Articles | Volume 13, issue 3
https://doi.org/10.5194/bg-13-659-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-659-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard
T. R. Vonnahme
Centre for Polar Ecology, Faculty of Science, University
of South Bohemia, České Budějovice, Czech
Republic
University of Konstanz, Constance, Germany
now at: Max Planck Institute for Marine Microbiology,
Bremen, Germany
M. Devetter
Centre for Polar Ecology, Faculty of Science, University
of South Bohemia, České Budějovice, Czech
Republic
Biology Centre of the Academy of Science of the Czech
Republic, Institute of Soil Biology, České Budějovice, Czech
Republic
J. D. Žárský
Centre for Polar Ecology, Faculty of Science, University
of South Bohemia, České Budějovice, Czech
Republic
Department of Ecology, Charles University, Prague, Czech
Republic
M. Šabacká
Centre for Polar Ecology, Faculty of Science, University
of South Bohemia, České Budějovice, Czech
Republic
British Antarctic Survey, Cambridge, UK
J. Elster
CORRESPONDING AUTHOR
Centre for Polar Ecology, Faculty of Science, University
of South Bohemia, České Budějovice, Czech
Republic
Institute of Botany, Academy of the Science of the Czech
Republic, Třeboň, Czech Republic
Related authors
No articles found.
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107, https://doi.org/10.5194/tc-15-2083-2021, https://doi.org/10.5194/tc-15-2083-2021, 2021
Short summary
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
Related subject area
Biodiversity and Ecosystem Function: Freshwater
Environmental drivers of spatio-temporal dynamics in floodplain vegetation: grasslands as habitat for megafauna in Bardia National Park (Nepal)
Geodiversity influences limnological conditions and freshwater ostracode species distributions across broad spatial scales in the northern Neotropics
Arctic aquatic graminoid tundra responses to nutrient availability
Stable isotopic composition of top consumers in Arctic cryoconite holes: revealing divergent roles in a supraglacial trophic network
Experimental tests of water chemistry response to ornithological eutrophication: biological implications in Arctic freshwaters
Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?
Significance of climate and hydrochemistry on shape variation – a case study on Neotropical cytheroidean Ostracoda
Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective
Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica
Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes
Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations
Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream
Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes
Explosive demographic expansion by dreissenid bivalves as a possible result of astronomical forcing
Phytoplankton community structure in the Lena Delta (Siberia, Russia) in relation to hydrography
Lacustrine mollusc radiations in the Lake Malawi Basin: experiments in a natural laboratory for evolution
DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe
Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa
Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid
A freshwater biodiversity hotspot under pressure – assessing threats and identifying conservation needs for ancient Lake Ohrid
Stratigraphic analysis of lake level fluctuations in Lake Ohrid: an integration of high resolution hydro-acoustic data and sediment cores
Sediment core fossils in ancient Lake Ohrid: testing for faunal change since the Last Interglacial
Testing the spatial and temporal framework of speciation in an ancient lake species flock: the leech genus Dina (Hirudinea: Erpobdellidae) in Lake Ohrid
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes
Jitse Bijlmakers, Jasper Griffioen, and Derek Karssenberg
Biogeosciences, 20, 1113–1144, https://doi.org/10.5194/bg-20-1113-2023, https://doi.org/10.5194/bg-20-1113-2023, 2023
Short summary
Short summary
At the foot of the Himalayas in Nepal, land cover time series and data of environmental drivers show changes in disturbance-dependent grasslands that serve as habitat for endangered megafauna. The changes in surface area and heterogeneity of the grassland patches are attributed to a relocation of the dominant river channel of the Karnali River and associated decline of hydromorphological disturbances and a decrease in anthropogenic disturbances after its establishment as conservation area.
