Articles | Volume 10, issue 6
https://doi.org/10.5194/bg-10-3817-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-3817-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
I. Domaizon
INRA – UMR42 CARRTEL, Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes Limniques – 74203 Thonon-les-bains Cedex, France
O. Savichtcheva
INRA – UMR42 CARRTEL, Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes Limniques – 74203 Thonon-les-bains Cedex, France
D. Debroas
Université Blaise Pascal Clermont, UMR CNRS 6023, Laboratoire "Microorganismes: Génome & Environnement", 24, av. des Landais – BP 80026-63171 Aubière Cedex, France
F. Arnaud
CNRS Université de Savoie, UMR5204, EDYTEM, 73379 Le Bourget du Lac, France
C. Villar
INRA – UMR42 CARRTEL, Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes Limniques – 74203 Thonon-les-bains Cedex, France
C. Pignol
CNRS Université de Savoie, UMR5204, EDYTEM, 73379 Le Bourget du Lac, France
B. Alric
INRA – UMR42 CARRTEL, Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes Limniques – 74203 Thonon-les-bains Cedex, France
M. E. Perga
INRA – UMR42 CARRTEL, Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes Limniques – 74203 Thonon-les-bains Cedex, France
Related authors
No articles found.
Carlo Mologni, Marie Revel, Eric Chaumillon, Emmanuel Malet, Thibault Coulombier, Pierre Sabatier, Pierre Brigode, Gwenael Hervé, Anne-Lise Develle, Laure Schenini, Medhi Messous, Gourguen Davtian, Alain Carré, Delphine Bosch, Natacha Volto, Clément Ménard, Lamya Khalidi, and Fabien Arnaud
Clim. Past, 20, 1837–1860, https://doi.org/10.5194/cp-20-1837-2024, https://doi.org/10.5194/cp-20-1837-2024, 2024
Short summary
Short summary
The reactivity of local to regional hydrosystems to global changes remains understated in East African climate models. By reconstructing a chronicle of seasonal floods and droughts from a lacustrine sedimentary core, this paper highlights the impact of El Niño anomalies in the Awash River valley (Ethiopia). Studying regional hydrosystem feedbacks to global atmospheric anomalies is essential for better comprehending and mitigating the effects of global warming in extreme environments.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Hege Kilhavn, Isabelle Couchoud, Russell N. Drysdale, Carlos Rossi, John Hellstrom, Fabien Arnaud, and Henri Wong
Clim. Past, 18, 2321–2344, https://doi.org/10.5194/cp-18-2321-2022, https://doi.org/10.5194/cp-18-2321-2022, 2022
Short summary
Short summary
The analysis of stable carbon and oxygen isotopic ratios, trace element ratios, and growth rate from a Spanish speleothem provides quantitative information on past hydrological conditions during the early Holocene in south-western Europe. Our data show that the cave site experienced increased effective recharge during the 8.2 ka event. Additionally, the oxygen isotopes indicate a change in the isotopic composition of the moisture source, associated with the meltwater flux to the North Atlantic.
Pierre Sabatier, Marie Nicolle, Christine Piot, Christophe Colin, Maxime Debret, Didier Swingedouw, Yves Perrette, Marie-Charlotte Bellingery, Benjamin Chazeau, Anne-Lise Develle, Maxime Leblanc, Charlotte Skonieczny, Yoann Copard, Jean-Louis Reyss, Emmanuel Malet, Isabelle Jouffroy-Bapicot, Maëlle Kelner, Jérôme Poulenard, Julien Didier, Fabien Arnaud, and Boris Vannière
Clim. Past, 16, 283–298, https://doi.org/10.5194/cp-16-283-2020, https://doi.org/10.5194/cp-16-283-2020, 2020
Short summary
Short summary
High-resolution multiproxy analysis of sediment core from a high-elevation lake on Corsica allows us to reconstruct past African dust inputs to the western Mediterranean area over the last 3 millennia. Millennial variations of Saharan dust input have been correlated with the long-term southward migration of the Intertropical Convergence Zone, while short-term variations were associated with the North Atlantic Oscillation and total solar irradiance after and before 1070 cal BP, respectively.
