Articles | Volume 12, issue 3
https://doi.org/10.5194/bg-12-697-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-697-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
P. Carrillo
CORRESPONDING AUTHOR
Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
J. M. Medina-Sánchez
Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
C. Durán
Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
G. Herrera
Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
V. E. Villafañe
Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Casilla de Correos No 15 (9103) Rawson, Chubut, Argentina
E. W. Helbling
Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Casilla de Correos No 15 (9103) Rawson, Chubut, Argentina
Related authors
C. Durán, J. M. Medina-Sánchez, G. Herrera, M. Villar-Argaiz, V. E. Villafañe, E. W. Helbling, and P. Carrillo
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-7291-2014, https://doi.org/10.5194/bgd-11-7291-2014, 2014
Revised manuscript not accepted
C. Durán, J. M. Medina-Sánchez, G. Herrera, M. Villar-Argaiz, V. E. Villafañe, E. W. Helbling, and P. Carrillo
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-7291-2014, https://doi.org/10.5194/bgd-11-7291-2014, 2014
Revised manuscript not accepted
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Aas, P., Lyons, M. M., Pledger, R., Mitchell, D. L., and Jeffrey, W. H.: Inhibition of bacterial activities by solar radiation in nearshore waters and the Gulf of Mexico, Aquat. Microb. Ecol., 11, 229–238, 1996.
Amado, A. M., Meirelles-Pereira, F., Vidal, L.O., Sarmento, H., Suhett, L., Farjalla, V. F, Cotner, J. B., and Roland, F.: Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones, Front. Microbiol., 4, 1–8, 2013.
American Public Health Association (APHA): Standard methods for the examination of water and wastewater, 18th Edn. American Public Health Association, Washington DC, 1992.
Amon, R. M. W., Fitznar, H.-P., and Bennerm, R.: Linkages among the bioreactivity, chemical composition and diagenetic state of marine dissolved organic matter, Limnol. Oceanogr., 46, 287–297, 2001.
Baines, S. B. and Pace, M. L.: The production of dissolved organic-matter by phytoplankton and its importance to bacteria- patterns across marine and fresh-water systems, Limnol. Oceanogr., 36, 1078–1090, 1991.
Banaszak, A. T.: Photoprotective physiological and biochemical responses of aquatic organisms, in: UV effects in aquatic organisms and ecosystems, edited by: Helbling, E. W. and Zagarese, H. E., Roy. Soc. Chem., Cambridge, UK, 329–356, 2003.
Barbieri, E. S., Villafañe, V. E., and Helbling, E. W.: Experimental assessment of UVR effects on temperate marine phytoplankton when exposed to variable radiation regimes, Limnol. Oceanogr., 47, 1648–1655, 2002.
Bell, R. T.: Estimating production of heterotrophic bacterioplankton via incorporation of tritiated thymidine, in: Handbook of methods in aquatic microbial ecology, edited by: Kemp B. F., Sherr E. B., and Cole J. J., Lewis Publishers, Boca Raton, FL, 495–503, 1993.
Bertoni, R., Jeffrey, W. H., Pujo-Pay, M., Oriol, L., Conan, P., and Joux, F.: Influence of water mixing on the inhibitory effect of UV radiation on primary and bacterial production in Mediterranean coastal water, Aquat. Sci., 73, 377–387, 2011.
Biddanda, B. A., Ogdahl, M., and Cotner, J. B.: Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters, Limnol. Oceanogr., 46, 730–739, 2001.
Carrillo, P., Reche, I., Sánchez-Castillo, P., and Cruz-Pizarro, L.: Direct and indirect effects of grazing on the phytoplankton seasonal succession in an oligotrophic lake, J. Plankton Res., 17, 1363–1379, 1995.
Carrillo, P., Medina-Sánchez, J. M., and Villar-Argaiz, M.: The interaction of phytoplankton and bacteria in a high-mountain lake: Importance of the spectral composition of solar radiation, Limnol. Oceanogr., 47, 1294–1306, 2002.
Carrillo, P., Medina-Sánchez, J. M., Villar-Argaiz, M., Delgado-Molina. J. A., and Bullejos, F. J.: Complex interactions in microbial food webs: Stoichiometric and functional approaches, Limnética, 25, 189–204, 2006.
Carrillo, P., Delgado-Molina, J. A., Medina-Sánchez, J. M., Bullejos, F. J., and Villar-Argaiz, M.: Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high-mountain lake, Global Change Biol., 14, 423–439, 2008.
