Articles | Volume 12, issue 15
https://doi.org/10.5194/bg-12-4621-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-4621-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance
T. Tagesson
CORRESPONDING AUTHOR
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
R. Fensholt
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
S. Huber
DHI GRAS A/S, Agern Allé 5, 2970 Hørsholm, Denmark
S. Horion
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
I. Guiro
Laboratoire d'Enseignement et de Recherche en Géomatique, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop de Dakar, BP 25275 Dakar-Fann, Senegal
A. Ehammer
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Related authors
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Anteneh Getachew Mengistu, Gizaw Mengistu Tsidu, Gerbrand Koren, Maurits L. Kooreman, K. Folkert Boersma, Torbern Tagesson, Jonas Ardö, Yann Nouvellon, and Wouter Peters
Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/bg-18-2843-2021, https://doi.org/10.5194/bg-18-2843-2021, 2021
Short summary
Short summary
In this study, we assess the usefulness of Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval (SIFTER) data from the GOME-2A instrument and near-infrared reflectance of vegetation (NIRv) from MODIS to capture the seasonality and magnitudes of gross primary production (GPP) derived from six eddy-covariance flux towers in Africa in the overlap years between 2007–2014. We also test the robustness of sun-induced fluoresence and NIRv to compare the seasonality of GPP for the major biomes.
Claire Delon, Corinne Galy-Lacaux, Dominique Serça, Erwan Personne, Eric Mougin, Marcellin Adon, Valérie Le Dantec, Benjamin Loubet, Rasmus Fensholt, and Torbern Tagesson
Biogeosciences, 16, 2049–2077, https://doi.org/10.5194/bg-16-2049-2019, https://doi.org/10.5194/bg-16-2049-2019, 2019
Short summary
Short summary
In the Sahel region during the wet season, CO2 and NO are released to the atmosphere, and NH3 is deposited on the soil. During the dry season, processes are strongly reduced. This paper shows the temporal variation in these soil–atmosphere exchanges of trace gases for 2 years, their sharp increase when the first rains fall onto dry soils, and how microbial processes are involved. We use a modelling approach, which is necessary when continuous measurements are not possible in remote regions.
Torbern Tagesson, Jonas Ardö, Bernard Cappelaere, Laurent Kergoat, Abdulhakim Abdi, Stéphanie Horion, and Rasmus Fensholt
Biogeosciences, 14, 1333–1348, https://doi.org/10.5194/bg-14-1333-2017, https://doi.org/10.5194/bg-14-1333-2017, 2017
Short summary
Short summary
Vegetation growth in semi-arid regions is an important sink for human-induced fossil fuel emissions of CO2 and this study addresses the strong need for improved understanding and spatially explicit estimates of CO2 uptake by semi-arid ecosystems. We show that a model incorporating photosynthetic parameters upscaled using satellite-based earth observation simulates CO2 uptake well for the Sahel, one of the largest semi-arid regions in the world.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
M. C. A. Picoli, J. Radoux, X. Tong, A. Bey, P. Rufin, M. Brandt, R. Fensholt, and P. Meyfroidt
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 975–981, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, 2022
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Anteneh Getachew Mengistu, Gizaw Mengistu Tsidu, Gerbrand Koren, Maurits L. Kooreman, K. Folkert Boersma, Torbern Tagesson, Jonas Ardö, Yann Nouvellon, and Wouter Peters
Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/bg-18-2843-2021, https://doi.org/10.5194/bg-18-2843-2021, 2021
Short summary
Short summary
In this study, we assess the usefulness of Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval (SIFTER) data from the GOME-2A instrument and near-infrared reflectance of vegetation (NIRv) from MODIS to capture the seasonality and magnitudes of gross primary production (GPP) derived from six eddy-covariance flux towers in Africa in the overlap years between 2007–2014. We also test the robustness of sun-induced fluoresence and NIRv to compare the seasonality of GPP for the major biomes.
