Articles | Volume 9, issue 10
https://doi.org/10.5194/bg-9-4071-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-9-4071-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Northern peatland carbon stocks and dynamics: a review
Z. C. Yu
Department of Earth and Environmental Sciences, Lehigh University, 1 West Packer Avenue, Bethlehem, PA 18015, USA
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
Phytoplankton community disruption caused by latest Cretaceous global warming
The colonization of the oceans by calcifying pelagic algae
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Lena River delta formation during the Holocene
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
This article is included in the Encyclopedia of Geosciences
boring billion.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
This article is included in the Encyclopedia of Geosciences
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
This article is included in the Encyclopedia of Geosciences
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
This article is included in the Encyclopedia of Geosciences
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
This article is included in the Encyclopedia of Geosciences
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
This article is included in the Encyclopedia of Geosciences
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
This article is included in the Encyclopedia of Geosciences
Perran L. M. Cook, Miles Jennings, Daryl P. Holland, John Beardall, Christy Briles, Atun Zawadzki, Phuong Doan, Keely Mills, and Peter Gell
Biogeosciences, 13, 3677–3686, https://doi.org/10.5194/bg-13-3677-2016, https://doi.org/10.5194/bg-13-3677-2016, 2016
Short summary
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
This article is included in the Encyclopedia of Geosciences
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
This article is included in the Encyclopedia of Geosciences
K. Michaelian and A. Simeonov
Biogeosciences, 12, 4913–4937, https://doi.org/10.5194/bg-12-4913-2015, https://doi.org/10.5194/bg-12-4913-2015, 2015
Short summary
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
This article is included in the Encyclopedia of Geosciences
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Cited articles
Adams, J. M. and Faure, H.: A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction, Global Planet. Change, 16/17, 3–24, 1998.
Alm, J., Schulman, L., Walden, J., Nykänen, H., Martikainen, P. J., and Silvola, J.: Carbon balance of a boreal bog during a year with an exceptionally dry summer, Ecology, 80, 161–174, 1999.
Armentano, T. V. and Menges, E. S.: Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone, J. Ecol., 74, 755–774, 1986.
Aurela, M., Laurila, T., and Tuovinen, J. P.: The timing of snow melt controls the annual CO2 balance in a subarctic fen, Geophys. Res. Lett., 31, L16119, https://doi.org/10.1029/2004GL020315, 2004.
Baird, A. J., Belyea, L. R., and Morris, P. J.: Upscaling of peatland-atmosphere fluxes of methane: Small-scale heterogeneity in process rates and the pitfalls of "bucket-and-slab" models, in: Carbon Cycling in Northern Peatlands, AGU Geophysical Monograph vol. 184, edited by: Baird, A., Belyea, L., Comas, X., Reeve, A., and Slater, L., 37–53. https://doi.org/10.1029/2008GM000826, 2009.
Bauer, I. E., Gignac, L. D., and Vitt, D. H.: Development of a peatland complex in boreal western Canada: Lateral site expansion and local variability in vegetation succession and long-term peat accumulation, Can. J. Bot., 81, 833–847, 2003.
Beilman, D. W., Vitt, D. H., Bhatti, J. S., and Forest, S.: Peat carbon stocks in the southern Mackenzie River Basin: uncertainties revealed in a high-resolution case study, Glob. Change Biol., 14, 1221–1232, https://doi.org/10.1111/j.1365-2486.2008.01565.x, 2008.
Belyea, L. R. and Baird, A. J.: Beyond the limits to peat bog growth: cross-scale feedback in peatland development, Ecol. Monogr., 76, 299–322, 2006.
Bhiry, N., Payette, S., and Robert, E.: Peatland development at the arctic tree line (Quebec, Canada) influenced by flooding and permafrost, Quaternary Res., 67, 426–437, 2007.
Botch, M. S., Kobak, K. I., Vinson, T. S., and Kolchugina, T. P.: Carbon pools and accumulation in peatlands of the Former Soviet Union, Global Biogeochem. Cy., 9, 37–46, 1995.
Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., and Trettin, C.: The carbon balance of North American wetlands, Wetlands, 26, 889–916, 2006.
Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., and Andreev, A.: Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cy., 16, 1139, https://doi.org/10.1029/2001GB001662, 2002.
Campbell, I. D., Campbell, C., Yu, Z. C., Vitt, D. H., and Apps, M. J.: Millennial-scale rhythms in peatlands in the western interior of Canada and in the global carbon cycle, Quaternary Res., 54, 155–158, 2000.
Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze, E. D.: Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9, 1041–1050, 2006.
Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila, E.-S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D. H., and Zhao, Y.: Climate-related changes in peatland carbon accumulation during the last millennium, Biogeosciences Discuss., 9, 14327–14364, https://doi.org/10.5194/bgd-9-14327-2012, 2012.
Clymo, R. S.: The limits to peat bog growth, Philos. T. R. Soc. Lon. B, 303, 605–654, 1984.
Clymo, R. S., Turunen, J., and Tolonen, K.: Carbon accumulation in peatland, Oikos, 81, 368–388, 1998.
Couwenberg, J.: A simulation model of mire patterning – revisited, Ecography, 28, 653–661, 2005.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, 2006.
Dinsmore, K. J., Billett, F. M., Skiba, U. M., Rees, R. M., Drewer, J., and Helfter, C.: Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment, Glob. Change Biol., 16, 2750–2762, https://doi.org/10.1111/j.1365-2486.2009.02119.x, 2010.
Fraser, C. J. D., Roulet, N. T., and Moore, T. R.: Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog, Hydrol. Process., 15, 3151–3166, 2001.
Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., and Richard, P. J. H.: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation, Earth Syst. Dynam., 1, 1–21, https://doi.org/10.5194/esd-1-1-2010, 2010.
Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B., Tuittila, E.-S., and Roulet, N.: Peatlands in the Earth's 21st century coupled climate-carbon system, Environ. Rev., 19, 371–396, 2011.
Gajewski, K., Viau, A., Sawada, M., Atkinson, D., and Wilson, S.: Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years, Global Biogeochem. Cy., 15, 297–310, 2001.
Glaser, P. H., Hansen, B. C. S., Siegel, D. I., Reeve, A. S., and Morin, P. J.: Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario, Canada, J. Ecol., 92, 1036–1053, 2004.
Gorham, E.: Biotic impoverishment in northern peatlands, in: The earth in transition: patterns and processes of biotic impoverishment, edited by: Woodwell, G. M., Cambridge University, New York, NY, 65–98, 1990.
Gorham, E.: Northern peatlands: Role in the carbon cycle and probable responses to climatic warming, Ecol. Appl., 1, 182–195, 1991.
Gorham, E., Lehman, C., Dyke, A., Janssens, J., and Dyke, L.: Temporal and spatial aspects of peatland initiation following deglaciation in North America, Quaternary Sci. Rev., 26, 300–311, 2007.
GSDTG (Global Soil Data Task Group): Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS), available at: http://www.daac.ornl.gov, https://doi.org/10.3334/ORNLDAAC/569, 2000.
Halsey, L. A., Vitt, D. H., and Bauer, I. E.: Peatland initiation during the Holocene in continental western Canada, Climatic Change, 40, 315–342, 1998.
Halsey, L., Vitt, D. H., and Gignac, L. D.: Sphagnum-dominated peatlands in North America since the last glacial maximum: Their occurrence and extent, Bryologist, 103, 334–352, 2000.
Harden, J. W., Sundquist, E. T., Stallard, R. F., and Mark, R. K.: Dynamics of soil carbon during deglaciation of the Laurentide ice sheet, Science, 258, 1921–1924, 1992.
Holst, T., Arneth, A., Hayward, S., Ekberg, A., Mastepanov, M., Jackowicz-Korczynski, M., Friborg, T., Crill, P. M., and Bäckstrand, K.: BVOC ecosystem flux measurements at a high latitude wetland site, Atmos. Chem. Phys., 10, 1617–1634, https://doi.org/10.5194/acp-10-1617-2010, 2010.
Ingram, H. A. P.: Size and shape in raised mire ecosystems: a geophysical model, Nature, 297, 300-303, 1982.
Jones, M. C. and Yu, Z. C.: Rapid deglacial and early Holocene expansion of peatlands in Alaska, P. Natl. Acad. Sci. USA, 107, 7347–7352, 2010.
Joosten, H. and Clarke, D.: Wise use of mires and peatlands, International Mire Conservation Group and International Peat Society, Saarijärvi, Finland, 2002.
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J. T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall, M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K., Geirsdottir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M. W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W. W., Otto-Bliesner, B. L., Porinchu, D. F., Ruhland, K., Smol, J. P., Steig, E. J., and Wolfe, B. B.: Holocene thermal maximum in the western Arctic (0–180° W), Quaternary Sci. Rev., 23, 529–560, 2004.
