Preprints
https://doi.org/10.5194/bg-2018-484
https://doi.org/10.5194/bg-2018-484
05 Dec 2018
 | 05 Dec 2018
Status: this preprint was under review for the journal BG but the revision was not accepted.

Effects of dry and wet Saharan dust deposition in the tropical North Atlantic Ocean

Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut

Abstract. Incubation experiments comprising Saharan dust additions were conducted in the tropical North Atlantic Ocean along an east-west transect at 12° N to study the phytoplankton response to nutrient release in oligotrophic seawater conditions. Experiments were performed at three stations (M1, M3, M4), mimicking wet and dry deposition of low and high amounts of Saharan dust deposition from two different dust sources (paleo-lake and sand dune). Dust particle sizes were adjusted to resemble dust that is naturally deposited over the ocean at the experiment sites. For wet dust deposition, the dust was pre-leached in acidified ‘artificial rainwater’ (H2SO4) for 16 to 24 hours, mimicking acid cloud processing at different pH values. Experiments were run up to eight days. Daily nutrient measurements of phosphate (PO43), silicate (SiO44), nitrate (NO3) and cell abundances were performed in addition to measurements of concentrations of total dissolved iron (DFe), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) at the start and at the end of the experiments.

A significant initial increase and subsequent gradual decrease in PO43, SiO44 and DFe concentrations were observed after wet dust deposition using high amounts of dust previously leached in low pH rain (H2SO4, pH = 2). Remarkably, the experiments showed no nutrient release (PO43, SiO44 and DFe) from dry-dust addition and the NO3 concentrations remained unaffected in all (dry and wet) experiments. The prokaryotic cyanobacterium Synechococcus spp. was the most prominent picophytoplankton in all mixed layer experiments. After an initial increase in cell abundance, a subsequent decrease (at M1) or a slight increase (at M3) with similar temporal dynamics was observed for dry and wet dust deposition experiments. The POC concentrations increased in all experiments and showed similar high values after both dry and wet dust deposition treatments, even though wet dust deposition is considered to have a higher potential to introduce bioavailable nutrients (i.e. PO43, SiO44 and DFe) into the otherwise nutrient-starved oligotrophic ocean. Our observations suggest that such nutrients may be more likely to favor the growth of the phytoplankton community when an additional N-source is also available. In addition to acting as a fertilizer, our results from both dry and wet dust deposition experiments suggest that Saharan dust particles might be incorporated into marine snow aggregates leading to similar high POC concentrations.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut

Viewed

Total article views: 2,160 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,402 688 70 2,160 164 61 84
  • HTML: 1,402
  • PDF: 688
  • XML: 70
  • Total: 2,160
  • Supplement: 164
  • BibTeX: 61
  • EndNote: 84
Views and downloads (calculated since 05 Dec 2018)
Cumulative views and downloads (calculated since 05 Dec 2018)

Viewed (geographical distribution)

Total article views: 1,933 (including HTML, PDF, and XML) Thereof 1,929 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 14 Dec 2024
Download
Short summary
This paper shows the differences of nutrient release after dry and wet Saharan dust deposition in the tropical North Atlantic Ocean at 12° N. Incubation experiments were conducted along an east-west transect. Large differences were observed between both deposition types with wet deposition being the dominant source of phosphate, silicate, and iron. Both deposition types suggest that Saharan dust particles might be incorporated into marine snow aggregates and act as ballast mineral.
Altmetrics