Laura Macario-González, Sergio Cohuo, Philipp Hoelzmann, Liseth Pérez, Manuel Elías-Gutiérrez, Margarita Caballero, Alexis Oliva, Margarita Palmieri, María Renée Álvarez, and Antje Schwalb
Biogeosciences, 19, 5167–5185, https://doi.org/10.5194/bg-19-5167-2022, https://doi.org/10.5194/bg-19-5167-2022, 2022
Short summary
Short summary
We evaluate the relationships between geodiversity, limnological conditions, and freshwater ostracodes from southern Mexico to Nicaragua. Geological, limnological, geochemical, and mineralogical characteristics of 76 systems reveal two main limnological regions and seven subregions. Water ionic and sediment composition are the most influential. Geodiversity strongly influences limnological conditions, which in turn influence ostracode composition and distribution.
Christian G. Andresen and Vanessa L. Lougheed
Biogeosciences, 18, 2649–2662, https://doi.org/10.5194/bg-18-2649-2021, https://doi.org/10.5194/bg-18-2649-2021, 2021
Short summary
Short summary
Aquatic tundra plants dominate productivity and methane fluxes in the Arctic coastal plain. We assessed how environmental nutrient availability influences production of biomass and greenness of aquatic tundra. We found phosphorous to be the main nutrient limiting biomass productivity and greenness in Arctic aquatic grasses. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their influence on regional carbon and energy feedbacks.
Tereza Novotná Jaroměřská, Jakub Trubač, Krzysztof Zawierucha, Lenka Vondrovicová, Miloslav Devetter, and Jakub D. Žárský
Biogeosciences, 18, 1543–1557, https://doi.org/10.5194/bg-18-1543-2021, https://doi.org/10.5194/bg-18-1543-2021, 2021
Short summary
Short summary
Cryoconite holes are ponds on the glacier surface that play an important role in glacier nutrient pathways. This paper presents the first description of the carbon and nitrogen isotopic composition of cryoconite consumers (tardigrades and rotifers) and their potential food. We showed that consumers differ in nitrogen isotopes and carbon isotopes vary between taxa and between glaciers. The study contributes to improving knowledge about cryoconite hole functioning and cryoconite trophic networks.
Heather L. Mariash, Milla Rautio, Mark Mallory, and Paul A. Smith
Biogeosciences, 16, 4719–4730, https://doi.org/10.5194/bg-16-4719-2019, https://doi.org/10.5194/bg-16-4719-2019, 2019
Short summary
Short summary
Across North America and Europe, goose populations have increased exponentially in response to agricultural intensification. By using an experimental approach, we empirically demonstrated that geese act as bio-vectors, making terrestrial nutrients more bioavailable to freshwater systems. The study revealed that the nutrient loading from goose faeces has the potential to change phytoplankton community composition, with a shift toward an increased presence of cyanobacteria.
Gwenaël Abril and Alberto V. Borges
Biogeosciences, 16, 769–784, https://doi.org/10.5194/bg-16-769-2019, https://doi.org/10.5194/bg-16-769-2019, 2019
Short summary
Short summary
Based on classical concepts in ecology, and a literature survey, we highlight the importance of flooded land as a preferential source of atmospheric carbon to aquatic systems at the global scale. Studies in terrestrial and aquatic ecosystems could be reconciled by considering the occurrence of an efficient wetland CO2 pump to river systems. New methodological approaches coupling hydrology and ecology are also necessary to improve scientific knowledge on carbon fluxes at the land–water interface.
Claudia Wrozyna, Thomas A. Neubauer, Juliane Meyer, Maria Ines F. Ramos, and Werner E. Piller
Biogeosciences, 15, 5489–5502, https://doi.org/10.5194/bg-15-5489-2018, https://doi.org/10.5194/bg-15-5489-2018, 2018
Short summary
Short summary
How environmental change affects a species' phenotype is crucial for taxonomy and biodiversity assessments and for their application as paleoecological indicators. Morphometric data of a Neotropical ostracod species, as well as several climatic and hydrochemical variables, were used to investigate the link between morphology and environmental conditions. Temperature seasonality, annual precipitation, and chloride and sulphate concentrations were identified as drivers for ostracod ecophenotypy.