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021, https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
Claire Delon, Corinne Galy-Lacaux, Dominique Serça, Erwan Personne, Eric Mougin, Marcellin Adon, Valérie Le Dantec, Benjamin Loubet, Rasmus Fensholt, and Torbern Tagesson
Biogeosciences, 16, 2049–2077, https://doi.org/10.5194/bg-16-2049-2019, https://doi.org/10.5194/bg-16-2049-2019, 2019
Short summary
Short summary
In the Sahel region during the wet season, CO2 and NO are released to the atmosphere, and NH3 is deposited on the soil. During the dry season, processes are strongly reduced. This paper shows the temporal variation in these soil–atmosphere exchanges of trace gases for 2 years, their sharp increase when the first rains fall onto dry soils, and how microbial processes are involved. We use a modelling approach, which is necessary when continuous measurements are not possible in remote regions.
Wenmin Zhang, Martin Brandt, Xiaoye Tong, Qingjiu Tian, and Rasmus Fensholt
Biogeosciences, 15, 319–330, https://doi.org/10.5194/bg-15-319-2018, https://doi.org/10.5194/bg-15-319-2018, 2018
Florian Sallaba, Stefan Olin, Kerstin Engström, Abdulhakim M. Abdi, Niklas Boke-Olén, Veiko Lehsten, Jonas Ardö, and Jonathan W. Seaquist
Earth Syst. Dynam., 8, 1191–1221, https://doi.org/10.5194/esd-8-1191-2017, https://doi.org/10.5194/esd-8-1191-2017, 2017
Short summary
Short summary
The UN sustainable development goals for eradicating hunger are at high risk for failure in the Sahel. We show that the demand for food and feed biomass will begin to outstrip its supply in the 2040s if current trends continue. Though supply continues to increase it is outpaced by a greater increase in demand due to a combination of population growth and a shift to diets rich in animal proteins. This underscores the importance of policy interventions that would act to mitigate such developments.
Torbern Tagesson, Jonas Ardö, Bernard Cappelaere, Laurent Kergoat, Abdulhakim Abdi, Stéphanie Horion, and Rasmus Fensholt
Biogeosciences, 14, 1333–1348, https://doi.org/10.5194/bg-14-1333-2017, https://doi.org/10.5194/bg-14-1333-2017, 2017
Short summary
Short summary
Vegetation growth in semi-arid regions is an important sink for human-induced fossil fuel emissions of CO2 and this study addresses the strong need for improved understanding and spatially explicit estimates of CO2 uptake by semi-arid ecosystems. We show that a model incorporating photosynthetic parameters upscaled using satellite-based earth observation simulates CO2 uptake well for the Sahel, one of the largest semi-arid regions in the world.
S. Salehi, M. Karami, and R. Fensholt
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 973–979, https://doi.org/10.5194/isprs-archives-XLI-B7-973-2016, https://doi.org/10.5194/isprs-archives-XLI-B7-973-2016, 2016
Gregor Ratzmann, Ute Gangkofner, Britta Tietjen, and Rasmus Fensholt
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-48, https://doi.org/10.5194/bg-2016-48, 2016
Revised manuscript not accepted
Short summary
Short summary
Anticipating impacts of changes in rainfall regimes on dryland ecosystems requires the understanding of the functional response to rainfall of those water limited environments. Here we show for two arid/semi-arid African regions based on satellite data that higher rainfall variability leads to a more dynamic vegetation response to rainfall. This applies irrespective of vegetation type. It moreover indicates that regions experiencing a higher rainfall variability may be more resilient to drought.
J. L. Olsen, S. Miehe, P. Ceccato, and R. Fensholt
Biogeosciences, 12, 4407–4419, https://doi.org/10.5194/bg-12-4407-2015, https://doi.org/10.5194/bg-12-4407-2015, 2015
Short summary
Short summary
Limitations of satellite-based normalized difference vegetation index (NDVI) for monitoring vegetation trends are investigated using observations from the Widou Thiengoly test site in northern Senegal. NDVI do not reflect the large differences found in biomass production and species composition between grazed and ungrazed plots. This is problematic for vegetation trend analysis in the context of drastically increasing numbers of Sahelian livestock in recent decades.
R. Guzinski, H. Nieto, S. Stisen, and R. Fensholt
Hydrol. Earth Syst. Sci., 19, 2017–2036, https://doi.org/10.5194/hess-19-2017-2015, https://doi.org/10.5194/hess-19-2017-2015, 2015
Short summary
Short summary
The study compared evapotranspiration (ET) modelled by two remote sensing models and one hydrological model in a river catchment in Denmark. The results show that the spatial patterns of ET produced by the remote sensing models are more similar to each other than to the fluxes produced by the hydrological model. This indicates potential benefits to the hydrological modelling community from integrating spatial information derived through remote sensing methodology into the hydrological models.
