Articles | Volume 10, issue 2
https://doi.org/10.5194/bg-10-699-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-699-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High-latitude cooling associated with landscape changes from North American boreal forest fires
B. M. Rogers
Department of Earth System Science, University of California, Irvine, California, USA
J. T. Randerson
Department of Earth System Science, University of California, Irvine, California, USA
G. B. Bonan
Terrestrial Sciences Section, Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA
Related authors
Lucas R. Diaz, Clement J. F. Delcourt, Moritz Langer, Michael M. Loranty, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Anna C. Talucci, Jorien E. Vonk, Sonam Wangchuk, and Sander Veraverbeke
Earth Syst. Dynam., 15, 1459–1482, https://doi.org/10.5194/esd-15-1459-2024, https://doi.org/10.5194/esd-15-1459-2024, 2024
Short summary
Short summary
Our study in eastern Siberia investigated how fires affect permafrost thaw depth in larch forests. We found that fire induces deeper thaw, yet this process was mediated by topography and vegetation. By combining field and satellite data, we estimated summer thaw depth across an entire fire scar. This research provides insights into post-fire permafrost dynamics and the use of satellite data for mapping fire-induced permafrost thaw.
Elchin E. Jafarov, Helene Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-158, https://doi.org/10.5194/gmd-2024-158, 2024
Preprint under review for GMD
Short summary
Short summary
Thawing permafrost could greatly impact global climate. Our study improves modeling of carbon cycling in Arctic ecosystems. We developed an automated method to fine-tune a model that simulates carbon and nitrogen flows, using computer-generated data. Using computer-generated data, we tested our method and found it enhances accuracy and reduces the time needed for calibration. This work helps make climate predictions more reliable in sensitive permafrost regions.
Surendra Shrestha, Christopher A. Williams, Brendan M. Rogers, John Rogan, and Dominik Kulakowski
Biogeosciences, 21, 2207–2226, https://doi.org/10.5194/bg-21-2207-2024, https://doi.org/10.5194/bg-21-2207-2024, 2024
Short summary
Short summary
Here, we generated chronosequences of leaf area index (LAI) and surface albedo as a function of time since fire to demonstrate the differences in the characteristic trajectories of post-fire biophysical changes among seven forest types and 21 level III ecoregions of the western United States (US) using satellite data from different sources. We also demonstrated how climate played the dominant role in the recovery of LAI and albedo 10 and 20 years after wildfire events in the western US.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
Michael Moubarak, Seeta Sistla, Stefano Potter, Susan M. Natali, and Brendan M. Rogers
Biogeosciences, 20, 1537–1557, https://doi.org/10.5194/bg-20-1537-2023, https://doi.org/10.5194/bg-20-1537-2023, 2023
Short summary
Short summary
Tundra wildfires are increasing in frequency and severity with climate change. We show using a combination of field measurements and computational modeling that tundra wildfires result in a positive feedback to climate change by emitting significant amounts of long-lived greenhouse gasses. With these effects, attention to tundra fires is necessary for mitigating climate change.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Guido R. van der Werf, James T. Randerson, Louis Giglio, Thijs T. van Leeuwen, Yang Chen, Brendan M. Rogers, Mingquan Mu, Margreet J. E. van Marle, Douglas C. Morton, G. James Collatz, Robert J. Yokelson, and Prasad S. Kasibhatla
Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, https://doi.org/10.5194/essd-9-697-2017, 2017
Short summary
Short summary
Fires occur in many vegetation types and are sometimes natural but often ignited by humans for various purposes. We have estimated how much area they burn globally and what their emissions are. Total burned area is roughly equivalent to the size of the EU with most fires burning in tropical savannas. Their emissions vary substantially from year to year and contribute to the atmospheric burdens of many trace gases and aerosols. The 20-year dataset is mostly suited for large-scale assessments.
R. A. Fisher, S. Muszala, M. Verteinstein, P. Lawrence, C. Xu, N. G. McDowell, R. G. Knox, C. Koven, J. Holm, B. M. Rogers, A. Spessa, D. Lawrence, and G. Bonan
Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, https://doi.org/10.5194/gmd-8-3593-2015, 2015
Short summary
Short summary
Predicting the distribution of vegetation under novel climates is important, both to understand how climate change will impact ecosystem services, but also to understand how vegetation changes might affect the carbon, energy and water cycles. Historically, predictions have been heavily dependent upon observations of existing vegetation boundaries. In this paper, we attempt to predict ecosystem boundaries from the ``bottom up'', and illustrate the complexities and promise of this approach.
S. Veraverbeke, B. M. Rogers, and J. T. Randerson
Biogeosciences, 12, 3579–3601, https://doi.org/10.5194/bg-12-3579-2015, https://doi.org/10.5194/bg-12-3579-2015, 2015
Short summary
Short summary
We developed a statistical model of daily carbon consumption by fire for Alaska at 450m resolution between 2001 and 2012. We used field measurements from black spruce forests in Alaska to build nonlinear multiplicative models predicting carbon consumption by fire in response to environmental variables. Our analysis highlights the importance of accounting for the spatial heterogeneity within fuels and consumption when extrapolating emissions in space and time.
Lucas R. Diaz, Clement J. F. Delcourt, Moritz Langer, Michael M. Loranty, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Anna C. Talucci, Jorien E. Vonk, Sonam Wangchuk, and Sander Veraverbeke
Earth Syst. Dynam., 15, 1459–1482, https://doi.org/10.5194/esd-15-1459-2024, https://doi.org/10.5194/esd-15-1459-2024, 2024
Short summary
Short summary
Our study in eastern Siberia investigated how fires affect permafrost thaw depth in larch forests. We found that fire induces deeper thaw, yet this process was mediated by topography and vegetation. By combining field and satellite data, we estimated summer thaw depth across an entire fire scar. This research provides insights into post-fire permafrost dynamics and the use of satellite data for mapping fire-induced permafrost thaw.