Torsten Hauffe, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 2901–2911, https://doi.org/10.5194/bg-13-2901-2016, https://doi.org/10.5194/bg-13-2901-2016, 2016
J. Elster, L. Nedbalová, R. Vodrážka, K. Láska, J. Haloda, and J. Komárek
Biogeosciences, 13, 535–549, https://doi.org/10.5194/bg-13-535-2016, https://doi.org/10.5194/bg-13-535-2016, 2016
J. Comte, C. Lovejoy, S. Crevecoeur, and W. F. Vincent
Biogeosciences, 13, 175–190, https://doi.org/10.5194/bg-13-175-2016, https://doi.org/10.5194/bg-13-175-2016, 2016
Short summary
Short summary
Thaw ponds and lakes varied in their bacterial community structure. A small number of taxa occurred in high abundance and dominated many of the communities. Nevertheless, there were taxonomic differences among different valleys implying some degree of habitat selection. Association networks were composed of a limited number of highly connected OTUs. These "keystone species" were not merely the abundant taxa, whose loss would greatly alter the structure and functioning of these aquatic ecosystem.
K. Föller, B. Stelbrink, T. Hauffe, C. Albrecht, and T. Wilke
Biogeosciences, 12, 7209–7222, https://doi.org/10.5194/bg-12-7209-2015, https://doi.org/10.5194/bg-12-7209-2015, 2015
Short summary
Short summary
Based on our molecular data and performed analyses we found that the gastropods studied represent a comparatively old group that most likely evolved with a constant rate of diversification. However, preliminary data of the SCOPSCO deep-drilling program indicate signatures of environmental/climatic perturbations in Lake Ohrid. We therefore propose that the constant rate observed has been caused by a potential lack of catastrophic environmental events and/or a high ecosystem resilience.
S. Bernal, A. Lupon, M. Ribot, F. Sabater, and E. Martí
Biogeosciences, 12, 1941–1954, https://doi.org/10.5194/bg-12-1941-2015, https://doi.org/10.5194/bg-12-1941-2015, 2015
Short summary
Short summary
Terrestrial inputs are considered the major driver of longitudinal patterns of nutrient concentration. Yet we show that longitudinal trends result from hydrological mixing with terrestrial inputs and in-stream processes. We challenge the idea that nutrient concentrations decrease downstream when in-stream net uptake is high. Conversely, in-stream processes can strongly affect stream nutrient chemistry and fluxes even in the absence of consistent longitudinal trends in nutrient concentration.
P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, V. E. Villafañe, and E. W. Helbling
Biogeosciences, 12, 697–712, https://doi.org/10.5194/bg-12-697-2015, https://doi.org/10.5194/bg-12-697-2015, 2015
Short summary
Short summary
Under UVR and stratification,the commensalistic algae-bacteria interaction was strengthened in the high-UVR lake, where excretion of organic carbon rates exceeded the bacterial carbon demand,but did not occur in the low-UVR lake.The greater UVR damage to algae and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates these lakes would be especially vulnerable to UVR. These results have implications for the C cycle in lakes of the Mediterranean region.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
A. C. Kraberg, E. Druzhkova, B. Heim, M. J. G. Loeder, and K. H. Wiltshire
Biogeosciences, 10, 7263–7277, https://doi.org/10.5194/bg-10-7263-2013, https://doi.org/10.5194/bg-10-7263-2013, 2013
D. Van Damme and A. Gautier