Laurent Fouinat, Pierre Sabatier, Fernand David, Xavier Montet, Philippe Schoeneich, Eric Chaumillon, Jérôme Poulenard, and Fabien Arnaud
Clim. Past, 14, 1299–1313, https://doi.org/10.5194/cp-14-1299-2018, https://doi.org/10.5194/cp-14-1299-2018, 2018
Short summary
Short summary
In the context of a warming climate, mountain environments are especially vulnerable to a change in the risk pattern. Our study focuses on the past evolution of wet avalanches, likely triggered by warmer temperatures destabilizing the snow cover. In the last 3300 years we observed an increase of wet avalanche occurrence related to human activities, intensifying pressure on forest cover, as well as favorable climate conditions such as warmer temperatures coinciding with retreating glacier phases.
Laurent Fouinat, Pierre Sabatier, Jérôme Poulenard, Jean-Louis Reyss, Xavier Montet, and Fabien Arnaud
Earth Surf. Dynam., 5, 199–209, https://doi.org/10.5194/esurf-5-199-2017, https://doi.org/10.5194/esurf-5-199-2017, 2017
Short summary
Short summary
This study focuses on the creation of a novel CT scan methodology at the crossroads between medical imagery and earth sciences. Using specific density signatures, pebbles and/or organic matter characterizing wet avalanche deposits can be quantified in lake sediments. Starting from AD 1880, we were able to identify eight periods of higher avalanche activity from sediment cores. The use of CT scans, alongside existing approaches, opens up new possibilities in a wide variety of geoscience studies.
Damien Bouffard and Marie-Elodie Perga
Biogeosciences, 13, 3573–3584, https://doi.org/10.5194/bg-13-3573-2016, https://doi.org/10.5194/bg-13-3573-2016, 2016
Short summary
Short summary
This survey of an exceptional flood over Lake Geneva challenges the long-standing hypothesis that dense, particle-loaded and oxygenated rivers plunging into lakes necessarily contribute to deep-oxygen replenishment. We identified some river intrusions as hot spots for oxygen consumption, where inputs of fresh river-borne organic matter reactivate the respiration of more refractory lacustrine organic matter in a process referred to as "priming effect".
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Agawin, N. R. S., Duarte, C. M., and Agustí, S.: Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production, Limnol. Oceanogr., 45, 591–600, 2000.
Alric, B.: Influence des perturbations locales sur la vulnérabilité et la réponse des réseaux trophiques pélagiques lacustres face au changement climatique : une approche paléo-écologique basée sur les cladocères, PhD Thesis, University of Grenoble, Chambéry, France, 180 pp., 2012.
Alric, B. and Perga, M. E.: Effects of production, sedimentation and taphonomic processes on the composition and size structure of sedimenting cladoceran remains in a large deep subalpine lake: paleo-ecological implications, Hydrobiologia, 676, 1, 101–116, 2011.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J.: Basic local alignment search tool, J. Mol. Biol., 215, 403–410, 1990.
Anneville, O., Molinero, J. C., Souissi, S., Balvay, G. and Gerdeaux, D.: Long-term changes in the copepod community of Lake Geneva, J. Plankton Res., 29(Supplement 1), 149–159, 2006.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E. : HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region, Inter. J. Climatol., 46, 17–46, 2007.
Battarbee, R. V., Jones, V. J., Flower, R. J. Cameron, N. G., Bennion, H., Carvalho, L., and Juggins, S.: Diatoms, in: Tracking Environmental Change Using Lake Sediments-Volume 3: Terrestrial, Algal, and Siliceous Indicators, edited by: Smol, J. P., Birks, H. J. B., and Last, W. M., Kluwer Academic Publishers, Dordrecht, Boston, London, 155–202, 2001.
Becker, S., Fahrbach, M., Böger, P., and Ernst, A.: Quantitative Tracing, by Taq Nuclease Assays, of a Synechococcus ecotype in a highly diversified natural population, Appl. Environ. Microb., 68, 4486–4494, 2002.
Becker, S., Richi, P., and Ernst, A.: Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance, FEMS Microbiol. Ecol., 62, 64–77, 2007.