Elchin E. Jafarov, Helene Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-158, https://doi.org/10.5194/gmd-2024-158, 2024
Preprint under review for GMD
Short summary
Short summary
Thawing permafrost could greatly impact global climate. Our study improves modeling of carbon cycling in Arctic ecosystems. We developed an automated method to fine-tune a model that simulates carbon and nitrogen flows, using computer-generated data. Using computer-generated data, we tested our method and found it enhances accuracy and reduces the time needed for calibration. This work helps make climate predictions more reliable in sensitive permafrost regions.
Surendra Shrestha, Christopher A. Williams, Brendan M. Rogers, John Rogan, and Dominik Kulakowski
Biogeosciences, 21, 2207–2226, https://doi.org/10.5194/bg-21-2207-2024, https://doi.org/10.5194/bg-21-2207-2024, 2024
Short summary
Short summary
Here, we generated chronosequences of leaf area index (LAI) and surface albedo as a function of time since fire to demonstrate the differences in the characteristic trajectories of post-fire biophysical changes among seven forest types and 21 level III ecoregions of the western United States (US) using satellite data from different sources. We also demonstrated how climate played the dominant role in the recovery of LAI and albedo 10 and 20 years after wildfire events in the western US.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire M. Zarakas, Charles Vardeman, and Valerio Pascucci
Geosci. Model Dev., 16, 5979–6000, https://doi.org/10.5194/gmd-16-5979-2023, https://doi.org/10.5194/gmd-16-5979-2023, 2023
Short summary
Short summary
We present a novel cyberinfrastructure system that uses National Ecological Observatory Network measurements to run Community Terrestrial System Model point simulations in a containerized system. The simple interface and tutorials expand access to data and models used in Earth system research by removing technical barriers and facilitating research, educational opportunities, and community engagement. The NCAR–NEON system enables convergence of climate and ecological sciences.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
Michael Moubarak, Seeta Sistla, Stefano Potter, Susan M. Natali, and Brendan M. Rogers
Biogeosciences, 20, 1537–1557, https://doi.org/10.5194/bg-20-1537-2023, https://doi.org/10.5194/bg-20-1537-2023, 2023
Short summary
Short summary
Tundra wildfires are increasing in frequency and severity with climate change. We show using a combination of field measurements and computational modeling that tundra wildfires result in a positive feedback to climate change by emitting significant amounts of long-lived greenhouse gasses. With these effects, attention to tundra fires is necessary for mitigating climate change.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Gordon B. Bonan, Edward G. Patton, Ian N. Harman, Keith W. Oleson, John J. Finnigan, Yaqiong Lu, and Elizabeth A. Burakowski
Geosci. Model Dev., 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018, https://doi.org/10.5194/gmd-11-1467-2018, 2018
Short summary
Short summary
Land surface models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer parameterization in a multilayer canopy model to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. The multilayer canopy improves simulations compared with the Community Land Model (CLM4.5) while also advancing the theoretical basis for surface flux parameterizations.
Guido R. van der Werf, James T. Randerson, Louis Giglio, Thijs T. van Leeuwen, Yang Chen, Brendan M. Rogers, Mingquan Mu, Margreet J. E. van Marle, Douglas C. Morton, G. James Collatz, Robert J. Yokelson, and Prasad S. Kasibhatla
Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, https://doi.org/10.5194/essd-9-697-2017, 2017
Short summary
Short summary
Fires occur in many vegetation types and are sometimes natural but often ignited by humans for various purposes. We have estimated how much area they burn globally and what their emissions are. Total burned area is roughly equivalent to the size of the EU with most fires burning in tropical savannas. Their emissions vary substantially from year to year and contribute to the atmospheric burdens of many trace gases and aerosols. The 20-year dataset is mostly suited for large-scale assessments.
R. A. Fisher, S. Muszala, M. Verteinstein, P. Lawrence, C. Xu, N. G. McDowell, R. G. Knox, C. Koven, J. Holm, B. M. Rogers, A. Spessa, D. Lawrence, and G. Bonan
Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, https://doi.org/10.5194/gmd-8-3593-2015, 2015
Short summary
Short summary
Predicting the distribution of vegetation under novel climates is important, both to understand how climate change will impact ecosystem services, but also to understand how vegetation changes might affect the carbon, energy and water cycles. Historically, predictions have been heavily dependent upon observations of existing vegetation boundaries. In this paper, we attempt to predict ecosystem boundaries from the ``bottom up'', and illustrate the complexities and promise of this approach.
W. R. Wieder, A. S. Grandy, C. M. Kallenbach, P. G. Taylor, and G. B. Bonan
Geosci. Model Dev., 8, 1789–1808, https://doi.org/10.5194/gmd-8-1789-2015, https://doi.org/10.5194/gmd-8-1789-2015, 2015
Short summary
Short summary
Projecting biogeochemical responses to environmental change requires multi-scaled perspectives. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon cycle–climate feedbacks. Here, we apply and evaluate representations of microbial functional diversity across scales and find that such representations may be critical to accurately project soil carbon dynamics in a changing world.
