Articles | Volume 13, issue 6
https://doi.org/10.5194/bg-13-1933-2016
https://doi.org/10.5194/bg-13-1933-2016
Research article
 | 
30 Mar 2016
Research article |  | 30 Mar 2016

Carbon sequestration in managed temperate coniferous forests under climate change

Caren C. Dymond, Sarah Beukema, Craig R. Nitschke, K. David Coates, and Robert M. Scheller

Related authors

Modelling the effects of climate and landcover change on the hydrologic regime of a snowmelt-dominated montane catchment
Russell S. Smith, Caren C. Dymond, David L. Spittlehouse, Rita D. Winkler, and Georg Jost
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-248,https://doi.org/10.5194/hess-2023-248, 2023
Manuscript not accepted for further review
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024,https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024,https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023,https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Enhanced Southern Ocean CO2 outgassing as a result of stronger and poleward shifted southern hemispheric westerlies
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023,https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond
Petr Znachor, Jiří Nedoma, Vojtech Kolar, and Anna Matoušů
Biogeosciences, 20, 4273–4288, https://doi.org/10.5194/bg-20-4273-2023,https://doi.org/10.5194/bg-20-4273-2023, 2023
Short summary

Cited articles

BC Environment: Biodiversity guidebook, Government of British Columbia, Victoria, BC, 1995.
BC MFLNR (Ministry of Forests, Lands and Natural Resource Operations): Vegetation resource inventory map, Gov. of British Columbia, Victoria, BC, available at: https://catalogue.data.gov.bc.ca/dataset?download_audience=Public (last access: 23 March 2016), 2011.
BC Timber Sales-Babine: Bulkley Forest Stewardship Plan, Gov. of British Columbia, Burns Lake, BC, 2007
Beach, E. W. and Halpern, C. B.: Controls on conifer regeneration in managed riparian forests: effects of seed source, substrate, and vegetation, Can. J. Forest Res., 31, 471–482, 2001.
Bjorkbom, J. C.: Production and germination of paper birch seed and its dispersal into a forest opening, USDA Forest Service Research Paper NE-209, Northeastern Forest Experiment Station, Upper Darby, PA, 1971.
Download
Short summary
Management of forests may be able to mitigate climate change. However, those efforts may be negated by climate change impacts. This project simulated four productivity scenarios for a temperate coniferous forest. The coldest ecoregions were projected to be carbon sinks, but the warmest are at risk of becoming carbon sources to the atmosphere. Effects varied among species and site conditions, indicating that both of these factors need to be considered when planning mitigation and adaptation.
Altmetrics
Final-revised paper
Preprint