Articles | Volume 13, issue 2
https://doi.org/10.5194/bg-13-535-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-535-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
J. Elster
CORRESPONDING AUTHOR
Centre for Polar Ecology, Faculty of Science,
University of South Bohemia, Na Zlaté Stoce 3, 37005 České
Budějovice, Czech Republic
Institute of Botany, Academy of Sciences of the Czech
Republic, Dukelská 135, 37982 Třeboň, Czech
Republic
L. Nedbalová
Institute of Botany, Academy of Sciences of the Czech
Republic, Dukelská 135, 37982 Třeboň, Czech
Republic
Department of Ecology, Faculty of Science, Charles
University in Prague, Albertov 6, 12843 Prague, Czech
Republic
R. Vodrážka
Czech Geological Survey, Klárov 3, 11821 Prague,
Czech Republic
Department of Geography, Faculty of Science, Masaryk
University, Kotlářská 2, 61137 Brno, Czech
Republic
J. Haloda
Czech Geological Survey, Klárov 3, 11821 Prague,
Czech Republic
J. Komárek
Centre for Polar Ecology, Faculty of Science,
University of South Bohemia, Na Zlaté Stoce 3, 37005 České
Budějovice, Czech Republic
Institute of Botany, Academy of Sciences of the Czech
Republic, Dukelská 135, 37982 Třeboň, Czech
Republic
Related authors
No articles found.
Ondřej Nedělčev, Michael Matějka, Kamil Láska, Zbyněk Engel, Jan Kavan, and Michal Jenicek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1185, https://doi.org/10.5194/egusphere-2024-1185, 2024
Short summary
Short summary
The annual variability of the runoff process has not been analysed in the Maritime Antarctic. Thus, we simulated and analysed rain, snow and glacier contributions to runoff related to climate variability in a small catchment over 11 years. Snowmelt runoff (77 % of the total runoff) is controlled by precipitation anomalies, while glacier runoff (10 % of the total runoff) is controlled by air temperature anomalies. There were significant runoff events outside the usual runoff measurement season.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 23, 4617–4636, https://doi.org/10.5194/acp-23-4617-2023, https://doi.org/10.5194/acp-23-4617-2023, 2023
Short summary
Short summary
The study deals with ultraviolet (UV) radiation in southern polar conditions, where ozone depletion occurs each spring. A 10-year-long time series of UV spectra from Marambio Base, Antarctic Peninsula, has been studied, with a focus on the changes of UV radiation at different wavelengths and the effects of atmospheric and terrestrial variables like ozone, solar elevation, or cloudiness. At the very short wavelengths, the effect of ozone and its deficiency was clearly observed.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 18, 1805–1818, https://doi.org/10.5194/acp-18-1805-2018, https://doi.org/10.5194/acp-18-1805-2018, 2018
Short summary
Short summary
In order to broaden the knowledge of long-term UV radiation variability, we have reconstructed and analyzed a 50-year-long UV radiation time series from Hradec Králové, Czech Republic. The UV radiation intensities increased greatly following the decline of ozone amounts in the 1980s and 1990s. High UV radiation doses were observed in days with low ozone amounts, clear or partly cloudy skies, or snow cover.
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
T. R. Vonnahme, M. Devetter, J. D. Žárský, M. Šabacká, and J. Elster
Biogeosciences, 13, 659–674, https://doi.org/10.5194/bg-13-659-2016, https://doi.org/10.5194/bg-13-659-2016, 2016
Short summary
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Andersen, D. T., Sumner, D. Y., Hawes, I., Webster-Brown, J., and McKay, C.
P.: Discovery of large conical stromatolites in Lake Untersee, Antarctica
Geobiology, 9, 280–293, https://doi.org/10.1111/j.1472-4669.2011.00279.x, 2011.
Arp, G., Reimer, A., and Reitner, J.: Photosynthesis-induced biofilm
calcification and calcium concentrations in Phanerozoic oceans, Science,
392, 1701, https://doi.org/10.1126/science.1057204, 2001.
