Preprints
https://doi.org/10.5194/bg-2020-36
https://doi.org/10.5194/bg-2020-36
25 Feb 2020
 | 25 Feb 2020
Status: this preprint has been withdrawn by the authors.

Improving maps of forest aboveground biomass: A combined approach using machine learning with a spatial statistical model

Shaoqing Dai, Xiaoman Zheng, Lei Gao, Chengdong Xu, Shudi Zuo, Qi Chen, Xiaohua Wei, and Yin Ren

Abstract. Aboveground biomass (AGB) estimates at the plot level plays a major part in connecting accurate single-tree AGB measurements to relatively difficult regional-scale AGB estimates. However, complex and spatially heterogeneous landscapes, where multiple environmental covariates (such as longitude, latitude, and forest structure) affect the spatial distribution of AGB, make upscaling of plot-level models more challenging. To address this challenge, this study proposes an approach that combines machine learning with spatial statistics to construct a more accurate plot-level AGB model. The study was conducted in a Eucalyptus plantation in Nanjing, China. We developed, evaluated, and compared the accuracy and performance of three different machine learning models [support vector machine (SVM), random forest (RF), and the radial basis function artificial neural network (RBF-ANN)], one spatial statistics model (P-BSHADE), and three combinations thereof (SVM & P-BSHADE, RF & P-BSHADE, RBF-ANN & P-BSHADE) for forest AGB estimates based on AGB data from 30 sample plots and their corresponding environmental covariates. The results show that the performance indices RMSE, nRMSE, MAE, and MRE of all combined models are substantially smaller than those of any individual models, with the RF & P-BSHADE combined method giving the smallest value. These results demonstrate clearly that combined models, especially the RF & P-BSHADE model, can improve the accuracy of plot-level AGB models and reduce uncertainty on plot-level AGB estimates or even on large-forested-landscape AGB estimates. These research results are important because they reduce the uncertainty in estimates of the regional carbon balance.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download

This preprint has been withdrawn.

Short summary
This paper proposes a method to integrate the advantages of machine learning and spatial...
Share
Altmetrics