Related subject area
Biogeophysics: Environmental Optics
Assessment of carbon mass in a Mediterranean downy oak ecosystem using airborne lidar and NASA Global Ecosystem Dynamics Investigation (GEDI) data
Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations
Assessing shaded-leaf effects on photochemical reflectance index (PRI) for water stress detection in winter wheat
On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance
Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014
A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures
High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing
Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa
Technical Note: Multispectral lidar time series of pine canopy chlorophyll content
A novel reflectance-based model for evaluating chlorophyll concentrations of fresh and water-stressed leaves
Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary
Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa
Nitrogen food-print: N use related to meat and dairy consumption in France
Remote sensing-based estimation of gross primary production in a subalpine grassland
Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region
Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data
Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024, https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Short summary
The approach presented is original in its coupling between field observations and airborne lidar observations. It has been applied to an instrumented reference forest site in the south of France, which is heavily impacted by climate change. It leads to the evaluation of tree heights and ends with assessments of aerial and root carbon stocks. A detailed assessment of uncertainties is presented to add a level of reliability to the scientific products delivered.
Trina Merrick, Stephanie Pau, Matteo Detto, Eben N. Broadbent, Stephanie A. Bohlman, Christopher J. Still, and Angelica M. Almeyda Zambrano
Biogeosciences, 18, 6077–6091, https://doi.org/10.5194/bg-18-6077-2021, https://doi.org/10.5194/bg-18-6077-2021, 2021
Short summary
Short summary
Remote sensing measurements of forest structure promise to improve monitoring of tropical forest health. We investigated drone-based vegetation measurements' abilities to capture different structural and functional elements of a tropical forest. We found that emerging vegetation indices captured greater variability than traditional indices and one new index trends with daily change in carbon flux. These new tools can help improve understanding of tropical forest structure and function.
Xin Yang, Shishi Liu, Yinuo Liu, Xifeng Ren, and Hang Su
Biogeosciences, 16, 2937–2947, https://doi.org/10.5194/bg-16-2937-2019, https://doi.org/10.5194/bg-16-2937-2019, 2019
Short summary
Short summary
The photochemical reflectance index (PRI) derived from remotely sensed data has emerged to be a pre-visual indicator of water stress. This study evaluated the impact of the varying shaded-leaf fractions on estimating relative water content (RWC) across growth stages of winter wheat using PRI derived from hyperspectral imagery. Results showed that PRI of the pure shaded leaves may yield inaccurate estimates of plant water status, but the accuracy of RWC predictions was not significantly affected.
Sofia Cerasoli, Manuel Campagnolo, Joana Faria, Carla Nogueira, and Maria da Conceição Caldeira
Biogeosciences, 15, 5455–5471, https://doi.org/10.5194/bg-15-5455-2018, https://doi.org/10.5194/bg-15-5455-2018, 2018
Short summary
Short summary
We compared the ability of in situ spectral and satellite sensors to estimate the productivity of Mediterranean grasslands undergoing different fertilization treatments. The objective of the study was to identify the best set of spectral predictors. In situ CO gas exchange and vegetation reflectance measurements were used for this purpose. Our results show the potential of Sentinel 2 and Landsat 8 satellites to monitor grasslands in support of a sustainable agriculture management.
Philipp M. M. Groetsch, Stefan G. H. Simis, Marieke A. Eleveld, and Steef W. M. Peters
Biogeosciences, 13, 4959–4973, https://doi.org/10.5194/bg-13-4959-2016, https://doi.org/10.5194/bg-13-4959-2016, 2016
Short summary
Short summary
Phytoplankton spring bloom phenology was derived from a 15-year time series (2000–2014) of ship-of-opportunity chlorophyll a fluorescence observations in the Baltic Sea. Bloom peak concentrations have declined over the study period, while bloom duration has increased. It is concluded that nutrient reduction efforts led to decreasing bloom intensity, while changes in Baltic Sea environmental conditions associated with global change corresponded to a lengthening spring bloom period.