Barnes, D. K. A., Hodgson, D. A., Convey, P., Allen, C. S., and Clarke, A.:
Incursion and excursion of Antarctic biota: past, present and future, Global
Ecol. Biogeogr., 15, 121–142, https://doi.org/10.1111/j.1466-822x.2006.00216.x, 2006.
Broady, P. A.: Diversity, distribution and dispersal of Antarctic
terrestrial algae, Biodiv. Conserv., 5, 1307–1335, https://doi.org/10.1007/BF00051981,
1996.
Caspi, E. N., Pokroy, B., Lee, P. L., Quintana, J. P., and Zolotoyabko, E.:
On the structure of aragonite, Acta Crystallogr., 61, 129–132, https://doi.org/10.1107/S0108768105005240, 2005.
Clark, I. D. and Lauriol, B.: Aufeis of the Firth River basin, Northern Yukon
Canada: insights to permafrost hydrology and karst, Arct. Alp. Res., 29,
240–252, https://doi.org/10.2307/1552053, 1997.
Couradeau, E., Benzerara, K., Moreira, D., Gérard, E., Kaźmierczak,
J., Tavera, R., and López-García, P.: Prokaryotic and eukaryotic
community structure in field and cultured microbialites from the alkaline
lake Alchichica (Mexico), PloS ONE, 6, 1–15, https://doi.org/10.1371/journal.pone.0028767, 2011.
Courty, M. A., Marlin, C., Dever, L., Tremblay, P., and Vachier, P.: The
properties, genesis and environmental significance of calcite pendents from
the high Arctic (Spitsbergen), Geoderma, 61, 71–102, https://doi.org/10.1016/0016-7061(94)90012-4, 1994.
Cölfen, H. and Antonietti, M.: Crystal design of calcium carbonate
microparticles using double-hydrophilic block copolymers, Langmuir, 14,
582–589, https://doi.org/10.1021/la970765t, 1998.
Cölfen, H. and Antonietti, M.: Mesocrystals: inorganic superstructures
made by highly parallel crystallization and controlled alignment, Angew.
Chem. Int. Edit., 44, 5576–5591, https://doi.org/10.1002/anie.200500496, 2005.
Davies, B. J., Glasser, N. F., Carrivick, J. L., Hambrey, M. J., Smellie, J.
L., and Nývlt, D.: Landscape evolution and ice-sheet behavior in a
semi-arid polar environment: James Ross Island, NE Antarctic Peninsula,
Special publication, Geological Society of London, https://doi.org/10.1144/SP381.1,
2013.
Davey, M. C.: The effect of freezing and desiccation on photosynthesis and
survival of terrestrial Antarctic algae and cyanobacteria, Polar Biol., 10,
29–36, 1989.
Davey, M. C., Pickup, J., and Block, W.: Temperature variation and its
biological significance in fellfield habitats on a maritime Antarctic
island, Antarct Sci., 4, 383–388, 1992.
De Wever, A., Leliaert, F., Verleyen, E., Vanormelingen, P., Van der Gucht,
K., Hodgson, D. A., Sabbe, K., and Vyverman, W.: Hidden levels of
phylodiversity in Antarctic green algae: further evidence for the existence
of glacial refugee, P. Roy. Soc. B-Biol. Sci., 276, 3591–3599, https://doi.org/10.1098/rspb.2009.0994, 2009.
Effenberger, H., Mereiter, K., and Zemann, J.: Crystal structure refinements
of magnesite, calcite, rhodochrosite, siderite, smithsonite and dolomite,
with discussion of some aspects of the stereochemistry of calcite-type
carbonates, Z. Kristallogr., 156, 233–243, 1981.
Elster, J.: Ecological classification of terrestrial algal communities of
polar environment, in: GeoEcology of terrestrial oases, edited by: Beyer, L.
and Boelter, M., Ecological Studies, Springer-Verlag, Berlin,
Heidelberg, 303–319, 2002.
Elster, J. and Benson, E. E.: Life in the polar terrestrial environment with
a focus on algae and cyanobacteria, in: Life in the frozen state, edited by:
Fuller, B., Lane, N., and Benson E. E., Taylor and Francis, London,
https://doi.org/10.1201/9780203647073.ch3, 111–149, 2004.
