Articles | Volume 13, issue 1
https://doi.org/10.5194/bg-13-175-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-13-175-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
J. Comte
CORRESPONDING AUTHOR
Centre d'études nordiques (CEN), Takuvik Joint International
Laboratory & Département de biologie, Université Laval,
Québec, QC G1V 0A6, Canada
Institut de Biologie Intégrative et des Systèmes (IBIS),
Université Laval, Québec, QC G1V 0A6, Canada
C. Lovejoy
Centre d'études nordiques (CEN), Takuvik Joint International
Laboratory & Département de biologie, Université Laval,
Québec, QC G1V 0A6, Canada
Institut de Biologie Intégrative et des Systèmes (IBIS),
Université Laval, Québec, QC G1V 0A6, Canada
Québec Océan, Université Laval, Québec, QC G1V 0A6,
Canada
S. Crevecoeur
Centre d'études nordiques (CEN), Takuvik Joint International
Laboratory & Département de biologie, Université Laval,
Québec, QC G1V 0A6, Canada
Institut de Biologie Intégrative et des Systèmes (IBIS),
Université Laval, Québec, QC G1V 0A6, Canada
W. F. Vincent
Centre d'études nordiques (CEN), Takuvik Joint International
Laboratory & Département de biologie, Université Laval,
Québec, QC G1V 0A6, Canada
Related authors
A. Przytulska, J. Comte, S. Crevecoeur, C. Lovejoy, I. Laurion, and W. F. Vincent
Biogeosciences, 13, 13–26, https://doi.org/10.5194/bg-13-13-2016, https://doi.org/10.5194/bg-13-13-2016, 2016
Short summary
Short summary
Permafrost thaw lakes are a subject of increasing research interest given their abundance across the northern landscape. Our aim in the present study was to characterize the photosynthetic communities in a range of subarctic thaw lakes using a combination of HPLC analysis of algal and bacterial pigments, flow cytometry and molecular analysis. Our results showed that the thaw lakes contain diverse phototrophic communities and are a previously unrecognized habitat for abundant picophotoautotrophs.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Andrew K. Hamilton, Bernard E. Laval, Derek R. Mueller, Warwick F. Vincent, and Luke Copland
The Cryosphere, 11, 2189–2211, https://doi.org/10.5194/tc-11-2189-2017, https://doi.org/10.5194/tc-11-2189-2017, 2017
Short summary
Short summary
Meltwater runoff trapped by an ice shelf can create a freshwater lake floating directly on seawater. We show that the depth of the freshwater–seawater interface varies substantially due to changes in meltwater inflow and drainage under the ice shelf. By accounting for seasonality, the interface depth can be used to monitor long-term changes in the thickness of ice shelves. We show that the Milne Ice Shelf, Ellesmere Island, was stable before 2004, after which time the ice shelf thinned rapidly.
Bethany N. Deshpande, Sophie Crevecoeur, Alex Matveev, and Warwick F. Vincent
Biogeosciences, 13, 4411–4427, https://doi.org/10.5194/bg-13-4411-2016, https://doi.org/10.5194/bg-13-4411-2016, 2016
Short summary
Short summary
Subarctic lakes are changing in size as a result of permafrost thawing, resulting in mobilization of soil materials. Our study characterizes the carbon and nutrient regime of a set of thaw lakes and their adjacent permafrost soils in a rapidly degrading landscape, showing how these materials create favorable conditions for aquatic bacterial communities. We discuss the controls over the bacterial community, and demonstrate that gain processes are not a primary control.
A. Przytulska, J. Comte, S. Crevecoeur, C. Lovejoy, I. Laurion, and W. F. Vincent
Biogeosciences, 13, 13–26, https://doi.org/10.5194/bg-13-13-2016, https://doi.org/10.5194/bg-13-13-2016, 2016
Short summary
Short summary
Permafrost thaw lakes are a subject of increasing research interest given their abundance across the northern landscape. Our aim in the present study was to characterize the photosynthetic communities in a range of subarctic thaw lakes using a combination of HPLC analysis of algal and bacterial pigments, flow cytometry and molecular analysis. Our results showed that the thaw lakes contain diverse phototrophic communities and are a previously unrecognized habitat for abundant picophotoautotrophs.