Rebecca N. Handcock, D. L. Gobbett, Luciano A. González, Greg J. Bishop-Hurley, and Sharon L. McGavin
Biogeosciences, 13, 4673–4695, https://doi.org/10.5194/bg-13-4673-2016, https://doi.org/10.5194/bg-13-4673-2016, 2016
Short summary
Short summary
Proximal sensors can assist in managing feed in livestock production systems but raw data needs calibration to biophysical values such as biomass and ground cover. Our pilot project monitored tropical pastures for 18 months using digital cameras, multispectral sensors, soil moisture sensors, and field observations. We developed stringent data cleaning rules that are applicable to other sensor projects. Proximal sensors were found to deliver continual and timely pasture data.
M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas
Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, https://doi.org/10.5194/bg-12-4051-2015, 2015
Short summary
Short summary
Phytoplankton community structure at a high spatial resolution (<3km) was studied in the North Sea during a cruise in May 2011. A first comparison with PHYSAT reflectance anomalies enables the extrapolation of the community structure rather than a dominant type at the North Sea scale and was interpreted with its hydrological characteristics. This will seriously improve our understanding of the influence of community structure on biogeochemical processes at the daily and basin scales.
L. Peperzak, H. J. van der Woerd, and K. R. Timmermans
Biogeosciences, 12, 1659–1670, https://doi.org/10.5194/bg-12-1659-2015, https://doi.org/10.5194/bg-12-1659-2015, 2015
T. Hakala, O. Nevalainen, S. Kaasalainen, and R. Mäkipää
Biogeosciences, 12, 1629–1634, https://doi.org/10.5194/bg-12-1629-2015, https://doi.org/10.5194/bg-12-1629-2015, 2015
Short summary
Short summary
A hyperspectral lidar produces point clouds with multiple spectral channels (colours) for each point. We measured a pine and used the spectral content to estimate chlorophyll content. We validated these results using chemical laboratory analysis of needles taken from the pine. Our prototype has limitations, but still shows the great potential of coloured point clouds. Potential applications include forestry, security, archaeology and city modelling.
C. Lin, S. C. Popescu, S. C. Huang, P. T. Chang, and H. L. Wen
Biogeosciences, 12, 49–66, https://doi.org/10.5194/bg-12-49-2015, https://doi.org/10.5194/bg-12-49-2015, 2015
N. K. Ganju, J. L. Miselis, and A. L. Aretxabaleta
Biogeosciences, 11, 7193–7205, https://doi.org/10.5194/bg-11-7193-2014, https://doi.org/10.5194/bg-11-7193-2014, 2014
Short summary
Short summary
Light availability to seagrass is an important factor in their success. We deployed instrumentation to measure light in Barnegat Bay, New Jersey, and found lower availability in the southern bay due to high turbidity (suspended sediment), while the northern bay has higher availability. In the northern bay, dissolved organic material and chlorophyll are most responsible for blocking light to the seagrass canopy. We also found that boat wakes do not have a large effect on sediment resuspension.
M. W. Matthews and S. Bernard
Biogeosciences, 10, 8139–8157, https://doi.org/10.5194/bg-10-8139-2013, https://doi.org/10.5194/bg-10-8139-2013, 2013
P. Chatzimpiros and S. Barles
Biogeosciences, 10, 471–481, https://doi.org/10.5194/bg-10-471-2013, https://doi.org/10.5194/bg-10-471-2013, 2013
M. Rossini, S. Cogliati, M. Meroni, M. Migliavacca, M. Galvagno, L. Busetto, E. Cremonese, T. Julitta, C. Siniscalco, U. Morra di Cella, and R. Colombo
Biogeosciences, 9, 2565–2584, https://doi.org/10.5194/bg-9-2565-2012, https://doi.org/10.5194/bg-9-2565-2012, 2012
A. Fujiwara, T. Hirawake, K. Suzuki, and S.-I. Saitoh
Biogeosciences, 8, 3567–3580, https://doi.org/10.5194/bg-8-3567-2011, https://doi.org/10.5194/bg-8-3567-2011, 2011
C. Höpfner and D. Scherer
Biogeosciences, 8, 3359–3373, https://doi.org/10.5194/bg-8-3359-2011, https://doi.org/10.5194/bg-8-3359-2011, 2011
F. Gao, S. Stanič, K. Bergant, T. Bolte, F. Coren, T.-Y. He, A. Hrabar, J. Jerman, A. Mladenovič, J. Turšič, D. Veberič, and M. Iršič Žibert
Biogeosciences, 8, 2351–2363, https://doi.org/10.5194/bg-8-2351-2011, https://doi.org/10.5194/bg-8-2351-2011, 2011
Cited articles
Asner, G. P.: Biophysical and Biochemical Sources of Variability in Canopy Reflectance, Remote Sens. Environ., 64, 234–253, 1998.