Biogeosciences, 10, 5767–5778, https://doi.org/10.5194/bg-10-5767-2013, https://doi.org/10.5194/bg-10-5767-2013, 2013
I. Domaizon, O. Savichtcheva, D. Debroas, F. Arnaud, C. Villar, C. Pignol, B. Alric, and M. E. Perga
Biogeosciences, 10, 3817–3838, https://doi.org/10.5194/bg-10-3817-2013, https://doi.org/10.5194/bg-10-3817-2013, 2013
E. W. Helbling, P. Carrillo, J. M. Medina-Sánchez, C. Durán, G. Herrera, M. Villar-Argaiz, and V. E. Villafañe
Biogeosciences, 10, 1037–1050, https://doi.org/10.5194/bg-10-1037-2013, https://doi.org/10.5194/bg-10-1037-2013, 2013
C. H. Hsieh, Y. Sakai, S. Ban, K. Ishikawa, T. Ishikawa, S. Ichise, N. Yamamura, and M. Kumagai
Biogeosciences, 8, 1383–1399, https://doi.org/10.5194/bg-8-1383-2011, https://doi.org/10.5194/bg-8-1383-2011, 2011
T. Hauffe, C. Albrecht, K. Schreiber, K. Birkhofer, S. Trajanovski, and T. Wilke
Biogeosciences, 8, 175–188, https://doi.org/10.5194/bg-8-175-2011, https://doi.org/10.5194/bg-8-175-2011, 2011
G. Kostoski, C. Albrecht, S. Trajanovski, and T. Wilke
Biogeosciences, 7, 3999–4015, https://doi.org/10.5194/bg-7-3999-2010, https://doi.org/10.5194/bg-7-3999-2010, 2010
K. Lindhorst, H. Vogel, S. Krastel, B. Wagner, A. Hilgers, A. Zander, T. Schwenk, M. Wessels, and G. Daut
Biogeosciences, 7, 3531–3548, https://doi.org/10.5194/bg-7-3531-2010, https://doi.org/10.5194/bg-7-3531-2010, 2010
C. Albrecht, H. Vogel, T. Hauffe, and T. Wilke
Biogeosciences, 7, 3435–3446, https://doi.org/10.5194/bg-7-3435-2010, https://doi.org/10.5194/bg-7-3435-2010, 2010
S. Trajanovski, C. Albrecht, K. Schreiber, R. Schultheiß, T. Stadler, M. Benke, and T. Wilke
Biogeosciences, 7, 3387–3402, https://doi.org/10.5194/bg-7-3387-2010, https://doi.org/10.5194/bg-7-3387-2010, 2010
T. Wilke, R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski, and T. Kevrekidis
Biogeosciences, 7, 3051–3065, https://doi.org/10.5194/bg-7-3051-2010, https://doi.org/10.5194/bg-7-3051-2010, 2010
Cited articles
Bergman, B., Gallon, J. R., Rai, A. N., and Stal, L. J.: N2 Fixation by
non-heterocystous cyanobacteria, FEMS Microbiol. Rev., 19, 139–185, 1997.
Bidigare, R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey, H. R.,
Hoham, R. W., and Macko, S.: Evidence a photoprotective for secondary
caretonids of snow algae, J. Phycol., 29, 427–434,
1993.
Braithwaite, R. J.: Positive degree-day factors for ablation on the Greenland
ice sheet studied by energy-balance modelling, J. Glaciol., 41, 153–160,
1995.
Broady, P. A.: Diversity, distribution and dispersal of Antarctic terrestrial
algae, Biodivers. Conserv., 5, 1307–1335, 1996.
Cameron, K. A., Hodson, A. J., and Osborn, A. M.: Structure and diversity of
bacterial, eukaryotic and archaeal communities in glacial cryoconite holes
from the Arctic and the Antarctic, FEMS Microbiol. Ecol., 82, 254–267,
2012.
Casamatta, D. A., Johansen, J. R., Vis, M. L., and Broadwater, S. T.: Molecular
and morphological characterization of ten polar and near-polar strains
within Oscillatoriales (Cyanobacteria), J. Phycol., 41, 421–438,
2005.
Christner, B. C., Kvitko, I. I. B. H., and Reeve, J. N.: Molecular identification
of bacteria and eukarya inhabiting an Antarctic cryoconitehttps://doi.org/10.1007/s00792-002-0309-0, 2003.
Cook, J., Hodson, A. J., Telling, J., Anesio, A., Irvine-Fynn, T., and
Bellas, C.: The mass–area relationship within cryoconite holes and its
implications for primary production, Ann. Glaciol., 51, 106–110,
2010.
Dastych, H.: The tardigrade of Poland, Monografie Fauny Polski, 17, 1988.