S. Veraverbeke, B. M. Rogers, and J. T. Randerson
Biogeosciences, 12, 3579–3601, https://doi.org/10.5194/bg-12-3579-2015, https://doi.org/10.5194/bg-12-3579-2015, 2015
Short summary
Short summary
We developed a statistical model of daily carbon consumption by fire for Alaska at 450m resolution between 2001 and 2012. We used field measurements from black spruce forests in Alaska to build nonlinear multiplicative models predicting carbon consumption by fire in response to environmental variables. Our analysis highlights the importance of accounting for the spatial heterogeneity within fuels and consumption when extrapolating emissions in space and time.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
G. B. Bonan, M. Williams, R. A. Fisher, and K. W. Oleson
Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, https://doi.org/10.5194/gmd-7-2193-2014, 2014
W. R. Wieder, A. S. Grandy, C. M. Kallenbach, and G. B. Bonan
Biogeosciences, 11, 3899–3917, https://doi.org/10.5194/bg-11-3899-2014, https://doi.org/10.5194/bg-11-3899-2014, 2014
Y. H. Mao, Q. B. Li, D. Chen, L. Zhang, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 14, 7195–7211, https://doi.org/10.5194/acp-14-7195-2014, https://doi.org/10.5194/acp-14-7195-2014, 2014
S. Levis, M. D. Hartman, and G. B. Bonan
Geosci. Model Dev., 7, 613–620, https://doi.org/10.5194/gmd-7-613-2014, https://doi.org/10.5194/gmd-7-613-2014, 2014
C. Yue, P. Ciais, S. Luyssaert, P. Cadule, J. Harden, J. Randerson, V. Bellassen, T. Wang, S. L. Piao, B. Poulter, and N. Viovy
Biogeosciences, 10, 8233–8252, https://doi.org/10.5194/bg-10-8233-2013, https://doi.org/10.5194/bg-10-8233-2013, 2013
C. D. Koven, W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. D. Collins, G. B. Bonan, D. M. Lawrence, and S. C. Swenson
Biogeosciences, 10, 7109–7131, https://doi.org/10.5194/bg-10-7109-2013, https://doi.org/10.5194/bg-10-7109-2013, 2013
D. Lombardozzi, J. P. Sparks, and G. Bonan
Biogeosciences, 10, 6815–6831, https://doi.org/10.5194/bg-10-6815-2013, https://doi.org/10.5194/bg-10-6815-2013, 2013
D. Wunch, P. O. Wennberg, J. Messerschmidt, N. C. Parazoo, G. C. Toon, N. M. Deutscher, G. Keppel-Aleks, C. M. Roehl, J. T. Randerson, T. Warneke, and J. Notholt
Atmos. Chem. Phys., 13, 9447–9459, https://doi.org/10.5194/acp-13-9447-2013, https://doi.org/10.5194/acp-13-9447-2013, 2013
R. Q. Thomas, G. B. Bonan, and C. L. Goodale
Biogeosciences, 10, 3869–3887, https://doi.org/10.5194/bg-10-3869-2013, https://doi.org/10.5194/bg-10-3869-2013, 2013
M. G. Tosca, J. T. Randerson, and C. S. Zender
Atmos. Chem. Phys., 13, 5227–5241, https://doi.org/10.5194/acp-13-5227-2013, https://doi.org/10.5194/acp-13-5227-2013, 2013
K. E. O. Todd-Brown, J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison
Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, https://doi.org/10.5194/bg-10-1717-2013, 2013
D. C. Morton, G. J. Collatz, D. Wang, J. T. Randerson, L. Giglio, and Y. Chen
Biogeosciences, 10, 247–260, https://doi.org/10.5194/bg-10-247-2013, https://doi.org/10.5194/bg-10-247-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Evolution of System Earth
Technical note: Low meteorological influence found in 2019 Amazonia fires
Understanding tropical forest abiotic response to hurricanes using experimental manipulations, field observations, and satellite data
Towards a global understanding of vegetation–climate dynamics at multiple timescales
Evaluating and improving the Community Land Model's sensitivity to land cover
The extant shore platform stromatolite (SPS) facies association: a glimpse into the Archean?
Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil
Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland
Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products
Seasonal variation in grass water content estimated from proximal sensing and MODIS time series in a Mediterranean Fluxnet site
A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions
Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region
Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates
Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa, Balkans
Douglas I. Kelley, Chantelle Burton, Chris Huntingford, Megan A. J. Brown, Rhys Whitley, and Ning Dong
Biogeosciences, 18, 787–804, https://doi.org/10.5194/bg-18-787-2021, https://doi.org/10.5194/bg-18-787-2021, 2021
Short summary
Short summary
Initial evidence suggests human ignitions or landscape changes caused most Amazon fires during August 2019. However, confirmation is needed that meteorological conditions did not have a substantial role. Assessing the influence of historical weather on burning in an uncertainty framework, we find that 2019 meteorological conditions alone should have resulted in much less fire than observed. We conclude socio-economic factors likely had a strong role in the high recorded 2019 fire activity.
Ashley E. Van Beusekom, Grizelle González, Sarah Stankavich, Jess K. Zimmerman, and Alonso Ramírez
Biogeosciences, 17, 3149–3163, https://doi.org/10.5194/bg-17-3149-2020, https://doi.org/10.5194/bg-17-3149-2020, 2020
Short summary
Short summary
This study looks at forest abiotic responses to canopy openness and debris deposition that follow a hurricane. We find that recovery to full canopy may take over half a decade and that recovery of humidity, soil moisture, and leaf saturation under the canopy is not monotonic and may temporarily look recovered before the response is over. Furthermore, we find that satellite data show a quicker recovery than field data, necessitating caution when looking at responses to hurricanes with satellites.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Ronny Meier, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling, and Wim Thiery
Biogeosciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018, https://doi.org/10.5194/bg-15-4731-2018, 2018
Short summary
Short summary
Deforestation not only releases carbon dioxide to the atmosphere but also affects local climatic conditions by altering energy fluxes at the land surface and thereby the local temperature. Here, we evaluate the local impact of deforestation in a widely used land surface model. We find that the model reproduces the daytime warming effect of deforestation well. On the other hand, the warmer temperatures observed during night in forests are not present in this model.
Alan Smith, Andrew Cooper, Saumitra Misra, Vishal Bharuth, Lisa Guastella, and Riaan Botes
Biogeosciences, 15, 2189–2203, https://doi.org/10.5194/bg-15-2189-2018, https://doi.org/10.5194/bg-15-2189-2018, 2018
Short summary
Short summary
Growing shore-platform stromatolites are increasingly found on modern rocky coasts. Stromatolites are very similar to Archean and Proterozoic stromatolites. A study of modern stromatolites may shed light on the conditions that existed on the early Earth and other planets and possibly provide information on how life began.