J. E. Vonk, S. E. Tank, W. B. Bowden, I. Laurion, W. F. Vincent, P. Alekseychik, M. Amyot, M. F. Billet, J. Canário, R. M. Cory, B. N. Deshpande, M. Helbig, M. Jammet, J. Karlsson, J. Larouche, G. MacMillan, M. Rautio, K. M. Walter Anthony, and K. P. Wickland
Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, https://doi.org/10.5194/bg-12-7129-2015, 2015
Short summary
Short summary
In this review, we give an overview of the current state of knowledge regarding how permafrost thaw affects aquatic systems. We describe the general impacts of thaw on aquatic ecosystems, pathways of organic matter and contaminant release and degradation, resulting emissions and burial, and effects on ecosystem structure and functioning. We conclude with an overview of potential climate effects and recommendations for future research.
A. Monier, R. Terrado, M. Thaler, A. Comeau, E. Medrinal, and C. Lovejoy
Biogeosciences, 10, 4273–4286, https://doi.org/10.5194/bg-10-4273-2013, https://doi.org/10.5194/bg-10-4273-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major
impact: The relevance of ponds and lakes in permafrost landscapes to carbon
dioxide emissions, Global Biogeochem. Cy., 26, 1–9,
https://doi.org/10.1029/2011GB004237, 2012.
Andersson, A. F., Riemann, L., and Bertilsson, S.: Pyrosequencing reveals
contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton
communities, ISME J., 4, 171–181, https://doi.org/10.1038/ismej.2009.108, 2009.
Andresen, C. G. and Lougheed, V. L.: Disappearing Arctic tundra ponds:
Fine-scale analysis of surface hydrology in drained thaw lake basins over a
65 year period (1948–2013), J. Geophys. Res.-Biogeo., 120,
https://doi.org/10.1002/2014JG002778, 2015.
Araújo, M. B., Rozenfeld, A., Rahbek, C., and Marquet, P. A.: Using
species co-occurrence networks to assess the impacts of climate change,
Ecography, 34, 897–908, 2011.
Anderson, M. J., Ellingsen, K. E., and McArdle, B. H.: Multivariate
dispersion as a measure of beta diversity, Ecol. Lett., 9, 683–693,
https://doi.org/10.1111/j.1461-0248.2006.00926.x, 2006.
Barberan, A., Bates, S. T., Casamayor, E. O., and Fierer, N.: Using network
analysis to explore co-occurrence patterns in soil microbial communities,
ISME J., 6, 343–351, https://doi.org/10.1038/ismej.2011.119, 2012.
Bastian, M., Heymann, S., and Jacomy, M.: Gephi: an open source software for
exploring and manipulating networks, ICWSM, 8, 361–362, 2009.
Beier, S. and Bertilsson, S.: Uncoupling of chitinase activity and uptake of
hydrolysis products in freshwater bacterioplankton, Limnol. Oceanogr.,
56, 1179–1188, https://doi.org/10.4319/lo.2011.56.4.1179, 2011.
Beier, S. and Bertilsson, S.: Bacterial chitin degradation-mechanisms and
ecophysiological strategies, Front. Microbiol., 4, 149,
https://doi.org/10.3389/fmicb.2013.00149, 2013.
Benjamini, Y. and Hochberg, Y.: Controlling the false discovery rate: a
practical and powerful approach to multiple testing, J. Roy. Stat. Soc. B, 57,
289–300, 1995.
Bhiry, N., Delwaide, A., Allard, M., Bégin, Y., Filion, L., Lavoie, M.,
Nozais, C., Payette, S., Pienitz, R., Saulnier-Talbot, É., and Vincent,
W. F.: Environmental change in the Great Whale River region, Hudson Bay:
Five decades of multidisciplinary research by Centre d'études nordiques
(CEN), Ecoscience, 18, 182–203, 2011.
Bonilla, S., Villeneuve, V., and Vincent, W. F.: Benthic and planktonic algal
communities in a high arctic lake: Pigment structure and contrasting
responses to nutrient enrichment, J. Phycol., 41, 1120–1130, 2005.