Becker, S., Sanchez-Baracaldo, P., Singh, A. K., and Hayes, P. K.: Spatio temporal niche partitioning of closely related picocyanobacteria clades and phycocyanin pigment types in Lake Constance (Germany), FEMS Microbiol. Ecolol., 80, 488–500, 2012.
Berdjeb, L., Pollet, T., Domaizon, I., and Jacquet, S.: Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes, BMC Microbiol., 11, 88, 2011.
Berthon, V., Marchetto, A., Rimet, F., Dormia, E., Jenny, J. P., Pignol, C., and Perga, M. E.: Trophic history of French sub-alpine lakes over the last 150 years: phosphorus reconstruction and assessment of taphonomic biases, J. Limnol., in press, 2013.
Boere, A. C., Rijpstra, W. I. C., De Lange, G. I., Damste, J. S. S., and Coolen, M. J. L.: Preservation potential of ancient plankton DNA in Pleistocene marine sediments, Geobiology, 9, 377–393, 2011.
Brazelton, W. J., Ludwig, K. a, Sogin, M. L., Andreishcheva, E. N., Kelley, D. S., Shen, C.-C., Edwards, R. L., and Baross, J. A.: Archaea and bacteria with surprising microdiversity show shifts in dominance over 1000-year time scales in hydrothermal chimneys., P. Natl. Acad. Sci. USA, 107, 1612–1617, 2010.
Bustin, S. A., Benes, V., Garson, J. A., Heliemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shippley, G. L., Vandesompele, J., and Wittwer, C. T.: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem., 55, 611–622, 2009.
Callieri, C.: Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs, Freshwater Rev., 1–28, 2008.
Callieri, C. and Pinolini, M. L.: Picoplankton in Lake Maggiore, Italy, Int. Rev. Ges. Hydrobiol., 80, 491–501, 1995
Callieri, C. and Piscia, R.: Photosynthetic efficiency and seasonality of autotrophic picoplankton in Lago Maggiore after its recovery, Freshwater Biol., 47, 941–956, 2002.
Callieri, C. and Stockner, J. G.: Picocyanobacteria success in oligotrophic lakes: fact or fiction?, J. Limnol., 59, 72–76, 2000.
Callieri, C. and Stockner, J. G.: Freshwater autotrophic picoplankton: a review, J. Limnol., 61, 1–14, 2002.
Caron, D. A., Pick, F. R., and Lean, R. A.: Chrococcoïd cyanobacteria in Lake Ontario: seasonal and vertical distribution during 1982, J. Phycol., 21, 171–175, 1985.
Cazala, C., Reyss, J. L., Decossas, J. L., and Royer, A.: Improvement in the determination of 238U, 228-234Th, 226-228Ra, 210Pb, and 7Be by gamma spectrometry on evaporated fresh water samples, Environ. Sci. Technol., 37, 4990–4993, 2003.
Chao, A.: Nonparametric estimation of the number of classes in a population, Scand. J. Stat., 11, 265–270, 1984.
Chao, A. and Lee, S. M.: Estimating the number of classes via sample coverage, J. Am. Stat. Assoc., 87, 210–217, 1992.
Collos, Y., Bec, B., Jauzein, C., Abadie, E., Laugier, T., Lautier, J., Pastoureaud, A., Souchu, P., and Vaquer, A.: Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern, J. Sea. Res., 61, 68–75, 2009.
Coolen, M. J. L. and Overmann, J.: 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment, Environ. Microbiol., 9, 238–249, 2007.
Coolen, M.J. L. and Gibson, J. A. E.: Ancient DNA in lake sediment records, PAGES news, 17, 104–106, 2009.
Coolen, M. J. L., Muyzer, G., Rijpstra, W. I. C., Schouten, S., Volkman, J. K., and Damste, J. S. S.: Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake, Earth Planet. Sc. Lett., 223, 225–239, 2004.