Kleinen, T., Brovkin, V., von Bloh, W., Archer, D., and Munhoven, G.: Holocene carbon cycle dynamics, Geophys. Res. Lett., 37, L02705, https://doi.org/10.1029/2009GL041391, 2010.
Koehler, A.-K., Sottocornola, M., and Kiely, G.: How strong is the current carbon sequestration of an Atlantic blanket bog?, Glob. Change Biol., 17, 309–319, https://doi.org/10.1111/j.1365-2486.2010.02180.x, 2011.
Korhola, A.: Radiocarbon evidence for rates of lateral expansion in raised mires in southern Finland, Quaternary Res., 42, 299–307, 1994.
Korhola, A.: Holocene climatic variations in southern Finland reconstructed from peat-initiation data, Holocene, 5, 43–58, 1995.
Korhola, A., Alm, J., Tolonen, K., Turunen, J., and Junger, H.: Three-dimensional reconstruction of carbon accumulation and CH4 emission during nine millennia in a raised mire, J. Quaternary Sci., 11, 161–165, 1996.
Korhola, A., Ruppel, M., Seppä, H., Väliranta, M., Virtanen, T., and Weckström, J.: The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane, Quaternary Sci. Rev., 29, 611–617, 2010.
Kuhry, P. and Turunen, J.: The postglacial development of boreal and subarctic peatlands, in: Boreal Peatland Ecosystems, edited by: Wieder, R. K. and Vitt, D. H., Ecological Studies Series, vol. 188, Springer, New York, 25–46, 2006.
Lappalainen, E.: General review on world peatlands and peat resources, in: Global peat resources, International Peat Society, Jyska, Finland, 53–56, 1996.
Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, 2004.
Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H., and Schaepman-Strub, G.: Peatlands and the carbon cycle: from local processes to global implications – a synthesis, Biogeosciences, 5, 1475–1491, https://doi.org/10.5194/bg-5-1475-2008, 2008.
Loisel, J., Yu, Z. C., Parkesian, A., Nolan, J. T., and Slater, L. D.: Quantifying landscape morphology influence on peatland lateral expansion using ground penetrating radar (GPR) and peat core analysis, in review, 2012.
Lund, M., Lafleur, P. M., Roulet, N. T., Lindroth, A., Christensen, T. R., Aurela, M., Chojnicki, B. H., Flanagan, L. B., Humphreys, E. R., Laurila, T., Oechel, W. C., Olejnik, J., Rinne, J., Schubert, P., and Nilsson, M. B.: Variability in exchange of CO2 across 12 northern peatland and tundra sites, Glob. Change Biol., 16, 2436–2448, https://doi.org/10.1111/j.1365-2486.2009.02104.x, 2010.
MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y., Smith, L. C., and Valichko, A. A.: Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations, Science, 314, 285–288, 2006.
Malmer, N. and Wallén, B.: Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes, Holocene, 14, 111–117, 2004.
Mäkilä, M.: Calculation of the energy content of mires on the basis of peat properties, Geol. S. Finland, Report of Investigation, 121, 1–73, 1994.
Maltby, E. and Immirzi, P.: Carbon dynamics in peatlands and other wetland soils, regional and global perspectives, Chemosphere, 27, 999–1023, 1993.
Matthews, E. and Fung, I.: Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cy., 1, 61–86, https://doi.org/10.1029/GB001i001p00061, 1987.
Menviel, L. and Joos, F.: Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations, Paleoceanography, 27, PA1207, https://doi.org/10.1029/2011PA002224, 2012.
Moore, P. D.: The future of cool temperate bogs, Environ. Conserv., 29, 3–20, 2002.
Morris, P. J., Belyea, L. R., and Baird, A. J.: Ecohydrological feedbacks in peatland development: a theoretical modeling study, J. Ecol., 99, 1190–1201, 2011.
Nilsson, M., Sagerfors, J., Buffam, I., Laudon, H., Eriksson, T., Grelle, A., Klemedtsson, L., Weslien, P., and Lindroth, A.: Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – A significant sink after accounting for all C-fluxes, Glob. Change Biol., 14, 2317–2332, https://doi.org/10.1111/j.1365-2486.2008.01654.x, 2008.
Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A. G.: Soil carbon pools and world life zones, Nature, 298, 156–159, 1982.
Oechel, W. C.: Nutrient and water flux in a small Arctic watershed: an overview, Holarctic Ecol., 12, 229–237, 1989.
Olefeldt, D., Roulet, N. T., Bergeron, O., Crill, P., Bäckstrand, K., and Christensen, T. R.: Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands, Geophys. Res. Lett., 39, L03501, https://doi.org/10.1029/2011GL050355, 2012.
Riley, J. L.: Peat and peatland resources of Northeastern Ontario, Ontario Geological Survey Miscellaneous Paper, 153, 1–155, 1994.
Riley, J. L.: Wetlands of the Hudson Bay Lowland: An Ontario Overview, Nature Conservancy of Canada, Toronto, ON, 156 pp., 2011.
Roulet, N. T.: Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospecs and significance for Canada, Wetlands, 20, 605–615, 2000.
Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys, E. R., and Bubier, J.: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland, Glob. Change Biol., 13, 397–411, 2007.
Ruddiman, W. F., Kutzbach, J. E., and Vavrus, S. J.: Can natural or anthropogenic explanations of late-Holocene CO2 and CH4 increases be falsified?, Holocene, 21, 865–879, https://doi.org/10.1177/0959683610387172, 2011.
Schlesinger, W. H.: Carbon balance in terrestrial detritus, Annu. Rev. Ecol. Syst., 8, 51–81, 1977.
Schlesinger, W. H.: Soil organic matter: A source of atmospheric CO2, in: The role of terrestrial vegetation in the global carbon cycle, edited by: Woodwell, G. M., Wiley, New York, 111–127, 1984.
Schneider, J., Kutzbach, L., and Wilmking, M.: Carbon dioxide exchange fluxes of a boreal peatland over a complete growing season, Komi Republic, NW Russia, Biogeochemistry, https://doi.org/10.1007/s10533-011-9684-x, in press, 2012.
Sheng, Y., Smith, L. C., MacDonald, G. M., Kremenetski, K. V., Frey, K. E., Velichko, A. A., Lee, M., Beilman, D. W., and Dubinin, P.: A high-resolution GIS-based inventory of the West Siberian peat carbon pool, Global Biogeochem. Cy., 18, GB3004, https://doi.org/10.1029/2003GB002190, 2004.
Sjörs, H.: Peat on earth: multiple use or conservation, Ambio, 9, 303–308, 1980.
Sjörs, H.: The zonation of northern peatlands and their importance for the carbon balance of the atmosphere, Int. J. Ecol. Environ. Sci., 7, 11–14, 1981.
Smith, L. C., MacDonald, G. M., Velichko, A. A., Beilman, D. W., Borisova, O. K., Frey, K. E., Kremenetski, K. V., and Sheng, Y.: Siberian peatlands a net carbon sink and global methane source since the Early Holocene, Science, 303, 353–356, 2004.
St. Louis, V., Kelly, C., Duchemin, E., Rudd, J., and Rosenberg, D.: Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate, BioScience, 50, 766–775, 2000.
Sulman, B. N., Desai, A. R., Saliendra, N. Z., Lafleur, P. M., Flanagan, L. B., Sonnentag, O., Mackay, D. S., Barr, A. G., and van der Kamp, G.: CO2 fluxes at northern fens and bogs have opposite responses to inter- annual fluctuations in water table, Geophys. Res. Lett., 37, L19702, https://doi.org/10.1029/2010GL044018, 2010.
Syed, K. H., Flanagan, L. B., Carlson, P. J., Glenn, A. J., and van Gaalen, K. E.: Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta, Agr. Forest Meteorol., 140, 97–114, 2006.
Tarnocai, C., Kettles, I. M., and Lacelle. B.: Peatlands of Canada, Ottawa, Agriculture and Agri-Food Canada, Research Branch, Ottawa, ON, Canada, 2005.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cy., 23, GB2023, https://doi.org/10.1029/2008GB003327, 2009.
Tarnocai, C., Kuhry, P., Broll, G., Ping, C.-L., and Brown, J.: Peatlands and their carbon dynamics: Comment on "Peatlands and their role in the global carbon cycle", Eos, 93, 31, 2012.
Tolonen, K. and Turunen, J.: Accumulation rates of carbon in mires in Finland and implications for climate change, Holocene, 6, 171–178, 1996.