Luciana M. Sanders, Kathryn Taffs, Debra Stokes, Christian J. Sanders, Alex Enrich-Prast, Leonardo Amora-Nogueira, and Humberto Marotta
Biogeosciences, 15, 447–455, https://doi.org/10.5194/bg-15-447-2018, https://doi.org/10.5194/bg-15-447-2018, 2018
Short summary
Short summary
The Amazon rainforest produce large quantities of carbon, a portion of which is deposited in floodplain lakes. This research shows a potentially important spatial dependence of the carbon deposition in the Amazon lacustrine sediments in relation to deforestation rates in the catchment. The findings presented here highlight the effects of abrupt and temporary events in which some of the biomass released by the deforestation reach the depositional environments in the Amazon floodplains.
Etienne Godin, Daniel Fortier, and Esther Lévesque
Biogeosciences, 13, 1439–1452, https://doi.org/10.5194/bg-13-1439-2016, https://doi.org/10.5194/bg-13-1439-2016, 2016
Short summary
Short summary
Bowl-shaped ice-wedge polygons in permafrost regions can retain snowmelt water and moisture in their center. On Bylot Island (NU, CA), a rapidly developing thermal erosion gully eroded the polygons' ridges, impacting the polygon centers' ground moisture and temperature, plant cover and species. An intact polygon was homogeneous in its center for the aforementioned elements, whereas eroded polygons had a varying response following the breach, with heterogeneity as their new equilibrium state.
M. Marshall, E. Okuto, Y. Kang, E. Opiyo, and M. Ahmed
Biogeosciences, 13, 625–639, https://doi.org/10.5194/bg-13-625-2016, https://doi.org/10.5194/bg-13-625-2016, 2016
Short summary
Short summary
We compared two new Earth observation based long-term global vegetation index products used in global change research (Global Inventory Modeling and Mapping Studies and Vegetation Index and Phenology Lab- VIP version 3). The two products showed a high level of consistency throughout the primary growing season and were less consistent during green-up and brown-down that impacted trends in phenology. VIP was generally higher and more variable leading to poorer correlations with in situ data
G. Mendiguren, M. Pilar Martín, H. Nieto, J. Pacheco-Labrador, and S. Jurdao
Biogeosciences, 12, 5523–5535, https://doi.org/10.5194/bg-12-5523-2015, https://doi.org/10.5194/bg-12-5523-2015, 2015
S. Chen, J. Beardall, and K. Gao
Biogeosciences, 11, 4829–4837, https://doi.org/10.5194/bg-11-4829-2014, https://doi.org/10.5194/bg-11-4829-2014, 2014
F. Günther, P. P. Overduin, A. V. Sandakov, G. Grosse, and M. N. Grigoriev
Biogeosciences, 10, 4297–4318, https://doi.org/10.5194/bg-10-4297-2013, https://doi.org/10.5194/bg-10-4297-2013, 2013
Y. Xia and X. Yan
Biogeosciences, 8, 3159–3168, https://doi.org/10.5194/bg-8-3159-2011, https://doi.org/10.5194/bg-8-3159-2011, 2011
R. Sulpizio, G. Zanchetta, M. D'Orazio, H. Vogel, and B. Wagner
Biogeosciences, 7, 3273–3288, https://doi.org/10.5194/bg-7-3273-2010, https://doi.org/10.5194/bg-7-3273-2010, 2010
Cited articles
Amiro, B. D., MacPherson, J. I., and Desjardins, R. L.: BOREAS flight measurements of forest-fire effects on carbon dioxide and energy fluxes, Agr. Forest Meteorol., 96, 199–208, https://doi.org/10.1016/S0168-1923(99)00050-7, 1999.
Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Flannigan, M. D., Stocks, B. J., Mason, J. A., Martell, D. L., and Hirsch, K. G.: Direct carbon emissions from Canadian forest fires, 1959-1999, Can. J. Forest Res., 31, 512–525, https://doi.org/10.1139/cjfr-31-3-512, 2001.
Amiro, B. D., Orchansky, A. L., Barr, A. G., Black, T. A., Chambers, S. D., Chapin III, F. S., Goulden, M. L., Litvak, M., Liu, H. P., McCaughey, J. H., McMillan, A., and Randerson, J. T.: The effect of post-fire stand age on the boreal forest energy balance, Agr. Forest Meteorol., 140, 41–50, https://doi.org/10.1016/j.agrformet.2006.02.014, 2006.
Amiro, B. D., Cantin, A., Flannigan, M. D., and De Groot, W. J.: Future emissions from Canadian boreal forest fires, Can. J. Forest Res., 39, 383–395, https://doi.org/10.1139/X08-154, 2009.
Arctic Climate Impact Assessment: Impacts of a warming arctic, Cambridge University Press, New York, USA, 2004.
Bailey, D., Hannay, C., Holland, M., and Neale, R.: Slab Ocean Model Forcing, National Center for Atmospheric Research, Boulder, CO, USA, 2011.
Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., and Mirin, A.: Combined climate and carbon-cycle effects of large-scale deforestation, P. Natl. Acad. Sci. USA, 104, 6550–6555, https://doi.org/10.1073/pnas.0608998104, 2007.
Balshi, M. S., McGuire, A. D., Duffy, P., Flannigan, M., Walsh, J., and Melillo, J.: Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach, Global Change Biol., 15, 578–600, https://doi.org/10.1111/j.1365-2486.2008.01679.x, 2009.
Bartholome, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005.
Beck, P. S. A. and Goetz, S. J.: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences, Environ. Res. Lett., 6, 045501, https://doi.org/10.1088/1748-9326/6/4/045501, 2011.
Beck, P. S. A., Goetz, S. J., Mack, M. C., Alexander, H. D., Jin, Y., Randerson, J. T., and Loranty, M. M.: The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo, Global Change Biol., 17, 2853–2866, https://doi.org/10.1111/j.1365-2486.2011.02412.x, 2011.