Elster, J., Degma, P., Kováčik, L'., Valentová, L.,
Šrámková, K., and Pereira, A. B.: Freezing and desiccation injury
resistance in the filamentous green alga Klebsormidium from the Antarctic,
Arctic and Slovakia, Biologia, 63, 839–847, https://doi.org/10.2478/s11756-008-0111-2,
2008.
Fairchild, I. J., Bradby, B., and Spiro, B.: Carbonate diagenesis in ice,
Geology, 21, 901–904,
https://doi.org/10.1130/0091-7613(1993)021<0901:CDII>2.3.CO;2, 1993.
Fan, Y. W. and Wang, R. Z.: Submicrometer-sized vaterite tubes formed through
nanobubble-templated crystal growth, Advanced Materials, 17, 2384–2388, https://doi.org/10.1002/adma.200500755, 2005.
Jacob, A., Wiencke, C., Lehmann, H., and Krist, G. O.: Physiology and
ultrastructure of desiccation in the green alga Prasiola crispa from
Antarctica, Bot. Mar., 35, 297–303, https://doi.org/10.1515/botm.1992.35.4.297, 1992.
Johnson, J. S., Bentley, M. J., Roberts, S. J., Binnie, S. A., and Freeman,
S. P. H. T.: Holocene deglacial history of the northeast Antarctic Peninsula
– A review and new chronological constraints, Quaternary Sci. Rev., 30,
3791–3802, https://doi.org/10.1016/j.quascirev.2011.10.011, 2011.
Hawes, I., Howard-Williams, C., and Vincent, W. F.: Desiccation and recovery
of Antarctic cyanobacterial mats, Polar Biol., 12, 587–594, 1992.
Hawes, I., Smith, R., Howard-Williams, C., and Schwarz, A. M.: Environmental
conditions during freezing, and response of microbial mats in ponds of the
McMurdo Ice Shelf, Antarctica, Antarct. Sci., 11, 198–208, 1999.
Hawes, I., Moorhead, D., Sutherland, D., Schmeling, J., and Schwarz, A. M.:
Benthic primary production in two perennially ice-covered Antarctic lakes:
pattern of biomass accumulation with a model of community metabolism,
Antarct Sci., 13, 18–27, 2001.
Komárek, J. and Elster, J.: Ecological background of cyanobacterial
assemblages of the northern part of James Ross Island, NW Weddell Sea,
Antarctica, Pol. Polar Res., 29, 17–32, 2008.
Komárek, J., Nedbalová, L., and Hauer, T.: Phylogenetic position and
taxonomy of three heterocytous cyanobacteria dominating the littoral of
deglaciated lakes, James Ross Island, Antarctica, Polar Biol., 35, 759–774,
https://doi.org/10.1007/s00300-011-1123-x, 2012.
Komárek, J., Bonaldo, G. D., Fatima, F. M., and Elster, J.: Heterocytous
cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica, Polar
Biol., 38, 475–492, https://doi.org/10.1007/s00300-014-1609-4, 2015.
Kopalová, K., Veselá, J., Elster, J., Nedbalová, L.,
Komárek, J., and Van de Vijver, B.: Benthic diatoms (Bacillariophyta)
from seepages and streams on James Ross Island (NW Weddell Sea, Antarctica),
Plant Ecol. Evol., 145, 1–19, https://doi.org/10.5091/plecevo.2012.639, 2012.
Kopalová, K., Nedbalová, L., Nývlt, D., Elster, J., and Van de
Vijver, B.: Diversity, ecology and biogeography of the freshwater diatom
communities from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula),
Polar Biol., 36, 933–948, https://doi.org/10.1007/s00300-013-1317-5, 2013.
Kremer, B., Kaźmierczak, J., and Stal, L. J.: Calcium carbonate
precipitation in cyanobacteria mats from sandy tidal flats of the North Sea,
Geobiology, 6, 46–56, https://doi.org/10.1111/j.1472-4669.2007.00128.x, 2008.