Cole, J. J., Findlay, S., and Pace, M. L.: Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser., 43, 1–10, 1988.
del Giorgio, P. A. and Cole, J. J.: Bacterial growth efficiency in natural aquatic systems, Annu. Rev. Ecol. Syst., 29, 503–541, 1998.
de Senerpont Domis, L.N., Elser, J. J., Gsell, A. S., Huszar, V. L. M., Ibelings, B. W., Jeppesen, E., Kosten, S., Mooij, W. M., Roland, F., Sommer, U., Van Donk, E., Winder, M., and Lurling, M.: Plankton dynamics under different climatic conditions in space and time. Freshwater Biol., 58, 463–482, 2013.
Ferrara, I., Gasol, J. M., Sebastián, M., Hojerová, E., and Koblížek, M.: Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters, Appl. Environ. Microb., 77, 7451–7458, 2011.
Fouilland, E. and Mostajir, B.: Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters, FEMS Microbiol. Ecol., 73, 419–429, 2010.
Fouilland, E. and Mostajir, B.: Complementary support for the new ecological concept of "bacterial independence on contemporary phytoplankton production" in oceanic waters, FEMS Microbiol. Ecol., 78, 206–209, 2011.
Gao, K., Wu, Y., Li, G., Wu, H., Villafañe, V. E., and Helbling, E. W.: Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword, Plant Physiol., 44, 54–59, 2007.
Gao, K., Helbling, E. W., Häder, D. P., and Hutchins, D. A.: Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming Mar, Ecol. Prog. Ser., 470, 67–189, 2012.
Gasol, J. M., Vázquez-Domínguez, E., Vaqué, D., Agustí, S., and Duarte, C. M.: Bacterial activity and diffusive nutrient supply in the oligotrophic Central Atlantic Ocean, Aquat. Microb. Ecol., 56, 1–12, 2009.
Genty, B. E., Briantais, J. M., and Baker, N. R.: Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions, Plant Physiol. Biochem., 28,1–10,1989.
Häder, D. P., Helbling, E. W., Williamson, C. E., and Worrest, R. C.: Effects of UV radiation on aquatic ecosystems and interactions with climate change, Photochem. Photobiol. Sci., 10, 242–260, 2011.
Harrison J. W. and Smith, R. E. H.: Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities, Photochem. Photobiol. Sci., 8, 1218–1232, 2009.
Harrison J. W. and Smith, R. E. H.: The spectral sensitivity of phytoplankton communities to ultraviolet radiation-induced photoinhibition differs among clear and humic temperate lakes, Limnol. Oceanogr., 56, 2115–2126, 2011a.
Harrison J. W. and Smith, R. E. H.: Deep chlorophyll maxima and UVR acclimation by epilimnetic phytoplankton, Freshwater Biol., 56, 980–992, 2011b.
Helbling, E. W., Villafañe, V. E., and Holm-Hansen, O.: Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing, in: Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, edited by: Weiler, S. and Penhale, P., American Geophysical Union, Washington, DC, USA, Antarctic Research Series, 62, 207–227, 1994.
Helbling, E. W., Marguet, E. R., Villafañe, V. E., and Holm-Hansen, O.: Bacterioplankton viability in Antarctic waters as affected by solar ultraviolet radiation, Mar. Ecol. Prog. Ser., 126, 293–298, 1995.
Helbling, E. W., Carrillo, P., Medina-Sánchez, J. M., Durán, C., Herrera, G., Villar-Argaiz, M., and Villafañe, V. E.: Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe, Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, 2013.
Hörtnagl, P., Pérez, M. T., and Sommaruga, R.: Contrasting effects of ultraviolet radiation on the growth efficiency of freshwater bacteria, Aquat. Ecol., 45, 125–136, 2010.
Huisman, J., Pham, Thi, N., Karl, D. M., and Sommeijer, B.: Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum, Nature, 439, 322–325, 2006.
IPCC: Climate Change 2013, Summary for Policymakers, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xla, Y., Bex, V., and Mldgley, P.: Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Jeffrey, W. H., Pledger, R. J., Aas, P., Hager, S., Coffin, R. B., VonHaven, R., and Mitchell, D. L.: Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation, Mar. Ecol.-Prog. Ser., 137, 283–291, 1996.