Bergeron, Y., Cyr, D., Girardin, M. P., and Carcaillet, C.: Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data, Int. J. Wildland Fire, 19, 1127–1139, https://doi.org/10.1071/WF09092, 2010.
Betts, R. A.: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo, Nature, 408, 187–190, https://doi.org/10.1038/35041545, 2000.
Bonan, G. B.: A computer model of the solar radiation, soil moisture, and soil thermal regimes in boreal forests, Ecol. Model., 45, 275–306, https://doi.org/10.1016/0304-3800(89)90076-8, 1989.
Bonan, G. B. and Shugart, H. H.: Environmental factors and ecological processes in boreal forests, Annu. Rev. Ecol. Syst., 20, 1–28, https://doi.org/0.1146/annurev.es.20.110189.000245, 1989.
Bonan, G. B., Shugart, H. H., and Urban, D. L.: The sensitivity of some high-latitude boreal forests to climatic parameters, Clim. Change, 16, 9–29, https://doi.org/10.1007/BF00137344, 1990.
Bonan, G. B., Pollard, D., and Thompson, S. L.: Effects of boreal forest vegetation on global climate, Nature, 359, 716–718, https://doi.org/10.1038/359716a0, 1992.
Bond-Lamberty, B., Peckham, S. D., Gower, S. T., and Ewers, B. E.: Effects of fire on regional evapotranspiration in the central Canadian boreal forest, Global Change Biol., 15, 1242–1254, https://doi.org/10.1111/j.1365-2486.2008.01776.x, 2009.
Bonfils, C. J. W., Phillips, T. J., Lawrence, D. M., Cameron-Smith, P., Riley, W. J., and Subin, Z. M.: On the influence of shrub height and expansion on northern high latitude climate, Environ. Res. Lett., 7, 015503, https://doi.org/10.1088/1748-9326/7/1/015503, 2012.
Bontemps, S., Defourny, P., Van Bogaert, E., Kalogirou, V., and Arino, O.: GLOBCOVER 2009: products description and validation report, 2011.
Bowman, D. M. J. S. and Johnston, F. H.: Wildfire smoke, fire management, and human health, EcoHealth, 2, 76–80, 2005.
Carcaillet, C., Bergeron, Y., Richard, P. J. H., Fréchette, B., Gauthier, S., and Prairie, Y. T.: Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime?, J. Ecol., 89, 930–946, https://doi.org/10.1111/j.1365-2745.2001.00614.x, 2001.
Chambers, S. D. and Chapin III, F. S.: Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate, J. Geophys. Res., 107, 8145, https://doi.org/10.1029/2001JD000530, 2002.
Chambers, S. D., Beringer, J., Randerson, J. T., and Chapin III, F. S.: Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems, J. Geophys. Res, 110, D09106, https://doi.org/10.1029/2004JD005299, 2005.
Chapin III, F. S. and Starfield, A. M.: Time lags and novel ecosystems in response to transient climatic change in arctic Alaska, Clim. Change, 35, 449–461, 1997.
Chapin III, F. S., McGuire, A. D., Randerson, J., Pielke, R., Baldocchi, D., Hobbie, S. E., Roulet, N., Eugster, W., Kasischke, E., Rastetter, E. B., Zimov, S. A., and Running, S. W.: Arctic and boreal ecosystems of western North America as components of the climate system, Global Change Biol., 6, 211–223, https://doi.org/10.1046/j.1365-2486.2000.06022.x, 2000.
Chapin III, F. S., Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd, A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., and Schimel, J. P.: Role of land-surface changes in arctic summer warming, Science, 310, 657–660, https://doi.org/10.1126/science.1117368, 2005.
Chapin III, F. S., Hollingsworth, T., Murray, D. F., Viereck, L. A., and Walker, M. D.: Successional Processes in the Alaskan Boreal Forest, in: Alaska's Changing Boreal Forest, edited by: Chapin III, F. S., Oswood, M. W., Van Cleve, K., Viereck, L. A., and, Verbyla, D. L., Oxford University Press, New York, USA, 100–120, 2006.
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, R., Jones, R., Kolli, R. K., Kwon, W. K., Laprise, R., Reuda, V. M., Mearns, L., Menendez, C. G., Raisanen, J., Rinke, A., Sarr, A., and Whetton, P.: Regional climate projections, in Climate Change, 2007: The Physical Science Basis, Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univiversity Press, New York, USA, 847–940, 2007.
Cumming, S. G.: Forest Type and Wildfire in the Alberta Boreal Mixedwood: What Do Fires Burn?, Ecol. Appl., 11, 97–110, https://doi.org/10.2307/3061059, 2001.
de Grandpré, L., Morissette, J., and Gauthier, S.: Long-term post-fire changes in the northeastern boreal forest of Quebec, J. Veg. Sci., 11, 791–800, 2000.
de Noblet, N. I., Prentice, I. C., Joussaume, S., Texier, D., Botta, A., and Haxeltine, A.: Possible role of atmosphere-biosphere interactions in triggering the Last Glaciation, Geophys. Res. Lett., 23, 3191–3194, https://doi.org/10.1029/96GL03004, 1996.
DeFries, R. S. and Hansen, M.: ISLSCP II University of Maryland Global Land Cover Classifications, 1992–1993, in: ISLSCP Initiative II Collection, Data set, edited by: Hall, F. G., Collatz, G., Meeson, B., Los, S., de Colstoun, B., and Landis, D., Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA, https://doi.org/10.3334/ORNLDAAC/969, 2010.
Dyrness, C. T., Viereck, L. A., and Van Cleve, K.: Fire in Taiga Communities of Interior Alaska, in: Forest ecosystems in the Alaskan taiga, edited by: Van Cleve, K., Chapin III, F. S., Flanagan, P. W., Viereck, L. A., and Dyrness, C. T., Springer-Verlag, New York, USA, 74–86, 1986.