Coolen, M. J. L., Muyzer, G., Schouten, S., Volkman, J. K., and Sinninghe Damsté, J. S.: Sulfur and methane cycling during the Holocene in Ace Lake (Antarctica) revealed by lipid and DNA stratigraphy, in: Past and Present Marine Water Column Anoxia, NATO Science Series: IV-Earth and Environmental Sciences, edited by: Neretin, L. N., Springer, Dordrecht, 41–65, 2006.
Crosbie, N. D., Pockl, M., and Weisse, T.: Dispersal and Phylogenetic Diversity of Nonmarine Picocyanobacteria, Inferred from 16S rRNA Gene and cpcBA-Intergenic Spacer Sequence Analyses, Appl. Environ. Microb., 69, 5716–5721, 2003
D'Abbadie, M., Hofreiter, M., Vaisman, A., Loakes, D., Gasparutto, D., Cadet, J., Woodgate, R, Pääbo, S., and Holliger, P.: Molecular breeding of polymerases for amplification of ancient DNA, Nature Biotechnol, 25, 939–943, 2007.
Dittrich, M., Kurz, P., and Wehrli, B.: The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake, Geomicrobiol. J., 21, 45–53, 2004.
Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C., and Sebag, D.: Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: Scope and limitations, Org Geochem, 34, 327–343, 2003.
Dokulil, M. T., Jagsch, A., George, G. D., Anneville, O., Jankowski, T., Wahl, B., Lenhart, B., Blenckner, T., and Teubner, K.: Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation, Limnol. Oceanogr., 51, 2787–2793, 2006.
Dong, X., Bennion, H., Maberly, S. C., Sayer, C. D., Simpson, G. L., and Battarbee, R. W.: Nutrients exert a stronger control than climate on recent diatom communities in Esthwaite Water: evidence from monitoring and paleolimnological records, Freshwater Biol., 57, 2044–2056, https://doi.org/10.1111/j.1365-2427.2011.02670.x, 2012.
Dufresne, A., Salanoubat, M., Partensky, F., Artiguenave, F., Axmann, I.M., Barbe, V., Duprat, S., Galperin, M. Y., Koonin, E. V., Le Gall, F., Makarova, K. S., Ostrowski, M., Oztas, S., Robert, C., Rogozin, I. B., Scanlan, D. J., Tandeau de Marsac, N., Weissenbach, J., Wincker, P., Wolf, Y. I., and Hess, W. R.: Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome, P. Natl. Acad. Sci. USA , 100, 10020–10025, 2003.
Epp, L. S., Stoof K., Trauth M. H., and Tiedemann R.: Historical genetics on a sediment core from a Kenyan lake: Intraspecific genotype turnover in a tropical rotifer is related to past environmental changes, J. Paleolimnol., 43, 939–954, 2010.
Epp, L., Stoof-Leichsenring, K. R., Trauth, M. H., and Tiedemann, R.: Molecular profiling of diatom assemblages in tropical lake sediments using taxon-specific PCR and Denaturing High-Performance Liquid Chromatography (PCR-DHPLC), Mol. Ecol. Resour., 11, 842–853, 2011.
Ernst, S., Wollenzien, U. I. A., and Postius, C.: Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis, Microbiology, 149, 217–228, 2003.
Espitalié, J., Deroo, G., and Marquis, F. : La pyrolyse Rock-Eval et ses applications; première partie, Rev. I. Fr. Petr., 40, 563–579, 1985.
Fernández-Carazo, R., Hodgson, D. A., Convey, P., and Wilmotte, A.: Low cyanobacterial diversity in biotopes of the Transantarctic Mountains and Shackleton Range (80–82{\degree} S), Antarctica, FEMS Microbiol. Ecol., 77, 503–517, 2011.
Felföldi, T., Somogyi, B., Márialigeti, M., and Vörös, L.: Notes on the biogeography of non-marine planktonic picocyanobacteria: re-evaluating novelty, J. Plankton Res., 33, 1622–162, 2011.
Fogel, G. B., Collins, C. R., Li, J., and Brunk, C. F.: Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population, Microb. Ecol., 38, 93–113, 1999.
Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., and Hutchins, D. A.: Effects of increased temperature and CO2 on photosynthesis,growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria), J. Phycol., 43, 485–496, 2007.