Bicheron, P. and Leroy, M.: Bidirectional reflectance distribution function signatures of major biomes observed from space, J. Geophys. Res.-Atmos., 105, 26669–26681, 2000.
Bowyer, P. and Danson, F. M.: Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level, Remote Sens. Environ., 92, 297–308, 2004.
Ceccato, P., Gobron, N., Flasse, S., Pinty, B., and Tarantola, S.: Designing a spectral index to estimate vegetation water content from remote sensing data – Part 1: Theoretical approach, Remote Sens. Environ., 82, 188–197, 2002.
Cho, M. A., Skidmore, A., Corsi, F., van Wieren, S. E., and Sobhan, I.: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression, Int. J. Appl. Earth Obs. Geoinf., 9, 414–424, 2007.
Cihlar, J., Manak, D., and Voisin, N.: AVHRR bidirectional reflectance effects and compositing, Remote Sens. Environ., 48, 77–88, 1994.
Coburn, C. A. and Peddle, D. R.: A low-cost field and laboratory goniometer system for estimating hyperspectral bidirectional reflectance, Can. J. Remote Sens., 32, 244–253, 2006.
Danson, F. M., Steven, M. D., Malthus, T. J., and Clark, J. A.: High-spectral resolution data for determining leaf water content, Int. J. Remote Sens., 13, 461–470, 1992.
Entcheva Campbell, P. K., Middleton, E. M., Corp, L. A., and Kim, M. S.: Contribution of chlorophyll fluorescence to the apparent vegetation reflectance, Sci. Total Environ., 404, 433–439, 2008.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agric. For. Meteorol., 107, 43–69, 2001.
Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., and Fitzjarrald, D. R.: Atmosphere-Biosphere Exchange of CO2 and O3 in the Central Amazon Forest, J. Geophys. Res., 95, 16851–16864, 1990.
Fensholt, R., Sandholt, I., and Rasmussen, M. S.: Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements, Remote Sens. Environ., 91, 490–507, 2004.
Fensholt, R., Sandholt, I., and Stisen, S.: Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment, IEEE T. Geosci. Remote, 44, 1774–1786, 2006.
Fensholt, R., Huber, S., Proud, S. R., and Mbow, C.: Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms, IEEE J. Sel. Top. Appl., 3, 271–285, 2010a.
Fensholt, R., Sandholt, I., Proud, S. R., Stisen, S., and Rasmussen, M. O.: Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data, Int. J. Remote Sens., 31, 6163–6187, 2010b.
Feret, J.-B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P. R., Ustin, S. L., le Maire, G., and Jacquemoud, S.: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments, Remote Sens. Environ., 112, 3030–3043, 2008.
Foken, T., Gøckede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.: Post-field data quality control, in: Handbook of Micrometerology – A guidebook for Surface Flux Measurement and Analysis, edited by: Lee, X., Massman, W., and Law, B., Kluwer Academic Publishers, London, 181–203, 2004.
Gamon, J. A., Peñuelas, J., and Field, C. B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency, Remote Sens. Environ., 41, 35–44, 1992.
Gao, F., Jin, Y., Schaaf, C. B., and Strahler, A. H.: Bidirectional NDVI and atmospherically resistant BRDF inversion for vegetation canopy, IEEE T. Geosci. Remote, 40, 1269–1278, 2002.
Gates, D. M., Keegan, H. J., Schleter, J. C., and Weidner, V. R.: Spectral Properties of Plants, Appl. Optics, 4, 11–20, 1965.
Gitelson, A. A., Merzlyak, M. N., and Lichtenthaler, H. K.: Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm, J. Plant Physiol., 148, 501–508, 1996.