Eugster, W., Rouse, W. R., Sr, R. A. P., Mcfadden, J. P., Baldocchi, D. D., Kittel, T. G. F., Chapin III., F. S., Liston, G. E., Vidale, P. L., Vaganov, E., and Chambers, S.: Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate, Global Change Biol., 6, 84–115, https://doi.org/10.1046/j.1365-2486.2000.06015.x, 2000.
Euskirchen, E. S., McGuire, A. D., Rupp, T. S., Chapin III, F. S., and Walsh, J. E.: Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100, J. Geophys. Res, 114, G04022, https://doi.org/10.1029/2009JG001095, 2009.
Euskirchen, E. S., McGuire, A. D., Chapin III, F. S., and Rupp, T. S.: The changing effects of Alaska's boreal forests on the climate system, Can. J. Forest Res., 40, 1336–1346, https://doi.org/10.1139/X09-209, 2010.
Fastie, C. L., Lloyd, A. H., and Doak, P.: Fire history and postfire forest development in an upland watershed of interior Alaska, J. Geophys. Res, 108, 8150, https://doi.org/10.1029/2001JD000570, 2003.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res, 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Flannigan, M. D. and Harrington, J. B.: A study of the relation of meteorological variables to monthly provincial area burned by wild?re in Canada (1953–1980), J. Appl. Meteorol, 27, 441–452, https://doi.org/10.1175/1520-0450(1988)027<0441:ASOTRO>2.0.CO;2, 1988.
Flannigan, M. D. and Van Wagner, C. E.: Climate change and wildfire in Canada, Can. J. Forest Res., 21, 66–72, https://doi.org/10.1139/x91-010, 1991.
Flannigan, M. D., Bergeron, Y., Engelmark, O., and Wotton, B. M.: Future wildfire in circumboreal forests in relation to global warming, J. Veg. Sci., 9, 469–476, https://doi.org/10.2307/3237261, 1998.
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., and Stocks, B. J.: Future area burned in Canada, Clim. change, 72, 1–16, https://doi.org/10.1007/s10584-005-5935-y, 2005.
Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A., and Cooper, A.: Global land cover mapping from MODIS: algorithms and early results, Remote Sens. Environ., 83, 287–302, https://doi.org/10.1016/S0034-4257(02)00078-0, 2002.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Gallimore, R. G. and Kutzbach, J. E.: Role of orbitally induced changes in tundra area in the onset of glaciation, Nature, 381, 503–505, https://doi.org/10.1038/381503a0, 1996.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z. L., and Zhang, M.: The Community Climate System Model Version 4, J. Clim., 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Gillett, N. P., Weaver, A. J., Zwiers, F. W., and Flannigan, M. D.: Detecting the effect of climate change on Canadian forest fires, Geophys. Res. Lett., 31, L18211, https://doi.org/10.1029/2004GL020876, 2004.
Harden, J. W., Trumbore, S. E., Stocks, B. J., Hirsch, A., Gower, S. T., O'neill, K. P., and Kasischke, E. S.: The role of fire in the boreal carbon budget, Global Change Biol., 6, 174–184, https://doi.org/10.1046/j.1365-2486.2000.06019.x, 2000.
Heinselman, M. L.: Fire intensity and frequency as factors in the disturbance and structure of northern ecosystems, Honolulu, HI, 1978.
Horton, D. E., Poulsen, C. J., and Pollard, D.: Influence of high-latitude vegetation feedbacks on late Palaeozoic glacial cycles, Nature Geosci., 3, 572–577, https://doi.org/10.1038/NGEO922, 2010.
IPCC: Summary for Policymakers, in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averty, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Jahn, A., Sterling, K., Holland, M. M., Kay, J. E., Maslanik, J. A., Bitz, C. M., Bailey, D. A., Stroeve, J., Hunke, E. C., Lipscomb, W. H., and Pollak, D. A.: Late-twentieth-century simulation of arctic sea ice and ocean properties in the CCSM4, J. Clim., 25, 1431–1452, https://doi.org/10.1175/JCLI-D-11-00201.1, 2012.
Jin, Y., Randerson, J. T., Goetz, S. J., Beck, P. S. A., Loranty, M. M., and Goulden, M. L.: The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests, J. Geophys. Res., 117, G01036, https://doi.org/10.1029/2011JG001886, 2012.
Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., Kinney, P., Bowman, D. M. J. S., and Brauer, M.: Estimated Global Mortality Attributable to Smoke from Landscape Fires, Environ. Health Persp., 120, 695–701, https://doi.org/10.1289/ehp.1104422, 2012.
Johnstone, J. F. and Chapin III, F. S.: Fire interval effects on successional trajectory in boreal forests of northwest Canada, Ecosystems, 9, 268–277, https://doi.org/10.1007/s10021-005-0061-2, 2006.
Johnstone, J. F. and Kasischke, E. S.: Stand-level effects of soil burn severity on postfire regeneration in a recently burned black spruce forest, Can. J. Forest Res., 35, 2151–2163, https://doi.org/10.1139/X05-087, 2005.
Johnstone, J. F., Chapin III, F. S., Hollingsworth, T. N., Mack, M. C., Romanovsky, V., and Turetsky, M.: Fire, climate change, and forest resilience in interior Alaska, Can. J. Forest Res., 40, 1302–1312, https://doi.org/10.1139/X10-061, 2010a.
Johnstone, J. F., Hollingsworth, T. N., Chapin III, F. S., and Mack, M. C.: Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest, Global Change Biol., 16, 1281–1295, https://doi.org/10.1111/j.1365-2486.2009.02051.x, 2010b.
Kasischke, E. S. and Turetsky, M. R.: Recent changes in the fire regime across the North American boreal region – spatial and temporal patterns of burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703, https://doi.org/10.1029/2006GL025677, 2006.
Kasischke, E. S., Christensen, N. L., and Stocks, B. J.: Fire, Global Warming, and the Carbon Balance of Boreal Forests, Ecol. Appl., 5, 437–451, https://doi.org/10.2307/1942034, 1995.