Bouchard, F., Francus, P., Pienitz, R., Laurion, I., and Feyte, S.: Subarctic
thermokarst ponds: Investigating recent landscape evolution and sediment
dynamics in thawed permafrost of northern Québec (Canada), Arct.
Antarct. Alp. Res., 46, 251–271, https://doi.org/10.1657/1938-4246-46.1.251, 2014.
Caporaso, J. G., Bittinger, K., Bushman, F. D., DeSantis, T. Z., Andersen,
G. L., and Knight, R.: PyNAST: a flexible tool for aligning sequences to a
template alignment, Bioinformatics, 26, 266–267,
https://doi.org/10.1093/bioinformatics/btp636, 2010a.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I.,
Huttley, G. A., Kelley, S. T., Knights, D. Koenig, J. E., Ley, R. E.,
Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J.,
Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko,
T., Zaneveld, J., and Knight, R.: QIIME allows analysis of high-throughput
community sequencing data, Nat. Methods, 7, 335–336,
https://doi.org/10.1038/nmeth.f.303, 2010b.
Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A., and Fuhrman, J. A.:
Top-down controls on bacterial community structure: microbial network
analysis of bacteria, T4-like viruses and protists, ISME J., 8, 816–829,
https://doi.org/10.1038/ismej.2013.199, 2014.
Comeau, A. M., Li, W. K. W., Tremblay, J.-É., Carmack, E. C., and
Lovejoy, C.: Arctic Ocean microbial community structure before and after the
2007 record sea ice minimum, PLoS ONE, 6, e27492,
https://doi.org/10.1371/journal.pone.0027492.s012, 2011.
Comte, J., Monier, A., Crevecoeur, S., Lovejoy, C., and Vincent, W. F.:
Microbial biogeography of permafrost thaw ponds across the changing northern
landscape, Ecography, 38, https://doi.org/10.1111/ecog.01667, 2015.
Crevecoeur, S., Vincent, W. F., Comte, J., and Lovejoy, C.: Bacterial
community structure across environmental gradients in permafrost thaw ponds:
methanotroph-rich ecosystems, Front. Microbiol., 6, 192,
https://doi.org/10.3389/fmicb.2015.00192, 2015.
Csardi, G. and Nepusz, T.: The igraph software package for complex network
research, Inter J. Complex Sys., 1695, 1–9, 2006.
De Cáceres, M. and Legendre, P.: Associations between species and groups
of sites: indices and statistical inference, Ecology, 90, 3566–3574,
2009.
del Rio, T. G., Abt, B., Spring, S., Lapidus, A., Nolan, M., Tice, H.,
Copeland, A., Cheng, J.-F., Chen, F., Bruce, D., Goodwin, L., Pitluck, S.,
Ivanova, N., Mavromatis, K., Mikhailova, N., Pati, A., Chen, A., Palaniappan,
K., Land, M., Hauser, L., Chang, Y.-J., Jeffries, C. D., Chain, P., Saunders,
E., Detter, J. C., Brettin, T., Rohde, M., Göker, M., Bristow, J., Eisen,
J. A., Markowitz, V., Hugenholtz, P., Kyrpides, N. C., Klenk, H.-P., and
Lucas, S.: Complete genome sequence of Chitinophaga pinensis type
strain (UQM 2034), Stand. Genomic Sci., 2, 87–95, https://doi.org/10.4056/sigs.661199,
2010.
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L.,
Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G. L.: Greengenes, a
chimera-checked 16S rRNA gene database and workbench compatible with ARB,
Appl. Environ. Microb., 72, 5069–5072, https://doi.org/10.1128/AEM.03006-05,
2006.
Deshpande, B., MacIntyre, S., Matveev, A., and Vincent, W. F.:
Oxygen dynamics in permafrost thaw lakes: Anaerobic bioreactors in the
Canadian subarctic, Limnol. Oceanogr., 60, 1656–1670, https://doi.org/10.1002/lno.10126, 2015.
Ducklow, H.: Microbial services: challenges for microbial ecologists in a
changing world, Aquat. Microb. Ecol., 53, 13–19, https://doi.org/10.3354/ame01220,
2008.