Decleyre, H., Heylen, K., Sabbe, K., Tytgat, B., Deforce, D., Van
Nieuwerburgh, F., van Colen, K., and Willems, A.: A Doubling of
Microphytobenthos Biomass Coincides with a Tenfold Increase in Denitrifier
and Total Bacterial Abundances in Intertidal Sediments of a Temperate
Estuary, PLoS ONE, 10, e0126583, https://doi.org/10.1371/journal.pone.0126583, 2015.
De Smet, W. H. and Van Rompu, E. A.: Rotifera and Tardigrada from some
cryoconite holes on a Spitsbergen (Svalbard) glacier, Belg. J. zool., 124,
27–37, 1994
Devetter, M.: Clearance rates of the bdelloid rotifer, Habrotrocha thienemanni, a tree-hole
inhabitant, Aquat. Ecol., 43, 85–89, 2009.
Donner, J.: Ordnung Bdelloidea (Rotatoria), Akademie-Verlag, Berlin, 1965.
Edgard, R. C., Haas, B. J., Clemente, J., Quince, C., and Knight, R.: UCHIME
improves sensitivity and speed of chimera detection, Bioinformatics, 27,
2194–2200, 2011.
Fountain, A. G., Tranter, M., Nylen, T. H., Lewis, K. J., and Mueller, D. R.:
Evolution of cryoconite holes and their contribution to meltwater runoff
from glaciers in the McMurdo Dry Valleys, Antarctica, J. Glaciol., 50,
35–45, 2004.
Frey, B., Bühler, L., Schmutz, S., Zumsteg, A.., and Furrer, G.:
Molecular characterization of phototrophic microorganisms in the forefield
of a receding glacier in the Swiss Alps, Environ. Res. Lett., 8, 015033,
https://doi.org/10.1088/1748-9326/8/1/015033, 2013.
Geer, L. Y., Marchler-Bauer, A., Geer, R. C., Han, L., He, J., He, S., Liu,
C., Shi, W., and Bryant, S. H.: The NCBI BioSystems database, Nucleic Acids
Res., 38, 492–496, 2010.
Grongaard, A., Pugh, P. J., and McInnes, S. J.: Tardigrades, and other
cryoconite biota, on the Greenland ice sheet, Zool. Anz., 238, 211–214,
1999.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: Past: Paleontological
Statistics Software Package for education and data analysis, Palaeontol.
Electron., 4, 1–9, available at:
http://palaeo-electronica.org/2001_1/k2/issue1_01.htm (last access: 1 September 2015), 2001.
Hino, A. and Hirano, R.: Relationship between body size of the rotifer
Brachionus plicatilis and the maximum size of particles ingested, Bull. Jpn.
Soc. Sci. Fish, 46, 1217–1222, 1980.
Hodson, A., Anesio, A. M., Tranter, M., Fountain, A., Osborn, M., Priscu, J.,
and Sattler, B.: Glacial ecosystems, Ecol. Monogr., 78, 41–67,
2008.
Hodson, A., Roberts, T. J., Engvall, A. C., Holmén, K., and Mumford, P.:
Glacier ecosystem response to episodic nitrogen enrichment in Svalbard,
European High Arctic, Biogeochemistry, 98, 171–184,
2010.
Irvine-Fynn, T. D., Bridge, J. W., and Hodson, A. J.: Rapid quantification of
cryoconite: granule geometry and in situ supraglacial extents, using
examples from Svalbard and Greenland, J. Glaciol., 56, 297–307,
2010.
Irvine-Fynn, T. D., Hodson, A. J., Moorman, B. J., Vatne, G., and Hubbard, A.
L.: Polythermal glacier hydrology: A review, Rev. Geophys., 49, RG4002,
https://doi.org/10.1029/2010RG000350, 2011.
Karlberg, B. and Twengström, S.: Applications based on gas diusion and
flow injection analysis in focus, Tecator, J. Technol. Chem. Anal., 6,
14–15, 1983.