Láska, K., Barták, M., Hájek, J., Prošek, P., and
Bohuslavová, O.: Climatic and ecological characteristics of deglaciated
area of James Ross Island, Antarctica, with a special respect to vegetation
cover, Czech Polar Reports, 1, 49–62, 2011a.
Láska, K., Budík, L., Budíková, M., and Prošek, P.:
Method of estimating of solar UV radiation in high-latitude locations based
on satellite ozone retrieval with improved algorithm, Int. J. Remote Sens.,
32, 3165–3177, https://doi.org/10.1080/01431161.2010.541513, 2011b.
Lepot, K., Compère, P., Gérard, E., Namsaraev, Z., Verleyen, E.,
Tavernier, I., Hodgson, D. A., Vyverman, W., Gilbert, B., Wilmotte, A., and
Javaux, E. J.: Organic and mineral imprints in fossil photosynthetic mats of
an East Antarctic lake, Geobiology, 12, 424–450, https://doi.org/10.1111/gbi.12096,
2014.
Nakai, N., Wada, H., Kiyoshu, Y., and Takimoto, M.: Stable isotope studies
on the origin and geological history of water and salts in the Lake Vanda
area, Antarctica, Geochem. J., 9, 7–24, 1975.
Nedbalová, L., Nývlt, D., Kopáček, J., Šobr, M., and
Elster, J.: Freshwater lakes of Ulu Peninsula, James Ross Island, north-east
Antarctic Peninsula: origin, geomorphology, and physical and chemical
limnology, Antarct. Sci., 25, 358–372, https://doi.org/10.1017/S0954102012000934,
2013.
Ng, F. and Hallet, B.: Patterning mechanisms in subglacial carbonate
dissolution and deposition, J. Glaciol., 48, 386–400, 2002.
Nývlt, D., Košler, J., Mlčoch, B., Mixa, P., Lisá, L.,
Bubík, M., and Hendriks, B. W. H.: The Mendel Formation: evidence for
late Miocene climatic cyclicity at the northern tip of the Antarctic
Peninsula, Palaeogeogr. Palaeocl., 299, 363–394,
https://doi.org/10.1016/j.palaeo.2010.11.017, 2011.
Olivero, E. B., Scasso, R. A., and Rinaldi, C. A.: Revision of the Marambio
Group, James Ross Island, Antarctica. Instituto Antartico Argentino,
Contribución, 331, 1–28, 1986.
Øvstedal, D. O. and Lewis Smith, R. I.: Lichens of Antarctica and South
Georgia: A guide to their identification and ecology, Studies in Polar
Research, Cambridge University Press, Cambridge, 411 pp., 2001.
Pechar, L.: Use of acetone:methanol mixture for the extraction and
spectrophotometric determination of chlorophyll a in phytoplankton, Arch.
Hydrobiol./Supplement, Algological Studies, 46, 99–117, 1987.
Pedley, M., Rogerson, M., and Middleton, R.: Freshwater calcite precipitates
from in vitro mesocosm flume experiments: a case for biomediation of tufas,
Sedimentology 56, 511–527, https://doi.org/10.1111/j.1365-3091.2008.00983.x, 2009.
Pichrtová, M., Hájek, T., and Elster, J.: Osmotic stress and
recovery in field populations of Zygnema sp. Zygnematophyceae, Streptophyta)
on Svalbard (High Arctic) subjected to natural dessication, FEMS Microbiol.
Ecol., 89, 270–280, https://doi.org/10.1111/1574-6941.12288, 2014.
Rabassa, J., Skvarca, P., Bertani, L., and Mazzoni, E.: Glacier inventory of
James Ross and Vega Islands, Antarctic Peninsula, Ann. Glaciol., 3,
260–264, 1982.
Reid, P., Dupraz, C., Visscher, P., and Sumner, D.: Microbial processes
forming marine stromatolites, in: Fossil and recent biofilms – a natural
history of life on Earth, edited by: Krumbein, W. E., Peterson, D. M., and
Zavarzin, G. A., Kluwer Academic Publishers, London, 103–118, 2003.