Kitidis, V., Tilstone, G. H., Serret, P., Smyth, T. J. Torres, R., and Robinson, C.: Oxygen photolysis in the Mauritanian upwelling: Implications for net community production, Limnol. Oceanogr., 59, 299–310, 2014.
Korbee, N., Carrillo, P., Mata, M. T., Rosillo, S., Medina-Sanchéz, J. M., and Figueroa, F. L.: Effects of ultraviolet radiation and nutrients on the structure-function of phytoplankton in a high-mountain lake, Photochem. Photobiol. Sci., 11, 1087–1098, 2012.
Kritzberg, E. S., Cole, J. J., Pace, M. M, and Granéli, W.: Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs?, Aquat. Microb. Ecol., 38, 103–111, 2005.
Kritzberg, E. S., Cole, J. J., Pace, M. M, and Granéli, W.: Bacterial growth on allochthonous carbon in humic and nutrient enriched lakes: results from whole-lake 13C addition experiments, Ecosystems, 9, 489–499, 2006.
Lee, S. and Fuhrman, J. A.: Relationships between biovolume and biomass of naturally derived marine bacterioplankton, Appl. Environ. Microb., 53, 1298–1303, 1987.
Lemeé, R., Rochelle-Newall, E., Van Wambeke, F., Pizay, M. D., Rinaldi, P., and Gattuso, J. P.: Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea, Aquat. Microb. Ecol. , 29, 227–237, 2002.
López-Sandoval, D. C., Fernández, A., and Marañón, E.: Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea, Biogeosciences, 8, 815–825, https://doi.org/10.5194/bg-8-815-2011, 2011.
López-Urrutia, A. and Morán, X. A. G.: Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling, Ecology, 88, 817–822, 2007.
Mašín, M., Čuperová, Z., Hojerová, E., Salka, I., Grossart, H. P., and Koblížek, M.: Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of northern Europe, Aquat. Microb. Ecol., 66, 77–86, 2012.
Medina-Sánchez, J. M., Villar-Argaiz. M., Sánchez-Castillo, P., Cruz-Pizarro, L., and Carrillo P.: Structure changes in a planktonic food web: biotic and abiotic controls, J. Limnol., 58, 213–222, 1999.
Medina-Sánchez, J. M., Villar-Argaiz, M., and Carrillo, P.: Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients, Freshwater Biol., 47, 2191–2204, 2002.
Medina-Sánchez, J. M., Carrillo, P., Delgado-Molina, J. A., Bullejos, F. J., and Villar-Argaiz, M.: Patterns of resource limitation of bacteria along a trophic gradient in Mediterranean inland waters, FEMS Microbiol. Ecol., 74, 554–565, 2010.
Medina-Sánchez, J. M., Delgado-Molina, J. A., Bratbak, G., Bullejos, F. J., Villar-Argaiz, M., and Carrillo, P.: Maximum in the middle: Nonlinear response of microbial plankton to ultraviolet radiation and phosphorus, PLoS One, 8, e60223, https://doi.org/10.1371/journal.pone.0060223, 2013.
Morán, X. A. G. and Alonso-Sáez, L.: Independence of bacteria on phytoplankton? Unsufficient support to Fouilland & Mostajir's (2010) suggested new concept, FEMS Microbiol. Ecol., 78, 203–205, 2011.
Morán, X. A. G., Massana, R., and Gasol, J. M.: Light conditions affect the measurement of oceanic bacterial production via leucine uptake, Appl. Environ. Microb., 67, 3795–3801, 2001.
Morán, X. A. G., Estrada, M., Gasol, J. M., and Pedrós-Alio, C.: Dissolved primary production and the strength of phytoplankton bacterioplankton coupling in contrasting marine regions, Microb. Ecol., 44, 217–223, 2002.
Neale, P. J., Helbling, E. W., and Zagarese, H. E.: Modulation of UVR exposure and effects by vertical mixing and advection, in: UV effects in aquatic organisms and ecosystems, edited by: Helbling, E. W. and Zagarese, H. E., Royal Society of Chemistry, Cambridge, UK, 108–134, 2003.
Norrman, B., Zweifel, U. L., Opkinson Jr., C. S., and Fry, B.: Production and utilization of dissolved organic carbon during an experimental diatom bloom, Limnol. Oceanogr., 40, 898–907, 1995.