Kasischke, E. S., Barry, D., and Williams, D.: Analysis of the patterns of large fires in the boreal forest region of Alaska, Int. J. Wildland Fire, 11, 131–144, https://doi.org/10.1071/WF02023, 2002.
Kasischke, E. S., Verbyla, D. L., Rupp, T. S., McGuire, A. D., Murphy, K. A., Jandt, R., Barnes, J. L., Hoy, E. E., Duffy, P. A., Calef, M., and Turetsky, M. R.: Alaska's changing fire regime implications for the vulnerability of its boreal forests, Can. J. Forest Res., 40, 1313–1324, https://doi.org/10.1139/X10-098, 2010.
Krawchuk, M. A. and Cumming, S. G.: Effects of biotic feedback and harvest management on boreal forest fire activity under climate change, Ecol. Appl., 21, 122–136, https://doi.org/10.1890/09-2004.1, 2011.
Krawchuk, M. A., Cumming, S. G., and Flannigan, M. D.: Predicted changes in fire weather suggest increases in lightning fire initiation and future area burned in the mixedwood boreal forest, Clim. Change, 92, 83–97, https://doi.org/10.1007/s10584-008-9460-7, 2009.
Kurkowski, T. A., Mann, D. H., Rupp, T. S., and Verbyla, D. L.: Relative importance of different secondary successional pathways in an Alaskan boreal forest, Can. J. Forest Res., 38, 1911–1923, https://doi.org/10.1139/X08-039, 2008.
Kurz, W. A. and Apps, M. J.: A 70 yr retrospective analysis of carbon fluxes in the Canadian forest sector, Ecol. Appl., 9, 526–547, https://doi.org/10.2307/2641142, 1999.
Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Conley, A., Lawrence, P. J., Rosenbloom, N., and Teng, H.: Last Millennium Climate and Its Variability in CCSM4, J. Clim., https://doi.org/10.1175/JCLI-D-11-00326.1, in press, 2012.
Lavoie, N.: Variation in flammability of jack pine/black spruce stands with time since the last fire, Dissertation, University of Alberta, Edmonton, Canada, 2004.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land surface in the Community Land Model (CLM3. 0), J. Geophys. Res, 112, G01023, https://doi.org/10.1029/2006JG000168, 2007.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model, Journal of Advances in Modeling Earth Systems, 3, pp. 27, https://doi.org/10.1029/2011MS000045, 2011.
Liu, H. and Randerson, J. T.: Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence, J. Geophys. Res, 113, G01006, https://doi.org/10.1029/2007JG000483, 2008.
Liu, H., Randerson, J. T., Lindfors, J., and Chapin III, F. S.: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective, J. Geophys. Res, 110, D13101, https://doi.org/10.1029/2004JD005158, 2005.
Lloyd, A. H., Edwards, M. E., Finney, B. P., Lynch, J. A., Barber, V., and Bigelow, N. H.: Holocene Development of the Alaskan Boreal Forest, in: Alaska's Changing Boreal Forest, edited by: Chapin III, F. S., Oswood, M. W., Van Cleve, K., Viereck, L. A., and Verbyla, D. L., Oxford University Press, New York, NY, 62–80, 2006.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L. and Merchant, J. W.: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000.
Lyons, E. A., Jin, Y., Randerson, J. T., and Hall, C.: Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations, J. Geophys. Res, 113, G02012, https://doi.org/10.1029/2007JG000606, 2008.
Macias Fauria, M. and Johnson, E. A.: Climate and wildfires in the North American boreal forest, Philosophical Transactions of the Royal Society of London, Series B, Biol. Sci., 363, 2317–2329, https://doi.org/10.1098/rstb.2007.2202, 2008.
Mahowald, N.: Aerosol Indirect Effect on Biogeochemical Cycles and Climate, Science, 334, 794–796, https://doi.org/10.1126/science.1207374, 2011.
Mann, D. H. and Plug, L. J.: Vegetation and soil development at an upland taiga site, Alaska, Ecoscience, 6, 272–285, 1999.
McGuire, A. D., Wirth, C., Apps, M., Beringer, J., Clein, J., Epstein, H., Kicklighter, D. W., Bhatti, J., Chapin III, F. S., and Groot, B.: Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes, J. Veg. Sci., 13, 301–314, https://doi.org/10.1111/j.1654-1103.2002.tb02055.x, 2002.
McMillan, A. M. and Goulden, M. L.: Age-dependent variation in the biophysical properties of boreal forests, Global Biogeochem. Cy., 22, GB2023, https://doi.org/10.1029/2007GB003038, 2008.
O'Halloran, T. L., Law, B. E., Goulden, M. L., Wang, Z., Barr, J. G., Schaaf, C., Brown, M., Fuentes, J. D., Goeckede, M., Black, A., and Engel, V.: Radiative forcing of natural forest disturbances, Glob. Change Biol., 18, 555–565, https://doi.org/10.1111/j.1365-2486.2011.02577.x, 2012.
Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stockli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: Improvements to the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res, 113, G01021, https://doi.org/10.1029/2007JG000563, 2008.
Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J. F., Mahowald, N., Niu, G. Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stockli, R., Wang, A., Yang, Z. L., Zeng, X., and Zeng, X.: Technical description of version 4.0 of the Community Land Model (CLM), NCAR Technical Note, Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, 2010.
Otterman, J., Chou, M. D., and Arking, A.: Effects of Nontropical Forest Cover on Climate., J. Appl. Meteorol., 23, 762–767, https://doi.org/10.1175/1520-0450(1984)023<0762:EONFCO>2.0.CO;2, 1984.
Parisien, M. A., Peters, V. S., Wang, Y., Little, J. M., Bosch, E. M., and Stocks, B. J.: Spatial patterns of forest fires in Canada, 1980–1999, Int. J. Wildland Fire, 15, 361–374, https://doi.org/10.1071/WF06009, 2006.
Payette, S.: Fire as a controlling process in the North American boreal forest, in: A systems analysis of the global boreal forest, edited by: Shugart, H. H., Leemans, R., and Bonan, G. B., Cambridge University Press, New York, NY, 144–169, 1992.