Gower, S. T., Kucharik, C. J., and Norman, J. M.: Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems - a real or imaginary problem?, Remote Sens. Environ., 70, 29–51, 1999.
Hansen, P. M. and Schjoerring, J. K.: Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression, Remote Sens. Environ., 86, 542–553, 2003.
Hapke, B., DiMucci, D., Nelson, R., and Smythe, W.: The cause of the hot spot in vegetation canopies and soils: Shadow-hiding versus coherent backscatter, Remote Sens. Environ., 58, 63–68, 1996.
Hilker, T., Coops, N. C., Nesic, Z., Wulder, M. A., and Black, A. T.: Instrumentation and approach for unattended year round tower based measurements of spectral reflectance, Comput. Electron. Agr., 56, 72–84, 2007.
Hilker, T., Coops, N. C., Wulder, M. A., Black, T. A., and Guy, R. D.: The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements, Sci. Total Environ., 404, 411–423, 2008.
Hilker, T., Nesic, Z., Coops, N. C., and Lessard, D.: A new automated, multiangular radiometer instrument for tower-based observations of canopy reflectance (AMSPEC II), Instrum. Sci. Technol., 38, 319–340, 2010.
Holben, B. and Fraser, R. S.: Red and near-infrared sensor response to off-nadir viewing, Int. J. Remote Sens., 5, 145–160, 1984.
Hsieh, C. I., Katul, G., and Chi, T. W.: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows, Adv. Water Res., 23, 765–772, 2000.
Huber, S., Koetz, B., Psomas, A., Kneubuehler, M., Schopfer, J. T., Itten, K. I., and Zimmermann, N. E.: Impact of multiangular information on empirical models to estimate canopy nitrogen concentration in mixed forest, J. Appl. Remote Sens., 4, 043530, https://doi.org/10.1117/1.3435334, 2010.
Huber, S., Tagesson, T., and Fensholt, R.: An automated field spectrometer system for studying VIS, NIR and SWIR anisotropy for semi-arid savanna, Remote Sens. Environ., 152, 547–556, 2014.
Huete, A. R., Hua, G., Qi, J., Chehbouni, A., and van Leeuwen, W. J. D.: Normalization of multidirectional red and NIR reflectances with the SAVI, Remote Sens. Environ., 41, 143–154, 1992.
Ide, R., Nakaji, T., and Oguma, H.: Assessment of canopy photosynthetic capacity and estimation of GPP by using spectral vegetation indices and the light-response function in a larch forest, Agric. For. Meteorol., 150, 389–398, 2010.
Inoue, Y., Moran, M. S., and Horie, T.: Analysis of spectral measurements in rice paddies for predicting rice growth and yield based on a simple crop simulation model, Plant Product. Sci., 1, 269–279, 1998.
Inoue, Y., Penuelas, J., Miyata, A., and Mano, M.: Normalized difference spectral indices for estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral and CO2 flux measurements in rice, Remote Sens. Environ., 112, 156–172, 2008.
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G. P., François, C., and Ustin, S. L.: PROSPECT+SAIL models: A review of use for vegetation characterization, Remote Sens. Environ., 113, Supplement 1, S56–S66, 2009.
Javier García-Haro, F., Camacho-de Coca, F., and Meliá, J.: Retrieving leaf area index from multi-angular airborne data, Ann. Geophys., 49, 209–218, 2006.
Jin, H. and Eklundh, L.: A physically based vegetation index for improved monitoring of plant phenology, Remote Sens. Environ., 152, 512–525, 2014.
Jin, Y., Gao, F., Schaaf, C. B., Xiaowen, L., Strahler, A. H., Bruegge, C. J., and Martonchik, J. V.: Improving MODIS surface BRDF/Albedo retrieval with MISR multiangle observations, IEEE T. Geosci. Remote, 40, 1593–1604, 2002.
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013.
Kimes, D. S.: Dynamics of Directional Reflectance Factor Distributions for Vegetation Canopies, Appl. Optics, 22, 1364–1372, 1983.
Kumar, L.: High-spectral resolution data for determining leaf water content in Eucalyptus species: leaf level experiments, Geocarto International, 22, 3–16, 2007.
Lasslop, G., Reichstein, M., and Papale, D.: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biol., 16, 187–209, 2010.