Gaedke, U. and Weisse, T.: Seasonal and interannual variability of picocyanobacteria in Lake Constance (1987–1996), Arch. Hydrobiol., 53, 143–158, 1998.
Gerdeaux, D.: Does global warming threaten the dynamics of Arctic charr in Lake Geneva?, Hydrobiologia, 660, 69–78, 2011.
Gilbert, M. T. P., Bandlet, H. J., Hofreiter, M., and Barnes, I.: Assessing ancient DNA studies, Trends Ecol. Evol., 20, 541–544, 2005.
Giguet-Covex, C., Arnaud, F., Poulenard, J., Enters, D., Reyss, J. L., Millet, L., Lazzaroto, J., and Vidal, O.: Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps, J. Paleolimnol., 43, 171–190, 2010.
Groleau, A., Tassin, B., Paris, U., Marne, V. D., and Sarazin, G.: Calcite precipitation and interaction with phosphorus cycle in Lake Bourget (France), in: Geochemistry of the earth's surface, edited by: Ármannsson, H., Proceedings of the 5th International Symposium, Reykjavik, Iceland, 15–20 August 1999, 574 pp., 1999.
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Stat Science, 1, 297–318, 1986.
Huber, T., Faulkner, G., and Hugenholtz, P.: Bellerophon; a program to detect chimeric sequences in multiple sequence alignments, Bioinformatics, 20, 2317–2319, 2004.
Hughes, J. B., Hellmann, J., Ricketts, T., and Bohannan, B. J. M.: Counting the uncountable: statistical approaches to estimating microbial diversity, Appl. Environ. Microb., 67, 4399–4406, 2001.
Iteman, I., Rippka, R., Tandeau de Marsac, N., and Herdman, M.: Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria, Microbiology, 146, 1275–1286, 2000.
Ivanikova, N. V., Linda, C., Popels, R., McKay, M. L., and Bullerjahn, G. S.: Lake Superior supports novel clusters of cyanobacterial picoplankton, Appl. Environ. Microb., 73, 4055–4065, 2007.
Janse, I., Meima, M., Kardinaal, W. E. A., and Zwart, G.: High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gen electrophoresis, Appl. Environ. Microb., 69, 6634–6643, 2003.
Jansson, M., Olsson, H., and Pettersson, K.: Phosphatase; origin, characteristics and function in lakes, Hydrobiologia, 170, 157–175, 1988.
Jardillier, L., Zubkov, M. W., Pearman, J., and Scanlan, D. J.: Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean, ISME J., 4, 1180–1192, 2010.
Jasser, I., Krolicka, A., and Karnkowska-Ishikawa, A.: A novel phylogenetic clade of picocyanobacteria from the Mazurian lakes (Poland) reflects the early ontogeny of glacial lakes, FEMS Microbiol. Ecol., 75, 89–98, 2011.
Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S., and Chisholm, S. W.: Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients, Science, 311, 1737–1740, 2006.
Juggins, S.: C2 Version 1.7 User guide. Software for ecological and palaeoecological data analysis and visualisation, Newcastle upon Tyne, UK, 2007.
Jukes, T. H. and Cantor, C. R.: Evolution of protein molecules, in: Mammalian protein metabolism, edited by: Munro, H. N., Academic Press, New York, 21–132, 1969.
Kamjunke, N., Straile, D., and Gaedke, U.: Response of heterotrophic bacteria, autotrophic picoplankton and heterotrophic nanoflagellates to re-oligotrophication, J. Plankton Res., 31, 899–907, 2009.
Katano, T., Kaneda, A., Takeoka, H., and Nakano, S.: Seasonal changes in the abundance and composition of picophytoplankton in relation to the occurrence of Kyucho and bottom intrusion in Uchiumi Bay, Japan, Mar. Ecol. Prog. Ser., 298, 59–67, 2005.
Kemp, P. F. and Aller, J. Y.: Estimating prokaryotic diversity: When are 16S rDNA libraries large enough?, Limnol. Oceanogr.- Meth., 2, 114–125, 2004.