Turetsky, M. R., Manning, S., and Wieder, R. K.: Dating recent peat deposits, Wetlands, 24, 324–356, 2004.
Turetsky, M. R., Kane, E. S., Harden, J. W., Ottmar, R. D., Manies, K. L., Hoy, E., and Kasischke, E. S.: Recent acceleration of biomass buring and carbon losses in Alaskan forest and peatlands, Nat. Geosci., 4, 27–31, 2011a.
Turetsky, M. R., Donahue, W. F., and Benscoter, B. W.: Experimental drying intensifies burning and carbon losses in a northern peatland, Nat. Commun., 2, 514, https://doi.org/10.1038/ncomms1523, 2011b.
Turunen, J., Tomppo, E., Tolonen, K., and Reinikainen, A.: Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions, Holocene, 12, 69–80, 2002.
van Bellen, S., Dallaire, P.-L., Garneau, M., and Bergeron, Y.: Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada, Global Biogeochem. Cy., 25, GB2016, https://doi.org/10.1029/2010GB003877, 2011.
Vitt, D. H., Halsey, L. A., Bauer, I. E., and Campbell C.: Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene, Can. J. Earth Sci., 37, 683–693, 2000.
Vitt, D. H., Halsey, L. A., and Nicholson, B. J.: The Mackenzie River basin, in: The World's Largest Wetlands: Ecology and Conservation, edited by: Fraser, L. H. and Keddy, P. A., Cambridge University Press, Cambridge, 166–202, 2005.
Waddington, J. M. and Roulet, N. T.: Carbon balance of a boreal patterned peatland, Glob. Change Biol., 6, 87–97, 2000.
Wieder, R. K.: Past, present and future peatland carbon balance – An empirical model based on 210Pb-dated cores, Ecol. Appl., 7, 321–336, 2001.
Yefremov, S. P. and Yefremova, T. T.: Stocks and forms of deposited carbon and nitrogen in bog ecosystems of west Siberia, in: West Siberian Peatlands and Carbon Cycle: Past and Present, edited by: Vasiliev, S. V., Titlyanova, A. A., and Velichko, A. A., Agenstvo Sibprint, Novosibirsk, Russia, 148–151, 2001.
Yu, Z. C.: Holocene carbon accumulation of fen peatlands in boreal western Canada: Complex ecosystem response to climate variation and disturbance, Ecosystems, 9, 1278–1288, 2006.
Yu, Z. C.: Holocene carbon flux histories of the world's peatlands: Global carbon-cycle implications, Holocene, 21, 761–774, 2011.
Yu, Z. C., Beilman, D. W., and Jones, M. C.: Sensitivity of northern peatlands to Holocene climate change, in: Carbon Cycling in Northern Peatlands, edited by: Baird, A., Belyea, L., Comas, X., Reeve, A., and Slater, L., AGU, Geophys. Monog. Series, 184, 55–69, https://doi.org/10.1029/2008GM000822, 2009.
Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402, https://doi.org/10.1029/2010GL043584, 2010.
Yu, Z. C., Beilman, D. W., Frolking, S., MacDonald, G. M., Roulet, R. T., Camill, P., and Charman, D. J.: Peatlands and their role in the global carbon cycle, Eos, American Geophysical Union Transactions, 92, 97–98, 2011.
Yu, Z. C., Beilman, D. W., Frolking, S., MacDonald, G. M., Roulet, R. T., Camill, P., and Charman, D. J.: Peatlands as a model ecosystem of soil carbon dynamics: Reply to comment on "Peatlands and their role in the global carbon cycle", Eos, American Geophysical Union Transactions, 93, 31, 2012a.
Yu, Z. C., Loisel, J., Turetsky, M. R., Cai, S. S., Zhao, Y., Frolking, S., MacDonald, G. M., and Bubier, J. L.: Evidence for elevated emissions from high-latitude wetlands causing high atmospheric CH4 concentration in the early Holocene, in review, 2012b.
Zoltai, S. C.: Estimating the age of peat samples from their weight: a study from west-central Canada, Holocene, 1, 68–73, 1991.
Zoltai, S. C.: Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada, Arctic Alpine Res., 25, 240–246, 1993.
Zoltai, S. C., Siltanen, R. M., and Johnson, R. D.: A wetland database for the western boreal, subarctic, and arctic regions of Canada, NOR-X-368, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada, 2000.
Altmetrics
Final-revised paper
Preprint