Riding, R.: Microbialities, stromatolites, and thrombolites, in:
Encyclopedia of Geobiology, edited by: Reitner, J. and Thiel, V.,
Encyclopedia of Earth Science Series, Springer, Heidelberg, 635–654, 2011.
Rybalka, N., Andersen, R. A., Kostikov, I., Mohr, K. I., Massalski, A.,
Olech, M., and Friedl, T.: Testing for endemism, genotypic diversity and
species concepts in Antarctic terrestrial microalgae of the Tribonemataceae
(Stramenophiles, Xanthophyceae), Environ. Microbiol., 11, 554–565, https://doi.org/10.1111/j.1462-2920.2008.01787.x, 2009.
Šabacká, M. and Elster, J.: Response of cyanobacteria and algae from
Antarctic wetland habitats to freezing and desiccation stress, Polar Biol.,
30, 31–37, https://doi.org/10.1007/s00300-006-0156-z, 2006.
Schieber, J.: Microbial mats in terrigenous clastics: the challenge of
identification in the rock record, Palaios, 14, 3–12, https://doi.org/10.2307/3515357,
1999.
Schmidt, N. H. and Olensen, N. O.: Computer-aided determination of
crystal-lattice orientation from electron-channeling patterns in the SEM,
Can. Mineral., 28, 15–22, 1989.
Schneider, S. and Le Campion-Alsumard, T.: Construction and destruction of
carbonates by marine and freshwater cyanobacteria, Eur. J. Phycol., 34,
417–426, https://doi.org/10.1017/S0967026299002280, 1999.
Schneider, J., Niebuhr, B., Wilmsen, M., and Vodrážka, R.: Between
the Alb and the Alps – The fauna of the Upper Cretaceous Sandbach Formation
(Passau region, southeast Germany), Bull. Geosci., 86, 785–816, https://doi.org/10.3140/bull.geosci.1279, 2011.
Shao, Y.: Physics and Modelling of Wind Erosion, Atmospheric and
Oceeanographic Sciences Library 37, 2nd Edn., Springer, Heidelberg, 456
pp., 2008.
Škaloud, P., Nedbalová, L., Elster, J., and Komárek, J.: A
curious occurrence of Hazenia broadyi spec. nova in Antarctica and the
review of the genus Hazenia (Ulotrichales, Chlorophyceae), Polar Biol., 36,
1281–1291, https://doi.org/10.1007/s00300-013-1347-z, 2013.
Smellie, J. L., Johnson, J. S., McIntosh, W. C., Esser, R., Gudmundsson, M.
T., Hambrey, M. J., and Van Wyk de Vries, B.: Six million years of glacial
history recorded in volcanic lithofacies of the James Ross Island Volcanic
Group, Antarctic Peninsula, Palaeogeogr. Palaeocl., 260, 122–148, https://doi.org/10.1016/j.palaeo.2007.08.011, 2008.
Strunecký, O., Elster, J., and Komárek, J.: Molecular clock evidence
for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium
autumnale) from Paleozoic times, FEMS Microbiol. Ecol., 82, 482–490, https://doi.org/10.1111/j.1574-6941.2012.01426.x, 2012.
Sutherland, D. and Hawes, I.: Annual growth layers as proxies for past
growth conditions for benthic microbial mats in a perennially ice-covered
Antartic lake, FEMS Microbiol. Ecol., 67, 279–292, https://doi.org/10.1111/j.1574-6941.2008.00621.x, 2009.
Švábenická, L., Vodrážka, R., and Nývlt, D.:
Calcareous nannofossils from the Upper Cretaceous of northern James Ross
Island, Antarctica, Geol. Q., 56, 765–772, https://doi.org/10.7306/gq.1053, 2012.
Svojtka, M., Nývlt, D., Muramaki, M., Vávrová, J., Filip, J.,
and Mixa, P.: Provenance and post-depositional low-temperature evolution of
the James Ross Basin sedimentary rocks (Antarctic Peninsula) based on
fission track analysis, Antarct. Sci., 21, 593–607, https://doi.org/10.1017/S0954102009990241, 2009.