Kaštovská, K., Elster, J., Stibal, M., and Šantrůčková,
H.: Microbial assemblages in soil microbial succession after glacial retreat
in Svalbard (High Arctic), Microb. Ecol., 50, 396–407,
2005.
Kavecka, B.: Ecology of snow algae, Polish Pol. Res., 4, 407–415, 1986.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M.,
and Glöckner, F. O.: Evaluation of general 16S ribosomal RNA gene PCR
primers for classical and next-generation sequencing-based diversity
studies, Nucleic Acids Res., 41, 1–11, 2013.
Kopáček, J. and Hejzlar, J.: Semi-micro determination of total
phosphorus in soils, sediments, and organic materials: A simplified
perchloric acid digestion procedure, Commun. Soil. Sci. Plant Anal., 26,
1935–1946, 1995.
Kumar, K., Mella-Herrera, R. A., and Golden, J. W.: Cyanobacterial
heterocysts, Cold Spring Harbor Perspectives in Biology, 2, a000315,
https://doi.org/10.1101/cshperspect.a000315, 2010.
Langford, H., Hodson, A., Banwart, S., and Bøggild, C.: The
microstructure and biogeochemistry of Arctic cryoconite granules, Ann.
Glaciol., 51, 87–94, 2010.
Li, Y. and Gao, K.: Photosynthetic physiology and growth as a function of
colony size in the cyanobacterium Nostoc sphaeroides, Eur. J. Phycol., 39, 9–15, 2007.
Lutz, S., Anesio, A. M., Villar, S. E., Benning, and L. G.: Variations of algal
communities cause darkening of a Greenland glacier, FEMS Microbiol. Ecol.,
89, 1–13, 2014
MacDonell, S. and Fitzsimons, S.: The formation and hydrological
significance of cryoconite holes, Prog. Phys. Geog., 32, 595–610,
2008.
McIntyre, N. F.: Cryoconite hole thermodynamics, Can J. Earth Sci., 21.
152–156, 1984.
Mehlich, A.: Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2
Extractant, Commun. Soil Sci. Plan., 15, 1409–1416,
1984.
Mieczan, T., Górniak, D., Świątecki, A., Zdanowski, M., and
Adamczuk, M.: Vertical microzonation of ciliates in cryoconite holes in
Ecology Glacier, King George Island, Polish Pol. Res., 34, 201–212,
2013.
Mueller, D. R., Vincent, W. F., Pollard, W. H., and Fritsen, C. H.: Glacial
cryoconite ecosystems: a bipolar comparison of algal communities and
habitats, Nova Hedwigia Beiheft, 123, 173–198, 2001.
Musilova, M., Tranter, M., Bennett, S. A., Wadham, J. L., and Anesio, A.:
Stable microbial community composition on the Greenland Ice Sheet, Front.
Microbiol., 6, 1–10, 2015.
Nelson, D. R. and Marley, N. J.: The biology and ecology of lotic Tardigrada,
Freshwater Biol., 44, 93–108, 2000.
Norwegian Polar Institute: Kartdata Svalbard 1:100 000 (S100 Kartdata),
Tromsø, Norway: Norwegian Polar Institute, available at:
http://data.npolar.no/dataset/645336c7-adfe-4d5a-978d-9426fe788ee3 (last
access: 3 May 2015), 2014.
Paul, R., Jinkerson, R. E., Buss, K., Steel, J., Mohr, R., Hess, W. R., and
Fromme, P.: Draft genome sequence of the filamentous cyanobacterium
Leptolyngbya sp. strain Heron Island J, exhibiting chromatic
acclimation, Genome Announcements, 2, 1166, https://doi.org/10.1128/genomeA.01166-13,
2014.
Porazinska, D. L., Fountain, A. G., Nylen, T. H., Tranter, M., Virginia, R. A.,
and Wall, D. H.: The biodiversity and biogeochemistry of cryoconite holes from
McMurdo Dry Valley glaciers, Antarctica, Arctic, Antarctic, and Alpine
Research, 36, 84–91,
2004.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F.O.: The SILVA ribosomal RNA gene database
project: improved data processing and web-based tools, Nucl. Acids Res., 41,
590–596, 2013.