Edgar, R. C.: UPARSE: highly accurate OTU sequences from microbial amplicon
reads, Nat. Methods, 10, 996–998, https://doi.org/10.1038/nmeth.2604, 2013.
Eiler, A., Heinrich, F., and Bertilsson, S.: Coherent dynamics and
association networks among lake bacterioplankton taxa, ISME J., 6,
330–342, https://doi.org/10.1038/ismej.2011.113, 2011.
Fahlgren, C., Hagström, A., Nilsson, D., and Zweifel, U. L.: Annual
variations in the diversity, viability, and origin of airborne bacteria,
Appl. Environ. Microb., 76, 3015–3025, https://doi.org/10.1128/AEM.02092-09,
2010.
Faith, D. P.: Conservation evaluation and phylogenetic diversity, Biol.
Conserv., 61, 1–10, 1992.
Franzetti, A., Tatangelo, V., Gandolfi, I., Bertolini, V., Bestetti, G.,
Diolaiuti, G., D'Agata, C., Mihalcea, C., Smiraglia, C., and Ambrosini, R.:
Bacterial community structure on two alpine debris-covered glaciers and
biogeography of Polaromonas phylotypes, ISME J., 7, 1483–1492,
https://doi.org/10.1038/ismej.2013.48, 2013.
Ganzert, L., Lipski, A., Hubberten, H.-W., and Wagner, D.: The impact of
different soil parameters on the community structure of dominant bacteria
from nine different soils located on Livingston Island, South Shetland
Archipelago, Antarctica, FEMS Microbiol. Ecol., 76, 476–491,
https://doi.org/10.1111/j.1574-6941.2011.01068.x, 2011.
Grosse, G., Jones, B., and Arp, C.: Thermokarst Lakes, Drainage, and Drained
Basins, in: Treatise on Geomorphology, edited by: Shroder. J. F., Volume 8,
Academic Press, San Diego, 325–353, 2013.
Heino, J. and Grönroos, M.: Does environmental heterogeneity affect
species co-occurrence in ecological guilds across stream macroinvertebrate
metacommunities?, Ecography, 36, 926–936,
https://doi.org/10.1111/j.1600-0587.2012.00057.x, 2013.
Helmus, M. R., Bland, T. J., Williams, C. K., and Ives, A. R.: Phylogenetic
measures of biodiversity, Am. Nat., 169, E68–E83, https://doi.org/10.1086/511334,
2007.
Hervàs, A. and Casamayor, E. O.: High similarity between bacterioneuston
and airborne bacterial community compositions in a high mountain lake area,
FEMS Microbiol. Ecol., 67, 219–228, https://doi.org/10.1111/j.1574-6941.2008.00617.x,
2009.
Horner-Devine, M. C., Silver, J. M., Leibold, M. A., Bohannan, B. J.,
Colwell, R. K., Fuhrman, J. A., Green, J. L., Kuske, C. R., Martiny, J. B.,
and Muyzer, G.: A comparison of taxon co-occurrence patterns for macro-and
microorganisms, Ecology, 88, 1345–1353, 2007.
Kembel, S. W.: Disentangling niche and neutral influences on community
assembly: assessing the performance of community phylogenetic structure
tests, Ecol. Lett., 12, 949–960, https://doi.org/10.1111/j.1461-0248.2009.01354.x,
2009.
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H.,
Ackerly, D. D., Blomberg, S. P., and Webb, C. O.: Picante: R tools for
integrating phylogenies and ecology, Bioinformatics, 26, 1463–1464,
https://doi.org/10.1093/bioinformatics/btq166, 2010.
Kritzberg, E. S., Langenheder, S., and Lindström, E. S.: Influence of
dissolved organic matter source on lake bacterioplankton structure and
function–implications for seasonal dynamics of community composition, FEMS
Microbiol. Ecol., 56, 406–417, https://doi.org/10.1111/j.1574-6941.2006.00084.x,
2006.
Laurion, I., Vincent, W. F., MacIntyre, S., Retamal, L., Dupont, C., Francus,
P., and Pienitz, R.: Variability in greenhouse gas emissions from permafrost
thaw ponds, Limnol. Oceanogr., 55, 115–133, https://doi.org/10.4319/lo.2010.55.1.0115,
2010.