Laurent, V. C. E., Verhoef, W., Clevers, J. G. P. W., and Schaepman, M. E.: Inversion of a coupled canopy–atmosphere model using multi-angular top-of-atmosphere radiance data: A forest case study, Remote Sens. Environ., 115, 2603–2612, 2011.
Lee, K., Cohen, W. B., Kennedy, R. E., Maiersperger, T. K., and Gower, S. T.: Hyperspectral versus multispectral data for estimating leaf area index in four different biomes, Remote Sens. Environ., 91, 508–520, 2004.
Leuning, R., Hughes, D., Daniel, P., Coops, N. C., and Newnham, G.: A multi-angle spectrometer for automatic measurement of plant canopy reflectance spectra, Remote Sens. Environ., 103, 236–245, 2006.
LI-COR Biosciences: EDDYPRO Eddy Covariance Software Version 4.0 User's Guide & Reference, LI-COR Inc., Lincoln, 200 pp., 2012.
Maignan, F., Bréon, F. M., and Lacaze, R.: Bidirectional reflectance of Earth targets: evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot, Remote Sens. Environ., 90, 210–220, 2004.
Martonchik, J. V., Bruegge, C. J., and Strahler, A. H.: A review of reflectance nomenclature used in remote sensing, Remote Sens. Rev., 19, 9–20, 2000.
Mbow, C., Fensholt, R., Rasmussen, K., and Diop, D.: Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurements, J. Arid Environ., 97, 56–65, 2013.
Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., and Moreno, J.: Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications, Remote Sens. Environ., 113, 2037–2051, 2009.
Milton, E. J., Schaepman, M. E., Anderson, K., Kneubühler, M., and Fox, N.: Progress in field spectroscopy, Remote Sens. Environ., 113, Supplement 1, S92–S109, 2009.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol., 188/189, 589–611, 1997.
Moncrieff, J. B., Clement, R., Finnigan, J., and Meyers, T.: Averaging, detrending and filtering of eddy covariance time series, in: Handbook of Micrometeorology: A Guide for Surface Flux Measurements, edited by: Lee, X., Massman, W. J., and Law, B., Kluwer Academic, Dordrecht, 7–31, 2004.
Mutanga, O. and Skidmore, A. K.: Narrow band vegetation indices overcome the saturation problem in biomass estimation, Int. J. Remote Sens., 25, 3999–4014, 2004.
Myneni, R. B. and Williams, D. L.: On the relationship between FAPAR and NDVI, Remote Sens. Environ., 49, 200–211, 1994.
Pisek, J., Ryu, Y., Sprintsin, M., He, L., Oliphant, A. J., Korhonen, L., Kuusk, J., Kuusk, A., Bergstrom, R., Verrelst, J., and Alikas, K.: Retrieving vegetation clumping index from Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution, Remote Sens. Environ., 138, 126–133, 2013.
Psomas, A., Kneubühler, M., Huber, S., Itten, K., and Zimmermann, N. E.: Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats, Int. J. Remote Sens., 32, 9007–9031, 2011.
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and Sorooshian, S.: A modified soil adjusted vegetation index, Remote Sens. Environ., 48, 119–126, 1994.
Rasmussen, M. O., Göttsche, F. M., Diop, D., Mbow, C., Olesen, F. S., Fensholt, R., and Sandholt, I.: Tree survey and allometric models for tiger bush in northern Senegal and comparison with tree parameters derived from high resolution satellite data, Int. J. Appl. Earth Obs. Geoinf., 13, 517–527, 2011.
Richter, K., Atzberger, C., Hank, T. B., and Mauser, W.: Derivation of biophysical variables from Earth observation data: validation and statistical measures, J. Appl. Remote Sens., 6, 063557, https://doi.org/10.1117/1.JRS.6.063557, 2012.
Roberto, C., Lorenzo, B., Michele, M., Micol, R., and Cinzini, P.: Optical Remote Sensing of Vegetation Water Content, in: Hyperspectral Remote Sensing of Vegetation, edited by: Thenkabail, P. S., Lyon, J. G., and Huete, A., CRC Press, Taylor and Francis Group, Boca Raton, FL, 227–244, 2012.
Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., and Harlan, J. C.: Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation, Type III, Final Report, Greenbelt, MD, 1974.
