Articles | Volume 13, issue 12
https://doi.org/10.5194/bg-13-3607-2016
https://doi.org/10.5194/bg-13-3607-2016
Research article
 | 
21 Jun 2016
Research article |  | 21 Jun 2016

New strategies for submicron characterization the carbon binding of reactive minerals in long-term contrasting fertilized soils: implications for soil carbon storage

Jian Xiao, Xinhua He, Jialong Hao, Ying Zhou, Lirong Zheng, Wei Ran, Qirong Shen, and Guanghui Yu

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (26 May 2016) by Roland Bol
AR by Guanghui Yu on behalf of the Authors (28 May 2016)  Author's response   Manuscript 
ED: Publish as is (31 May 2016) by Roland Bol
AR by Guanghui Yu on behalf of the Authors (01 Jun 2016)
Download
Short summary
Reactive minerals are ubiquitous in soil and are proposed as a primary driver for carbon (C) retention. However, regulation of soil reactive minerals and direct evidence in sequestrating C by them are scarce. Here we show that, compared with chemical fertilization, inorganic and organic fertilization enhanced the C-binding loadings of Al and Fe minerals in soil colloids, suggesting that reactive mineral species and their associations with C are differentially affected by fertilization practices.
Altmetrics
Final-revised paper
Preprint