Krishnaswami, S., Lal, D., Martin, J. M., and Meybeck, M.: Geochronology of lake sediments, Earth Planet. Sci. Lett., 11, 407–414, 1971.
Laurent, P. : Étude de la pollution du lac du Bourget, campagne 1969, Rapport Inra-Thonon, 16 pp., 1970.
Lozupone, C. and Knight, R.: UniFrac: a new phylo- genetic method for comparing microbial communities, Appl. Environ. Microb., 71, 8228–8235, 2005.
Marra, G. and Wood, S. N.: Practical variable selection for generalized additive models, Comput Stat Data An, 55, 2372–2387, 2011.
Matisoo-Smith, E., Roberts, K., Welikala, N., Tannock, G., Chester, P., Feek, D., and Flenley, J.: Recovery of DNA and pollen from New Zealand lake sediments, Quat. Int., 184, 139–149, 2007.
Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green J. L., Horner-Devine, M. C., Kane, M., Krumins, J. A., Kuske, C. R., Morin, P. J., Naeem, S., Øvreås, L., Reysenbach, A-L., Smith V. H., and Staley, J. T.: Microbial biogeography: Putting microorganisms on the map, Nat. Rev. Microbiol., 4, 102–112, 2006.
Mazard, S., Ostrowski, M., Partensky, F., and Scanlan, D.J.: Multilocus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus, Environ. Microbiol., 14, 372–386, 2011.
Mazard, S., Wilson, W. H., and Scanlan, D. J.: Dissecting the physiological response to phosphorus stress in marine Synechococcus isolates (Cyanophyceae), J. Phycol., 48, 94–105, 2012.
Millet, L., Giguet-Covex, C., Verneaux, V., Druart, J. C., Adatte, T., and Arnaud, F. : Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state, J. Paleolimnol., 44, 963–978, 2010.
Moutin, T., Thinsgtad, T. F., Van Wambeke, F., Marie, D., Slawyk, G., Raimbault, P., and Claustre, H.: Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus?, Limnol. Oceanogr., 47, 1562–1567, 2002.
Nei, M.: Molecular Evolutionary Genetics, New York, Columbia, p. 512, 1987.
Nolte, V., Pandey, R. V., Jost, S., Medinger, R., Ottenwalder, B., Boenigk, J., and Schlötterer, C.: Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity, Mol. Ecol., 19, 2908–2915, 2010.
Overpeck, J. T., Webb, T., and Prentice, I. C.: Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs, Quat. Res., 23, 87–108, 1985.
Palenik, B., Brahamsha, B., Larimer, F. W., Land, M., Hauser, L., Chain, P., Lamerdin, J., Regala, W., Allen, E. E., McCarren, J., Paulsen, I., Dufresne, A., Partensky, F., Webb, E. A., and Waterbury J.: The genome of a motile marine Synechococcus, Nature, 424, 1037–1042, 2003.
Palenik B., Ren Q. H., Dupont C. L., Myers G. S., Heidelberg J. F., Badger J. H., Madupu R., Nelson W. C., Brinkac, L. M., Dodson, R. J., Durkin, A. S., Daugherty, S. C., Sullivan, S. A., Khouri, Y., Mohamoud, Y., Halpin, R., and Paulsen, I. T.: Genome sequence of Synechococcus CC9311, insights into adaptation to a coastal environment, P. Natl. Acad. Sci. USA, 103, 13555–13559, 2006.
Panieri, G., Lugli, S., Manzi, V., Roveri, M., Schreiber, B. C., and Palinska, K. A.: Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy, Geobiology, 8, 101–111, 2010.
Personnic, S., Domaizon, I., Sime-Ngando, T., and Jacquet, S.: Seasonal variations of microbial abundances and virus- vs. flagellate-induced mortality of picoplankton in three peri-alpine lakes, J. Plankton Res., 31, 1161–1177, 2009.
Pitt, F. D., Mazard, S., Humphreys, L., and Scanlan, D. J.: Functional Characterization of Synechocystis sp. Strain PCC 6803 pst1 and pst2 Gene Clusters Reveals a Novel Strategy for Phosphate Uptake in a Freshwater Cyanobacterium. J Bacteriol., 192, 3512–3523, 2010.