Podur, J., Martell, D. L., and Knight, K.: Statistical quality control analysis of forest fire activity in Canada, Can. J. Forest Res., 32, 195–205, https://doi.org/10.1139/X01-183, 2002.
Qian, T., Dai, A., Trenberth, K. E., and Oleson, K. W.: Simulation of global land surface conditions from 1948 to 2004, Part I: forcing data and evaluations, J. Hydrometeorol., 7, 953–975, https://doi.org/10.1175/JHM540.1, 2006.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nature Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124, https://doi.org/10.1126/science.1064034, 2001.
Ramankutty, N. and Foley, J. A.: ISLSCP II Potential Natural Vegetation Cover, in: ISLSCP Initiative II Collection, Data set, edited by: Hall, F. G., Collatz, G., Meeson, B., Los, S., de Colstoun, B., and Landis, D., Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA, https://doi.org/10.3334/ORNLDAAC/961, 2010.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin III, F. S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A. G., and Zender, C. S.: The impact of boreal forest fire on climate warming, Science, 314, 1130–1132, https://doi.org/10.1126/science.1132075, 2006.
Rogers, B. M., Neilson, R. P., Drapek, R., Lenihan, J. M., Wells, J. R., Bachelet, D., and Law, B. E.: Impacts of climate change on fire regimes and carbon stocks of the US Pacific Northwest, J. Geophys. Res., 116, G03037, https://doi.org/201110.1029/2011JG001695, 2011.
Rupp, T. S., Chapin III, F. S., and Starfield, A. M.: Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in northwestern Alaska, Clim. Change, 48, 399–416, https://doi.org/10.1023/A:1010738502596, 2001.
Schimmel, J. and Granström, A.: Fuel succession and fire behavior in the Swedish boreal forest, Can. J. Forest Res., 27, 1207–1216, https://doi.org/10.1139/x97-072, 1997.
Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Shugart, H. H., Stocks, B. J., Sukhinin, A. I., Parfenova, E. I., Chapin III, F. S., and Stackhouse, P. W.: Climate-induced boreal forest change: predictions versus current observations, Global Planet. Change, 56, 274–296, https://doi.org/10.1016/j.gloplacha.2006.07.028 2007.
Spracklen, D. V., Bonn, B., and Carslaw, K. S.: Boreal forests, aerosols and the impacts on clouds and climate, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 366, 4613–4626, https://doi.org/10.1098/rsta.2008.0201, 2008.
Stocks, B. J., Fosberg, M. A., Lynham, T. J., Mearns, L., Wotton, B. M., Yang, Q., Jin, J. Z., Lawrence, K., Hartley, G. R., Mason, J. A., and McKenney, D. W.: Climate change and forest fire potential in Russian and Canadian boreal forests, Clim. Change, 38, 1–13, https://doi.org/10.1023/A:1005306001055, 1998.
Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro, B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martell, D. L., and Skinner, W. R.: Large forest fires in Canada, 1959–1997, J. Geophys. Res, 108, 8149, https://doi.org/10.1029/2001JD000484, 2003.
Stone, R. S., Anderson, G. P., Shettle, E. P., Andrews, E., Loukachine, K., Dutton, E. G., Schaaf, C., and Roman III, M. O.: Radiative impact of boreal smoke in the Arctic: Observed and modeled, J. Geophys. Res.-Atmos., 113, D14S16, https://doi.org/10.1029/2007JD009657, 2008.
Sturm, M., Racine, C., and Tape, K.: Increasing shrub abundance in the Arctic, Nature, 411, 546–547, https://doi.org/10.1038/35079180, 2001.
Subin, Z. M., Murphy, L. N., Li, F., Bonfils, C., and Riley, W. J.: Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1), Tellus A, 64, 15639, https://doi.org/10.3402/tellusa.v64i0.15639, 2012.
Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B., and Doney, S. C.: Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect, Proc. Natl. Acad. Sci. USA, 107, 1295–1300, https://doi.org/10.1073/pnas.0913846107, 2010.
Thomas, G. and Rowntree, P. R.: The boreal forests and climate, Quat. J. Roy. Meteorol. Soc., 118, 469–497, https://doi.org/10.1256/smsqj.50504, 1992.
Tosca, M. G., Randerson, J. T., and Zender, C. S.: Global impact of contemporary smoke aerosols from landscape fires on climate and the Hadley circulation, Atmos. Chem. Phys. Discuss., 12, 28069–28108, https://doi.org/10.5194/acpd-12-28069-2012, 2012.
Viereck, L. A.: Wildfire in the taiga of Alaska, Quat. Res., 3, 465–495, 1973.
Viereck, L. A.: The effects of fire in black spruce ecosystems of Alaska and northern Canada, in The Role of Fire in Northern Circumpolar Ecosystems, edited by: Wein, R. W. and Maclean, D. A., Wiley, New York, NY, 201–220, 1983.
Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T., and Hess, P. G.: The changing radiative forcing of fires: global model estimates for past, present and future, Atmos. Chem. Phys., 12, 10857–10886, https://doi.org/10.5194/acp-12-10857-2012, 2012.
Weber, M. G. and Flannigan, M. D.: Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes, Environ. Rev., 5, 145–166, https://doi.org/10.1071/WF09002, 1997.
West, D. C., Botkin, D. B., and Shugart, H. H.: Forest succession: concepts and application, Springer-Verlag, New York, NY, 1981.
Wotton, B. M., Nock, C. A., and Flannigan, M. D.: Forest fire occurrence and climate change in Canada, Int. J. Wildland Fire, 19, 253–271, https://doi.org/10.1071/WF09002, 2010.
Yoshikawa, K., Bolton, W. R., Romanovsky, V. E., Fukuda, M., and Hinzman, L. D.: Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska, J. Geophys. Res., 108, 8148, https://doi.org/10.1029/2001JD000438, 2003.
Altmetrics
Final-revised paper
Preprint