Pakulski, J. D., Baldwin, A., Dean, A., Durkin, S., Karentz, D., Kelley, C. A., Scott, K., Spero, H. J., Wilhelm, S., and Jeffrey, W. H..: Responses of heterotrophic bacteria to latitudinal variation in solar irradiance, Aquat. Microb. Ecol., 47, 153–162, 2007.
Pérez, M. T. and Sommaruga, R.: Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure, Environ. Microbiol., 9, 2200–2210, 2007.
Porter, K. G. and Feig, Y. S.: The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 25, 943–948, 1980.
Pullin, M. J., Bertilsson, S., Goldstone, J. V., and Voelker, B. M.: Effects of sunlight and hydroxyl radical on dissolved organic matter: Bacterial growth efficiency and production of carboxylic acids and other substrates, Limnol. Oceanogr., 49, 2011–2022, 2004.
Read, J. S. and Rose, K. C.: Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations, Limnol. Oceanogr., 58, 921–931, 2013.
Reche, I., Pulido-Villena, E., Conde-Porcuna, J. M., and Carrillo, P.: Photoreactivity of dissolved organic matter from high mountain lakes of Sierra Nevada (Spain), Arct. Antarc. and Alpine Res., 33, 426–434, 2001
Robinson, C.: Hetrotrophic bacterial respiration, in: Microbial ecology of the oceans, 2nd Edn., edited by: Kirchman, D., Wiley, New York, 299–334, 2008.
Rocha, O. and Duncan, A.: The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies, J. Plankton Res., 7, 279–294, 1985.
Rojo, C., Herrera, G., Rodrigo, M. A., Lorente, M. J., and Carrillo, P.: Mixotrophic phytoplankton is enhanced by UV radiation in a low altitude, P-limited Mediterranean lake, Hydrobiologia, 698, 97–110, 2012.
Rose, K. C., Williamson, C. E., Saros, J. E., Sommaruga, R., and Fischer, J. M.: Differences in UV transparency and thermal structure between alpine and subalpine lakes: implications for organisms, Photochem, Photobiol. Sci., 8, 1244–1256, 2009.
Ruiz-González, C., Simo, R., Sommaruga, R., and Gasol, J. M.: Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity, Front. Microbiol., 4, 131–131, 2013.
Sommaruga, R., Sattler, B., Oberleiter,A., Wille, A., Sommaruga-Wögrath, S., Psenner, R., Felip, M., Camarero, L., Pina, S., Gironés, R., and Catalán, J.: An in situ enclosure experiment to test the solar UV-B impact on microplankton in a high altitude mountain lake: II. Effects on the microbial food web, J. Plankton Res., 21, 859–876, 1999.
van de Waal, D. B., Verschoor, A., Verspagen, J. M. H., Van Donk, E., and Huisman, J.: Climate-driven changes in the ecological stoichiometry of aquatic ecosystems, Front. Ecol. Environ. Sci., 8, 145–152, 2009.
Villafañe, V. E., Sundbäck, K., Figueroa, F. L., and Helbling, E. W.: Photosynthesis in the aquatic environment as affected by UVR, in: UV effects in aquatic organisms and ecosystems, edited by: Helbling, E. W. and Zagarese, H. E., Roy. Soc. Chem., 357–397, 2003.
Villafañe, V. E., Gao, K., Li, P., Li, G., and Helbling, E. W.: Vertical mixing within the epilimnion modulates UVR-induced photoinhibition in tropical freshwater phytoplankton from southern China, Freshwater Biol., 52, 1260–1270, 2007.
Warkentin, M., Freese, H. M., Karsten, U., and Schumann, R.: New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots, Appl. Environ. Microb., 73, 6722–6729, 2007.
Williamson, C. E. and Rose, K. C.: When UV meets freshwater, Science, 329, 637–639, 2010.
Wood, A. M. and Van Valen L. M.: Paradox lost? On the release of energy-rich compounds by phytoplankton, Mar. Microb. Food Webs, 4, 103–116, 1990.
Xenopoulos, M. A. and Schindler, D. W.: Differential responses to UVR by bacterioplankton and phytoplankton from the surface and the base of the mixed layer, Freshwater Biol., 48, 108–122, 2003
Yuan, X., Yin, K., Harrison, P. J., and Zhang, J.: Phytoplankton are more tolerant to UV than bacteria and viruses in the northern South China Sea, Aquat. Microb. Ecol., 65, 117–128, 2011.
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in...
Altmetrics
Final-revised paper
Preprint