Postius, C. and Ernst, A.: Mechanisms of dominance: coexistence of picocyanobacterial genotypes in a freshwater ecosystem, Arch. Microbiol., 172, 69–75, 1999.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org, 2008.
Reyss, J. L., Schimdt, S., Legeleux, F., and Bonte, P.: Large low background well type detectors for measurements of environmental radioactivity, Nucl. Instrum. Methods A, 357, 391–397, 1995.
Rippka, R.: Isolation and purification of cyanobacteria, in: Metods in enzymology, edited by: Packer, L. and Glazer, A. N., Cyanobacteria, Academic Press New York, USA, 167, 3–28, 1998.
Robertson, B. R., Tezuka, N., and Watanabe, M. M.: Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanon operon reveal multiple evolutionary lines and reflect phycobilin content, Int. J. Syst. Evol. Micr., 51, 861–871, 2001.
Rocap, G., Larimer, F. W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N. A., Arellano, A., Coleman, M., Hauser, L., Hess, W. R., Johnson, Z. I., Land, M., Lindell, D., Post, A. F., Regala, W., Shah, M., Shaw, S. L., Steglich, C., Sullivan, M. B., Ting, C. S., Tolonen, A., Webb, E. A., Zinser, E. R., and Chisholm, S. W.: Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation, Nature, 424, 1042–1047, 2003.
Ruggiu, D., Morabito, G., Panzani, P., and Pugnetti, A.: Trends and relations among basic phytoplankton characteristics in the course of the long-term oligotrophication of Lago Maggiore, in: Phytoplankton and trophic gradients, edited by: Alvarez-Cobelas, M., Reynolds, S., Sanchez-Castillo, P. and Kristiansen, J., Kluwer Academic Publisher, Hydrobiologia, 369/370, 243–257, 1998.
Sanchez-Baracaldo, P., Handley, B. A., and Hayest, P. K.: Picocyanobacterial Community Structure of Freshwater Lakes and the Baltic Sea Revealed by Phylogenetic Analyses and Clade-Specific Quantitative PCR, Microbiology, 154, 3347–3357, 2008.
Savichtcheva, O., Debroas, D., Kurmayer, R., Villar, C., Jenny, J. P., Arnaud, F., Perga, M. E., and Domaizon, I.: Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total Cyanobacteria in preserveed DNA isolated from lake sediments, Appl. Environ. Microbiol., 77, 8744–8753, 2011.
Savichtcheva, O., Debroas, D., Perga, M. E., Arnaud, F., Villar, C., Jenny, J. P., and Domaizon, I.: Diversity and dynamics of cyanobacteria inferred from sediment DNA: focus on Planktothrix rubescens in re-oligotrophicated Lake Bourget, in preparation, 2013.
Schloss, P. D. and Handelsman, J.: Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness, Appl. Environ. Microb., 71, 1501–1506, 2005.
Scovhus, T. L., Ramsing, N. B., Holmstrom, C., Kjelleberg, S., and Dahllof, I.: Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples, Appl. Environ. Microb., 70, 2373–2382, 2004.
Simpson, G. L. and Anderson, N. J.: Deciphering the effect of climate change and separating the influence of confounding factors in sediment core records using additive models, Limnol. Oceanogr., 54, 2529–2541, 2009.
Stockner, J., Callieri, C., and Cronberg, G.: Picoplankton and other non-bloom forming cyanobacteria in lakes, in: The Ecology of Cyano-bacteria. Their Diversity in Time and Space, edited by: Whitton, B. A. and Potts, M., Kluwer Academic Publishers, Dordrecht, the Netherlands, 195–238, 2000.
Stoof-Leichsenring, K. R., Epp, L., Trauth, M. H., and Tiedemann, R.: Hidden diversity in diatoms of Kenyan Lake Naivasha: a genetic approach detects temporal variation, Mol. Ecol., 21, 1918–1930, 2012.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S.: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Mol. Biol. Evol., 28, 2731–2739, 2011.