R Development Core Team: R: A language and environment for statistical
computing, available at: http.www.R-project.org, (last access: 3 May
2015), 2008.
Rachlewicz, G., Szczucinski, W., and Ewertowski, M.: Post “Little Ice
Age” retreat rates of glaciers around Billefjorden in central Spitsbergen,
Svalbard, Polish Pol. Res., 28, 159–186, 2007.
Ramazotti, G. and Maucci, W.: Il Philum Tardigrada (III. Edizione riveduta
e aggiornata), Memorie dell'Instituto italiano die idrobiologia, 41, 1016 pp.,
1983.
Rautio, M., Dufresne, F., Laurion, I., Bonilla, S., Vincent, W. F., and
Christoffersen, K. S.: Shallow freshwater ecosystems of the circumpolar
Arctic, Ecoscience, 18, 204–222, 2011.
Redfield, A. C.: The biological control of chemical factors in the
environment, Am. Sci., 11, 230–221, 1958.
Remias, D., Holzinger, A., Aigner, S., and Lütz, C.: Ecophysiology and
ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on
glaciers in Svalbard (high Arctic), Polar Biol., 35, 899–908,
2012.
Revsbech, N. P., Madsen, B., and Jørgensen, B. B.: Oxygen production and
consumption in sediment determined at high spatial resolution by computer
simulation of oxygen microelectrode data, Limnol. Oceanogr., 31, 293–304,
1986.
Ricci, C. and Balsamo, M.: The biology and ecology of lotic rotifers and
gastrotrichs, Freshwater Biol., 44, 15–28,
2000.
Rose, J. M. and Caron, D. A.: Does low temperature constrain the growth rates
of heterotrophic Protists? Evidence and Implications for Algal Blooms in
Cold Waters, Limnol. Oceanogr., 52, 886–895, 2007.
Šabacká, M., and Elster, J.: Response of cyanobacteria and algae
from Antarctic wetland habitats to freezing and desiccation stress, Polar
Biol., 30, 31–37, 2006.
Sand-Jensen, K.: Ecophysiology of gelatinous Nostoc colonies: unprecedented
slow growth and survival in resource-poor and harsh environments, Ann.
Bot.-London, 114, 17–33, 2014.
Säwström, C., Mumford, P., Marshall, W., Hodson, A., and Laybourn-Parry,
J.: The microbial communities and primary productivity of cryoconite holes
in an Arctic glacier (Svalbard 79 N), Polar Biol., 25, 591–596,
2002.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. a., Oakley, B. B., Parks, D. H., Robinson,
C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber,
C. F.: Introducing mothur: Open-source, platform-independent,
community-supported software for describing and comparing microbial
communities, Appl. Environ. Microbiol., 75, 7537–7541,
2009.
Sinistro, R., Sánchez, M. L., Marinone,
M. C., and Izaguirre, I.: Experimental study of the zooplankton impact on the
trophic structure of phytoplankton and the microbial assemblages in a
temperate wetland (Argentina), Limnol.-Ecol. Manage. Inland
Waters, 37, 88–99, 2007.
Southwood, T. R. E. and Henderson, P. A.: Ecological methods, John Wiley and
Sons, p. 269, 2000.
Starkenburg, S. R., Reitenga, K. G., Freitas, T., Johnson, S., Chain, P. S.,
Garcia-Pichel, F., and Kuske, C. R.: Genome of the Cyanobacterium
Microcoleus vaginatus FGP-2, a Photosynthetic Ecosystem Engineer of Arid Land Soil Biocrusts
Worldwide, J. Bacteriol., 193, 4569–4570,
2011.
Sterner, R. W.: Herbivores' direct and indirect effects on algal
populations, Science, 231, 605–607, 1986.
Steward, G. F., Jenkins, B. D., Ward, B. B., and Zehr, J. P.: Development and
testing of a DNA macroarray to assess Nitrogenase (nifH) gene diversity,
Appl. Environ. Microb., 70, 1455–1465,
2004.
