil, J. Hydrol., 20, 267–288, https://doi.org/10.1016/0022-1694(73)90065-6, 1973.
Whitworth, K. L., Kerr, J. L., Mosley, L. M., Conallin, J., Hardwick, L., and Baldwin, D. S.: Options for managing hypoxic blackwater in river systems: case studies and framework, Environ. Manage., 52, 837–850, https://doi.org/10.1007/s00267-013-0130-9, 2013.
Wierzbicki, G., Ostrowski, P., and Falkowski, T.: Applying floodplain geomorphology to flood management (The Lower Vistula River upstream from Plock, Poland), Open Geosci., 12, 1003–1016, https://doi.org/10.1515/geo-2020-0102, 2020.
Williams, D. D.: The biology of temporary waters, Oxford University Press, Oxford, New York, 337 pp., https://doi.org/10.1093/acprof:oso/9780198528128.001.0001, 2006.
Wittenberg, H.: Baseflow recession and recharge as nonlinear storage processes, Hydrol. Process., 13, 715–726, https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<715::AID-HYP775>3.0.CO;2-N, 1999.
Wohl, E.: An integrative conceptualization of floodplain storage, Rev. Geophys., 59, e2020RG000724, https://doi.org/10.1029/2020RG000724, 2021.
Wollheim, W. M., Harms, T. K., Robison, A. L., Koenig, L. E., Helton, A. M., Song, C., Bowden, W. B., and Finlay, J. C.: Superlinear scaling of riverine biogeochemical function with watershed size, Nat. Commun., 13, 1230, https://doi.org/10.1038/s41467-022-28630-z, 2022.
Wu, B., Tian, F., Nabil, M., Bofana, J., Lu, Y., Elnashar, A., Beyene, A. N., Zhang, M., Zeng, H., and Zhu, W.: Mapping global maximum irrigation extent at 30m resolution using the irrigation performances under drought stress, Glob. Environ. Change, 79, 102652, https://doi.org/10.1016/j.gloenvcha.2023.102652, 2023.
Wu, R., Chen, X., Hammond, G., Bisht, G., Song, X., Huang, M., Niu, G.-Y., and Ferre, T.: Coupling surface flow with high-performance subsurface reactive flow and transport code PFLOTRAN, Environ. Model. Softw., 137, 104959, https://doi.org/10.1016/j.envsoft.2021.104959, 2021.
Xiao, D., Shi, Y., Brantley, S. L., Forsythe, B., DiBiase, R., Davis, K., and Li, L.: Streamflow generation from catchments of contrasting lithologies: The role of soil properties, topography, and catchment size, Water Resour. Res., 55, 9234–9257, https://doi.org/10.1029/2018WR023736, 2019.
Xie, D., Schwarz, C., Brückner, M. Z. M., Kleinhans, M. G., Urrego, D. H., Zhou, Z., and Van Maanen, B.: Mangrove diversity loss under sea-level rise triggered by bio-morphodynamic feedbacks and anthropogenic pressures, Environ. Res. Lett., 15, 114033, https://doi.org/10.1088/1748-9326/abc122, 2020.
Xin, P., Wilson, A., Shen, C., Ge, Z., Moffett, K. B., Santos, I. R., Chen, X., Xu, X., Yau, Y. Y. Y., Moore, W., Li, L., and Barry, D. A.: Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry, Rev. Geophys., 60, e2021RG000740, https://doi.org/10.1029/2021RG000740, 2022.
Zedler, P. H.: Vernal pools and the concept of “isolated wetlands”, Wetlands, 23, 597–607, https://doi.org/10.1672/0277-5212(2003)023[0597:VPATCO]2.0.CO;2, 2003.
Zhang, Y. S., Cioffi, W. R., Cope, R., Daleo, P., Heywood, E., Hoyt, C., Smith, C. S., and Silliman, B. R.: A Global Synthesis Reveals Gaps in Coastal Habitat Restoration Research, Sustainability, 10, 1040, https://doi.org/10.3390/su10041040, 2018.
Zhang, Z., Zimmermann, N. E., Stenke, A., Li, X., Hodson, E. L., Zhu, G., Huang, C., and Poulter, B.: Emerging role of wetland methane emissions in driving 21st century climate change, P. Natl. Acad. Sci. USA, 114, 9647–9652, https://doi.org/10.1073/pnas.1618765114, 2017.
Zhang, Z., Fluet-Chouinard, E., Jensen, K., McDonald, K., Hugelius, G., Gumbricht, T., Carroll, M., Prigent, C., Bartsch, A., and Poulter, B.: Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M) , Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, 2021.
Zhao, Y., Wang, X., Jiang, S., Xiao, J., Li, J., Zhou, X., Liu, H., Hao, Z., and Wang, K.: Soil development mediates precipitation control on plant productivity and diversity in alpine grasslands, Geoderma, 412, 115721, https://doi.org/10.1016/j.geoderma.2022.115721, 2022.
Zhi, W. and Li, L.: The shallow and deep hypothesis: Subsurface vertical chemical contrasts shape nitrate export patterns from different land uses, Environ. Sci. Technol., 54, 11915–11928, https://doi.org/10.1021/acs.est.0c01340, 2020.
Zimmer, M. A. and McGlynn, B. L.: Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment, Water Resour. Res., 53, 7055–7077, https://doi.org/10.1002/2016WR019742, 2017.
Zimmer, M. A., Kaiser, K. E., Blaszczak, J. R., Zipper, S. C., Hammond, J. C., Fritz, K. M., Costigan, K. H., Hosen, J., Godsey, S. E., Allen, G. H., Kampf, S., Burrows, R. M., Krabbenhoft, C. A., Dodds, W., Hale, R., Olden, J. D., Shanafield, M., DelVecchia, A. G., Ward, A. S., Mims, M. C., Datry, T., Bogan, M. T., Boersma, K. S., Busch, M. H., Jones, C. N., Burgin, A. J., and Allen, D. C.: Zero or not? Causes and consequences of zero-flow stream gage readings, WIREs Water, 7, e1436, https://doi.org/10.1002/wat2.1436, 2020.
Zimmer, M. A., Burgin, A. J., Kaiser, K., and Hosen, J.: The unknown biogeochemical impacts of drying rivers and streams, Nat. Commun., 13, 7213, https://doi.org/10.1038/s41467-022-34903-4, 2022.
Zipper, S. C., Hammond, J. C., Shanafield, M., Zimmer, M., Datry, T., Jones, C. N., Kaiser, K. E., Godsey, S. E., Burrows, R. M., Blaszczak, J. R., Busch, M. H., Price, A. N., Boersma, K. S., Ward, A. S., Costigan, K., Allen, G. H., Krabbenhoft, C. A., Dodds, W. K., Mims, M. C., Olden, J. D., Kampf, S. K., Burgin, A. J., and Allen, D. C.: Pervasive changes in stream intermittency across the United States, Environ. Res. Lett., 16, 084033, https://doi.org/10.1088/1748-9326/ac14ec, 2021.
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
The loss and gain of surface water (variable inundation) are common processes across Earth....
Altmetrics
Final-revised paper
Preprint