Tao, M., Xie, P., Chen, J., Qin, B., Zhang, D., Niu, Y., Zhang, M., Wang, Q., and Wu, L.: Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu, PLoS ONE, 7, e32020, https://doi.org/10.1371/journal.pone.0032020, 2012.
Ter Braak, C. J. F. and Juggins, S.: Weigthed averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages, Hydrobiologia, 269, 485–502, 1993.
Ter Braak, C. J. F. and Van Dame, H.: Inferring pH from diatoms: a comparison of old and new calibration methods, Hydrobiologia, 178, 209–223, 1989.
Thompson, J. D., Higgins, D. G., and Gibson, T. J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic. Acids. Res., 22, 4673–4680, 1994.
Urbach, E., Scanlan, D. J., Distel, D. L., Waterbury, J. B, and Chisholm, S. W.: Rapid Diversification of Marine Picophytoplankton with Dissimilar Light-Harvesting Structures Inferred from Sequences of Prochlorococcus and Synechococcus (Cyanobacteria), J. Mol. Evol., 46, 557–572, 1998.
Vadstein, O.: Heterotrophic, planktonic bacteria and cycling of phosphorus: phosphorus requirements, competitive ability and food web interactions. Adv Microb Ecol, 16, 115–168, 2000.
Vaitomaa, J., Rantala, A., Halinen, K., Rouhiainen, L., Tallberg, P., Mokelke, L., and Sivonen, K.: Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes, Appl. Environ. Microb., 69, 7289–7297, 2003.
Van Mooy, B. A., Rocap, G., Fredricks, H. F., Evans, C. T., and Devol, A. H.: Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments, P. Natl. Acad. Sci. USA, 103, 8607–8612, 2006.
Wilhelm, S. W., Bullerjahn, G. S., Eldridge, M. L., Rinta-Kanto, J. M., and Bourbonniere, R. A.: Seasonal hypoxia and the genetic diversity of prokaryote populations in the central basin hypolimnion of Lake Erie : evidence for abundant cyanobacteria and photosynthesis, J. Great Lakes Res., 32, 657–671, 2006.
Willerslev, E., Cappellini, E., Boomsma, W.,Nielsen, R., Hebsgaard, M.B., Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-Jensen, D., Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J-L., Nathan, R., Armitage, S., de Hoog, C-J., Alfimov, V., Christl, M., Beer, J., Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani, E., and Collins, M. J.: Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland, Science, 317, 111–114, 2007.
Wilmotte, A.: Molecular evolution and taxonomy of the Cyanobacteria. In: Bryant, D. A. The Molecular Biology of Cyanobacteria, Kluwer Academic, Dordrecht, 1–25, 1994.
Wilmotte, A. and Herdman, M.: Phylogenetic relationships among the cyanobacteria based on 16S rDNA sequences, Manual of Systematic Bacteriology, Bergey's Manual of Systematic Bacteriology, edited by: Garrity, G. M., Boone, D. R., Castenholz, R. W., Springer New York, USA, 487–493, 2001.
Wood, S. N.: Generalized Additive Models: An Introduction with R. Chapman and Hall Boca Raton, FL, USA, 2006.
Wu, Q. L., Xing, P., and Liu, W. T.: East Tibetan lakes harbour novel clusters of picocyanobacteria as inferred from the 16S–23S rRNA internal transcribed spacer sequences, Microb. Ecol., 59, 614–622, 2010.
Wunsam, S. and Schmidt, R.: A diatom-phoshprus trasnfer function for alpine and pre-alpine lakes. Memorie dell'Instituto Italiano di Idrobiologia, 53, 85–99, 1995.
Zolitschka, B.: Dating based on freshwater and marine laminated sediments. In: Global change in the Holocene, edited by: Mackay, A., Battarbee, R., Birks, J., Oldfield, F., Edward Arnold Publishers, London, 92–106, 2003.
Zwirglmaier, K., Jardillier, L., Ostrowski, M., Mazard, S., Garczarek, L., Vaulot, D., Not, F., Massana, R., Ulloa, O., and Scanlan, D. J.: Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages amongst oceanic biomes, Environ. Microbiol., 10, 147–161, 2008.
Altmetrics
Final-revised paper
Preprint