Sandmeier, S., Müller, C., Hosgood, B., and Andreoli, G.: Physical Mechanisms in Hyperspectral BRDF Data of Grass and Watercress, Remote Sens. Environ., 66, 222–233, 1998.
Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., and Martonchik, J. V.: Reflectance quantities in optical remote sensing – definitions and case studies, Remote Sens. Environ., 103, 27–42, 2006.
Schopfer, J., Dangel, S., Kneubühler, M., and Itten, K.: The Improved Dual-view Field Goniometer System FIGOS, Sensors, 8, 5120–5140, 2008.
Sims, D. A. and Gamon, J. A.: Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features, Remote Sens. Environ., 84, 526–537, 2003.
Sjöström, M., Ardö, J., Eklundh, L., El-Tahir, B. A., El-Khidir, H. A. M., Hellström, M., Pilesjö, P., and Seaquist, J.: Evaluation of satellite based indices for gross primary production estimates in a sparse savanna in the Sudan, Biogeosciences, 6, 129–138, https://doi.org/10.5194/bg-6-129-2009, 2009.
Soudani, K., Hmimina, G., Dufrêne, E., Berveiller, D., Delpierre, N., Ourcival, J.-M., Rambal, S., and Joffre, R.: Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests, Remote Sens. Environ., 144, 73–84, 2014.
Tagesson, T., Eklundh, L., and Lindroth, A.: Applicability of leaf area index products for boreal regions of Sweden, Int. J. Remote Sens., 30, 5619–5632, 2009.
Tagesson, T., Mastepanov, M., Tamstorf, M. P., Eklundh, L., Schubert, P., Ekberg, A., Sigsgaard, C., Christensen, T. R., and Ström, L.: High-resolution satellite data reveal an increase in peak growing season gross primary production in a high-Arctic wet tundra ecosystem 1992–2008, Int. J. Appl. Earth Obs. Geoinf., 18, 407–416, 2012.
Tagesson, T., Fensholt, R., Cropley, F., Guiro, I., Horion, S., Ehammer, A., and Ardö, J.: Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa, Agr. Ecosyst. Environ., 205, 15–24, 2015a.
Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion, S., Sandholt, I., Rasmussen, B. H., Göttsche, F. M., Ridler, M.-E., Olén, N., Olsen, J. L., Ehammer, A., Madsen, M., Olesen, F. S., and Ardö, J.: Ecosystem properties of semi-arid savanna grassland in West Africa and its relationship to environmental variability, Global Change Biol., 21, 250–264, 2015b.
Thenkabail, P. S., Smith, R. B., and De Pauw, E.: Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics, Remote Sens. Environ., 71, 158–182, 2000.
Thenkabail, P. S., Enclona, E. A., Ashton, M. S., and Van Der Meer, B.: Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications, Remote Sens. Environ., 91, 354–376, 2004.
Thenkabail, P. S., Lyon, J. G., and Huete, A.: Advances in hyperspectral remote sensing of vegetation and agricultural croplands, in: Hyperspectral Remote Sensing of Vegetation, edited by: Thenkabail, P. S., Lyon, J. G., and Huete, A., CRC Press, Taylor and Francis Group, Boca Raton, FL, 3–35, 2012.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, 1979.
van Leeuwen, W. J. D., Huete, A. R., and Laing, T. W.: MODIS Vegetation Index Compositing Approach: A Prototype with AVHRR Data, Remote Sens. Environ., 69, 264–280, 1999.
Verhoef, W. and Bach, H.: Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data, Remote Sens. Environ., 109, 166–182, 2007.
Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Tech., 14, 152–526, 1997.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of the flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, 1980.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt correction algorithms, Bound.-Lay. Meteorol., 99, 127–150, 2001.
Short summary
Relationships between ecosystem properties of semi-arid savanna and reflected solar radiance between 35 and 1800nm were investigated. Normalised combinations of reflectance for the near infrared, shortwave infrared, and 600 to 700nm were strongly affected by solar and viewing angle effects. Ecosystem properties of savannas were strongly correlated with reflectance at 350-1800nm, and normalised combinations of reflectance were strong predictors of the savanna ecosystem properties.
Relationships between ecosystem properties of semi-arid savanna and reflected solar radiance...
Altmetrics
Final-revised paper
Preprint