Legendre, P. and De Cáceres, M.: Beta diversity as the variance of
community data: dissimilarity coefficients and partitioning, Ecol. Lett.,
16, 951–963, https://doi.org/10.1111/ele.12141, 2013.
Logue, J. B., Stedmon, C. A., Kellerman, A. M., Nielsen, N. J., Andersson, A.
F., Laudon, H., Lindström, E. S., and Kritzberg, E. S.: Experimental
insights into the importance of aquatic bacterial community composition to
the degradation of dissolved organic matter, ISME J., 1–13,
https://doi.org/10.1038/ismej.2015.131, 2015.
Lovejoy, C., Comeau, A., and Thaler M.: Curated reference database of SSU
rRNA for northern marine and freshwater communities of Archaea, Bacteria and
microbial eukaryotes, v. 1.0, Nordicana, D23,
https://doi.org/10.5885/45409XD-79A199B76BCC4110, 2015.
Lozupone, C. and Knight, R.: UniFrac: a new phylogenetic method for
comparing microbial communities, Appl. Environ. Microb., 71,
8228–8235, https://doi.org/10.1128/AEM.71.12.8228-8235.2005, 2005.
Mayfield, M. M. and Levine, J. M.: Opposing effects of competitive exclusion
on the phylogenetic structure of communities, Ecol. Lett., 13,
1085–1093, https://doi.org/10.1111/j.1461-0248.2010.01509.x, 2010.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet, N.:
Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
Miki, T.: A new graphical model for untangling complex relationships among
environment, biodiversity, and ecosystem functioning, Ecol. Res., 24,
937–941, https://doi.org/10.1007/s11284-008-0552-7, 2008.
Miklós, I. and Podani, J.: Randomization of presence-absence matrices:
comments and new algorithms, Ecology, 85, 86–92, 2004.
Mondav, R., Woodcroft, B. J., Kim, E.-H., McCalley, C. K., Hodgkins, S. B.,
Crill, P. M., Chanton, J., Hurst, G. B., VerBerkmoes, N. C., Saleska, S. R.,
Hugenholtz, P., Rich, V. I., and Tyson, G. W.: Discovery of a novel
methanogen prevalent in thawing permafrost, Nat. Commun., 5, 1–7,
https://doi.org/10.1038/ncomms4212, 2014.
Monier, A., Comte, J., Babin, M., Forest, A., Matsuoka, A., and Lovejoy, C.:
Oceanographic structure drives the assembly processes of microbial
eukaryotic communities, ISME J., 9, 990–1002, https://doi.org/10.1038/ismej.2014.197,
2015.
Montoya, J. M., Pimm, S. L., and Solé, R. V.: Ecological networks and
their fragility, Nature, 442, 259–264, https://doi.org/10.1038/nature04927, 2006.
Peura, S., Bertilsson, S., Jones, R. I., and Eiler, A.: Resistant microbial
co-occurrence patterns inferred by network topology, Appl. Environ.
Microb., 81, 2090–2097, https://doi.org/10.1128/AEM.03660-14, 2015.
Price, M. N., Dehal, P. S., and Arkin, A. P.: FastTree 2–approximately
maximum-likelihood trees for large alignments, PLoS ONE, 5, e9490,
https://doi.org/10.1371/journal.pone.0009490, 2010.
Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J.,
and Glöckner, F. O.: SILVA: a comprehensive online resource for quality
checked and aligned ribosomal RNA sequence data compatible with ARB, Nucl.
Acids Res., 35, 7188–7196, https://doi.org/10.1093/nar/gkm864, 2007.
R Core Team: R: A language and environment for statistical computing., edited
by R Foundation for Statistical Computing, Vienna, Austria,
https://doi.org/http://www.R-project.org/ (May 2015), 2014.
Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G.,
Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M., and Sabeti, P. C.:
Detecting novel associations in large data sets, Science, 334,
1518–1524, https://doi.org/10.1126/science.1205438, 2011.
Rossi, P. G., Laurion, I., and Lovejoy, C.: Distribution and identity of
bacteria in subarctic permafrost thaw ponds, Aquat. Microb. Ecol., 69,
231–245, https://doi.org/10.3354/ame01634, 2013.