Tashyreva, D. and Elster, J.: The limits of desiccation tolerance of Arctic
Microcoleus strains (Cyanobacteria) and environmental factors inducing
desiccation tolerance, Front. Microbiol., 6, 278,
https://doi.org/10.3389/fmicb.2015.00278, 2015.
Taton, A., Grubisic, S., Brambilla, E., de Wit, R., and Wilmotte, A.:
Cyanobacterial diversity in natural and artificial microbial mats of Lake
Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular
approach, Appl. Environ. Microb., 69, 5157–5169, https://doi.org/10.1128/AEM.69.9.5157-5169.2003, 2003.
Turner, J., Barrand, N. E., Bracegirdle, T. J., Convey, P., Hodgson, D. A.,
Jarvis, M., Jenkins, A., Marshall, G., Meredith, M. P., Roscoe, H., Shanklin,
J., French, J., Goosse, H., Guglielmin, M., Gutt, J., Jacobs, S., Kennicutt
II, M. C., Masson-Delmotte, V., Mayewski, P., Navarro, F., Robinson, S.,
Scambos, T., Sparrow, M., Summerhayes, C., Speer, K., and Klepikov, A.:
Antarctic climate change and the environment: an update, Polar Rec., 50,
237–259, https://doi.org/10.1017/S0032247413000296, 2014.
Vincent, W. F.: Cyanobacterial dominance in polar regions, in: The Ecology
of Cyanobacteria, edited by: Whitton B. A. and Potts, M., Kluwer
Academic Publishers, the Netherlands, 321–340, 2000.
Vincent, W. F. and Laybourn-Parry, J. (Eds.): Polar lakes and rivers, Oxford
University Press, Oxford, 346 pp., https://doi.org/10.1093/acprof:oso/9780199213887.001.0001, 2008.
Vodrážka, R.: A new method for the extraction of macrofossils from
calcareous rocks using sulphuric acid, Palaeontology, 52, 187–192, https://doi.org/10.1111/j.1475-4983.2008.00829.x, 2009.
Vogt, T. and Corte, A. E.: Secondary precipitates in Pleistocene and present
cryogenic environments (Mendoza Precordillera, Argentina, Transbaikalia,
Siberia, and Seymour Island Antarctica), Sedimentology, 43, 53–64, https://doi.org/10.1111/j.1365-3091.1996.tb01459.x, 1996.
Wadham, J. L., Tranter, M., and Dowdeswell, J. A.: Hydrochemistry of
meltwaters draining a polythermal-based, high-Arctic glacier, south Svalbard:
II. Winter and early spring, Hydrol. Process., 14, 1767–1786, 2000.
Wagner, B., Cremer, H., Hulzsch, N., Gore, D., and Melles, M.: Late
Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East
Antarctica, and its climatic and environmental implications, J.
Paleolimnol., 32, 321–339, https://doi.org/10.1007/s10933-004-0143-8, 2004.
Walter, M.: Stromatolites, Elsevier Science Ltd., Amsterdam, the Nederlands,
790 pp., 1976.
Wharton, R.: Stromatolitic mats in Antarctic lakes, in: Phanerozoic
Stromatolites, II, edited by: Bertrand-Safari, J. and Monty, C., Springer,
New York, USA, https://doi.org/10.1007/978-94-011-1124-9_3, 53–70, 1994.
Wharton, R. A., Parker, B. C., Simmons, G. M., and Love, F. G.: Biogenic
calcite structures forming in Lake Fryxell, Antarctica, Nature, 295,
403–405, https://doi.org/10.1038/295403a0, 1982.
Yamamoto, A., Tanabe, K., and Isozaki, Y.: Lower Cretaceous freshwater
stromatolites from northern Kyushu, Japan, Paleontol. Res., 13, 139–149,
https://doi.org/10.2517/1342-8144-13.2.139, 2009.
Altmetrics
Final-revised paper
Preprint