Articles | Volume 13, issue 12
https://doi.org/10.5194/bg-13-3607-2016
https://doi.org/10.5194/bg-13-3607-2016
Research article
 | 
21 Jun 2016
Research article |  | 21 Jun 2016

New strategies for submicron characterization the carbon binding of reactive minerals in long-term contrasting fertilized soils: implications for soil carbon storage

Jian Xiao, Xinhua He, Jialong Hao, Ying Zhou, Lirong Zheng, Wei Ran, Qirong Shen, and Guanghui Yu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (26 May 2016) by Roland Bol
AR by Guanghui Yu on behalf of the Authors (28 May 2016)  Author's response    Manuscript
ED: Publish as is (31 May 2016) by Roland Bol
Download
Short summary
Reactive minerals are ubiquitous in soil and are proposed as a primary driver for carbon (C) retention. However, regulation of soil reactive minerals and direct evidence in sequestrating C by them are scarce. Here we show that, compared with chemical fertilization, inorganic and organic fertilization enhanced the C-binding loadings of Al and Fe minerals in soil colloids, suggesting that reactive mineral species and their associations with C are differentially affected by fertilization practices.
Altmetrics
Final-revised paper
Preprint