Ruiz-González, C., Niño-García, J. P., Lapierre, J.-F., and Del
Giorgio, P. A.: The quality of organic matter shapes the functional
biogeography of bacterioplankton across boreal freshwater ecosystems, Global
Ecol. Biogeogr., 24, 1487–1498,, https://doi.org/10.1111/geb.12356, 2015.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson,
C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber,
C. F.: Introducing mothur: Open-source, platform-independent,
community-supported software for describing and comparing microbial
communities, Appl. Environ. Microb., 75, 7537–7541,
https://doi.org/10.1128/AEM.01541-09, 2009.
Schuur, E. A., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B.,
Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., and Lee, H.:
Vulnerability of permafrost carbon to climate change: Implications for the
global carbon cycle, BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
Amin, N., Schwikowski, B., and Ideker, T.: Cytoscape: a software environment
for integrated models of biomolecular interaction networks, Genome Res.,
13, 2498–2504, 2003.
Stainton, M. P., Capel, M. J., and Armstrong, F. A. J.: The Chemical Analysis
of Fresh Water, Winnipeg, Canadian Fisheries and Marine Service, Special
Publication 25, 1–168, 1977.
Steele, J. A., Countway, P. D., Xia, L., Vigil, P. D., Beman, J. M., Kim, D.
Y., Chow, C.-E. T., Sachdeva, R., Jones, A. C., Schwalbach, M. S., Rose, J.
M., Hewson, I., Patel, A., Sun, F., Caron, D. A., and Fuhrman, J. A.: Marine
bacterial, archaeal and protistan association networks reveal ecological
linkages, ISME J., 5, 1414–1425, https://doi.org/10.1038/ismej.2011.24, 2011.
Stegen, J. C., Lin, X., Konopka, A. E., and Fredrickson, J. K.: Stochastic
and deterministic assembly processes in subsurface microbial communities,
ISME J., 6, 1653–1664, https://doi.org/10.1038/ismej.2012.22, 2012.
Stone, L. and Roberts, A.: The checkerboard score and species distributions,
Oecologia, 85, 74–79, 1990.
Székely, A. J., Berga, M., and Langenheder, S.: Mechanisms determining
the fate of dispersed bacterial communities in new environments, ISME J.,
7, 61–71, https://doi.org/10.1038/ismej.2012.80, 2013.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023,
https://doi.org/10.1029/2008GB003327, 2009.
Thibault, S. and Payette, S.: Recent permafrost degradation in bogs of the
James Bay area, northern Quebec, Canada, Permafrost Periglac., 20,
383–389, 2009.
Utermöhl, H.: Zur Vervollkommnung der quantitativen
Phytoplankton-Metodik, Mitt. Int. Ver. Theor. Angew. Limnol. 9, 1–38, 1958.
Walter, K. M., Smith, L. C., and Stuart Chapin, F.: Methane bubbling from
northern lakes: present and future contributions to the global methane
budget, Philos. T. R. Soc. A, 365, 1657–1676,
https://doi.org/10.1126/science.1128908, 2007.
Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E., and Zimov, S. A.:
Methane production and bubble emissions from arctic lakes: Isotopic
implications for source pathways and ages, J. Geophys. Res-Biogeo., 113,
G00A08, https://doi.org/10.1029/2007JG000569, 2008.
Walter Anthony, K. M., Zimov, S. A., Grosse, G., Jones, M. C., Anthony, P.
M., Chapin, F. S., Finlay, J. C., Mack, M. C., Davydov, S., Frenzel, P., and
Frolking, S.: A shift of thermokarst lakes from carbon sources to sinks
during the Holocene epoch, Nature, 511, 452–456,
https://doi.org/10.1038/nature13560, 2014.
Webb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J.: Phylogenies
and community ecology, Annu. Rev. Ecol. Syst., 33, 475–505,
https://doi.org/10.1146/annurev.ecolsys.33.010802.150448, 2002.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of specific ultraviolet absorbance as an
indicator of the chemical composition and reactivity of dissolved organic
carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x,
2003.
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa...
Special issue
Altmetrics
Final-revised paper
Preprint