Stibal, M., Šabacká, M., and Kaštovská, K.: Microbial
communities on glacier surfaces in Svalbard: impact of physical and chemical
properties on abundance and structure of cyanobacteria and algae, Microb.
Ecol., 52, 644–654, 2006.
Stibal, M., Šabacká, M., and Žárský, J.: Biological
processes on glacier and ice sheet surfaces, Nat. Geosci., 5, 771–774,
2012a.
Stibal, M., Telling, J., Cook, J., Mak, K. M., Hodson, A., and Anesio, A. M.:
Environmental controls on microbial abundance and activity on the Greenland
ice sheet: a multivariate analysis approach, Microb. Ecol., 63, 74–84, 2012b.
Taghavi, S., Izquierdo, J. A., and van der Lelie, D.: Complete genome
sequence of Clostridium sp. strain DL-VIII, a novel solventogenic Clostridium species
isolated from anaerobic sludge, Genome Announcements, 1, e00605,
https://doi.org/10.1128/genomeA.00605-13, 2013.
Takeuchi, N., Kohshima, S., Goto-Azuma, K., and Koerner, R. M.: Biological
characteristics of dark colored material (cryoconite) on Canadian Arctic
glaciers (Devon and Penny ice caps), Proceedings of the Memoirs of the
National Institute of Polar Research, Special Issue, 54, 495–505, 2001.
Tang, E. P., Tremblay, R., and Vincent, W. F.: Cyanobacterial dominance of
polar freshwater ecosystems: are high-latitude mat-formers adapted to low
temperature?, J. Phycol., 33, 171–181,
1997.
Telling, J., Anesio, A. M., Tranter, M., Irvine-Fynn, T., Hodson, A., Butler,
C., and Wadham, J.: Nitrogen fixation on Arctic glaciers, Svalbard, J.
Geophys. Res.-Biogeo., 116, G03039, https://doi.org/10.1029/2010JG001632, 2011.
Telling, J., Stibal, M., Anesio, A.M., Tranter, M., Nias, I., Cook, J., and
Hodson, A.: Microbial Nitrogen cycling on the Greenland Ice Sheet,
Biogeosciences, 9, 2431–2442, https://doi.org/10.5194/bg-9-2431-2012, 2012.
Vanormelingen, P., Vyverman, W., De Bock, D., Van der Gucht, K., and De
Meester, L.: Local genetic adaptation to grazing pressure of the green alga
Desmodesmus armatus in a strongly connected pond system, Limnol. Oceanogr., 54, 503–511,
2009.
Yallop, M. L., Anesio, M. A., Perkins, R. G., Cook, J., Telling, J., Fagan, D.,
MacFarlane, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter, M.,
Wadham, J., and Roberts, N.: Photophysiology and albedo-changing potential
of the ice-algal community on the surface of the Greenland ice sheet, ISME
J., 6, 2302–2313, 2012.
Žárský, J. D., Stibal, M., Hodson, A., Sattler, B., Schostag, M.,
Hansen, L. H., and Psenner, R.: Large cryoconite aggregates on a Svalbard
glacier support a diverse microbial community including ammonia-oxidizing
archaea, Environ. Res. Lett., 8, 035044, https://doi.org/10.1088/1748-9326/8/3/035044,
2013.
Zawierucha, K., Kolicka, M., Takeuchi, N., and Kaczmarek, L.: What animals
can live in cryoconite holes? A faunal review, J. Zool., 295, 159–169, 2014.
Short summary
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was investigated. Possible bottom-up controls via nutrient limitation, wind dispersal, and hydrological stability were measured. Grazer populations were quantified to estimate the effect of top-down controls. Nutrient limitation appeared to be the most important control on the diversity and competition outcomes of microalgae and cyanobacteria.
The diversity of microalgae and cyanobacteria in cryoconites on three high-Arctic glaciers was...
Altmetrics
Final-revised paper
Preprint