Articles | Volume 14, issue 21
https://doi.org/10.5194/bg-14-4851-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-4851-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest
Fabio Gennaretti
CORRESPONDING AUTHOR
CEREGE, Aix-Marseille University, CNRS, IRD, Aix en Provence, 13545,
France
now at: INRA Centre Grand Est – Nancy, UMR1137 Ecologie et Ecophysiologie Forestières, Champenoux, 54280,
France
Guillermo Gea-Izquierdo
Departamento de Sistemas y Recursos Forestales, CIFOR-INIA, Madrid,
28040, Spain
Etienne Boucher
Département de géographie, Université du Québec à
Montréal, Montréal, H3C3P8, Canada
Frank Berninger
Department of Forest Sciences, University of Helsinki, Helsinki,
00014, Finland
Dominique Arseneault
Département de biologie, chimie et géographie, Université
du Québec à Rimouski, Rimouski, G5L3A1, Canada
Joel Guiot
CEREGE, Aix-Marseille University, CNRS, IRD, Aix en Provence, 13545,
France
Related authors
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Joel Guiot, Nicolas Bernigaud, Alberte Bondeau, Laurent Bouby, and Wolfgang Cramer
Clim. Past, 19, 1219–1244, https://doi.org/10.5194/cp-19-1219-2023, https://doi.org/10.5194/cp-19-1219-2023, 2023
Short summary
Short summary
In the Mediterranean the vine has been an important part of the economy since Roman times. Viticulture expanded within Gaul during warmer climate phases and regressed during cold periods. Now it is spreading strongly to northern Europe and suffering from drought in North Africa, Spain, and southern Italy. This will worsen if global warming exceeds 2 °C above the preindustrial period. While the driver of this is increased greenhouse gases, we show that the main past forcing was volcanic activity.
Taija Saarela, Xudan Zhu, Helena Jäntti, Mizue Ohashi, Jun'ichiro Ide, Henri Siljanen, Aake Pesonen, Heidi Aaltonen, Anne Ojala, Hiroshi Nishimura, Timo Kekäläinen, Janne Jänis, Frank Berninger, and Jukka Pumpanen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-225, https://doi.org/10.5194/bg-2022-225, 2022
Manuscript not accepted for further review
Short summary
Short summary
This study investigated the molecular composition and carbon dioxide production of water samples collected from two subarctic rivers that represent contrasting types of catchment characteristics. The results highlight the role of clearwater environments in microbial degradation and greenhouse gas dynamics of subarctic catchments.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
John Zobitz, Heidi Aaltonen, Xuan Zhou, Frank Berninger, Jukka Pumpanen, and Kajar Köster
Geosci. Model Dev., 14, 6605–6622, https://doi.org/10.5194/gmd-14-6605-2021, https://doi.org/10.5194/gmd-14-6605-2021, 2021
Short summary
Short summary
Forest fires heavily affect carbon stocks and fluxes of carbon in high-latitude forests. Long-term trends in soil respiration following forest fires are associated with recovery of aboveground biomass. We evaluated models for soil autotrophic and heterotrophic respiration with data from a chronosequence of stand-replacing forest fires in northern Canada. The best model that reproduced expected patterns in soil respiration components takes into account soil microbe carbon as a model variable.
Cited articles
Bergeron, O., Margolis, H. A., Black, T. A., Coursolle, C., Dunn, A. L., Barr, A. G., and Wofsy, S. C.: Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada, Glob. Change Biol., 13, 89–107, https://doi.org/10.1111/j.1365-2486.2006.01281.x, 2007.
Berninger, F., Hari, P., Nikinmaa, E., Lindholm, M., and Meriläinen, J.: Use of modeled photosynthesis and decomposition to describe tree growth at the northern tree line, Tree Physiol., 24, 193–204, https://doi.org/10.1093/treephys/24.2.193, 2004.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba, Can. J. Forest Res., 32, 1441–1450, https://doi.org/10.1139/x02-063, 2002a.
Bond-Lamberty, B., Wang, C., Gower, S. T., and Norman, J.: Leaf area dynamics of a boreal black spruce fire chronosequence, Tree Physiol., 22, 993–1001, https://doi.org/10.1093/treephys/22.14.993, 2002b.
Boucher, É., Guiot, J., Hatté, C., Daux, V., Danis, P.-A., and Dussouillez, P.: An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations, Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, 2014.
Bradshaw, C. J. A., Warkentin, I. G., and Sodhi, N. S.: Urgent preservation of boreal carbon stocks and biodiversity, Trends Ecol. Evol., 24, 541–548, https://doi.org/10.1016/j.tree.2009.03.019, 2009.
Bronson, D. R., Gower, S. T., Tanner, M., and Van Herk, I.: Effect of ecosystem warming on boreal black spruce bud burst and shoot growth, Glob. Change Biol., 15, 1534–1543, https://doi.org/10.1111/j.1365-2486.2009.01845.x, 2009.
Chen, J. M.: Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands, Agr. Forest Meteorol., 80, 135–163, https://doi.org/10.1016/0168-1923(95)02291-0, 1996.
Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., Makinen, H., Prislan, P., Rossi, S., Del Castillo, E. M., Campelo, F., Vavrci, H., Camarero, J. J., Bryukhanova, M. V., Jyske, T., Gricar, J., Gryc, V., De Luis, M., Vieira, J., Cufar, K., Kirdyanov, A. V., Oberhuber, W., Treml, V., Huang, J. G., Li, X., Swidrak, I., Deslauriers, A., Liang, E., Nojd, P., Gruber, A., Nabais, C., Morin, H., Krause, C., King, G., and Fournier, M.: Woody biomass production lags stem-girth increase by over one month in coniferous forests, Nature Plants, 1, 1–6, https://doi.org/10.1038/nplants.2015.160, 2015.
Czapowskyj, M. M., Robinson, D. J., Briggs, R. D., and White, E. H.: Component biomass equations for black spruce in Maine, USDA, Forest Service, Northeastern Forest Experiment Station, Research report NE-564, 1985.
Danis, P. A., Hatté, C., Misson, L., and Guiot, J.: MAIDENiso: a multiproxy biophysical model of tree-ring width and oxygen and carbon isotopes, Can. J. Forest Res., 42, 1697–1713, https://doi.org/10.1139/x2012-089, 2012.
D'aoust, A. L. and Cameron, S. I.: The effect of dormancy induction, low temperatures and moisture stress on cold hardening of containerized black spruce seedlings, in: Proceedings of the Canadian Containerized Tree Seedling Symposium, Toronto, Ontario, 14–16 September 1981, 153–161, 1982.
De Pury, D. G. G. and Farquhar, G. D.: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models, Plant Cell Environ., 20, 537–557, https://doi.org/10.1111/j.1365-3040.1997.00094.x, 1997.
Fatichi, S., Leuzinger, S., and Körner, C.: Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling, New Phytol., 201, 1086–1095, https://doi.org/10.1111/nph.12614, 2014.
Gaucherel, C., Campillo, F., Misson, L., Guiot, J., and Boreux, J. J.: Parameterization of a process-based tree-growth model: Comparison of optimization, MCMC and Particle Filtering algorithms, Environ. Modell. Softw., 23, 1280–1288, https://doi.org/10.1016/j.envsoft.2008.03.003, 2008a.
Gaucherel, C., Guiot, J., and Misson, L.: Changes of the potential distribution area of French Mediterranean forests under global warming, Biogeosciences, 5, 1493–1504, https://doi.org/10.5194/bg-5-1493-2008, 2008b.
Gea-Izquierdo, G., Mäkelä, A., Margolis, H., Bergeron, Y., Black, T. A., Dunn, A., Hadley, J., Paw U, K. T., Falk, M., Wharton, S., Monson, R., Hollinger, D. Y., Laurila, T., Aurela, M., McCaughey, H., Bourque, C., Vesala, T., and Berninger, F.: Modeling acclimation of photosynthesis to temperature in evergreen conifer forests, New Phytol., 188, 175–186, https://doi.org/10.1111/j.1469-8137.2010.03367.x, 2010.
Gea-Izquierdo, G., Bergeron, Y., Huang, J. G., Lapointe-Garant, M. P., Grace, J., and Berninger, F.: The relationship between productivity and tree-ring growth in boreal coniferous forests, Boreal Environ. Res., 19, 363–378, 2014.
Gea-Izquierdo, G., Guibal, F., Joffre, R., Ourcival, J. M., Simioni, G., and Guiot, J.: Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series, Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015, 2015.
Gea-Izquierdo, G., Nicault, A., Battipaglia, G., Dorado-Liñán, I., Gutiérrez, E., Ribas, M., and Guiot, J.: Risky future for Mediterranean forests unless they undergo extreme carbon fertilization, Glob. Change Biol., 23, 2915–2927, https://doi.org/10.1111/gcb.13597, 2017.
Gennaretti, F.: MAIDEN ecophysiological forest model, https://doi.org/10.6084/m9.figshare.5446435, 2017.
Gennaretti, F., Arseneault, D., Nicault, A., Perreault, L., and Bégin, Y.: Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America, P. Natl. Acad. Sci. USA, 111, 10077–10082, https://doi.org/10.1073/pnas.1324220111, 2014.
Girardin, M. P., Raulier, F., Bernier, P. Y., and Tardif, J. C.: Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modelling approaches, Ecol. Model., 213, 209–228, https://doi.org/10.1016/j.ecolmodel.2007.12.010, 2008.
Girardin, M. P., Hogg, E. H., Bernier, P. Y., Kurz, W. A., Guo, X. J., and Cyr, G.: Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming, Glob. Change Biol., 22, 627–643 https://doi.org/10.1111/gcb.13072, 2016.
Guay, C., Minville, M., and Braun, M.: A global portrait of hydrological changes at the 2050 horizon for the province of Québec, Can. Water Resour. J., 40, 285–302, https://doi.org/10.1080/07011784.2015.1043583, 2015.
Guiot, J., Boucher, E., and Gea Izquierdo, G.: Process models and model-data fusion in dendroecology, Frontiers in Ecology and Evolution, 2, 52, https://doi.org/10.3389/fevo.2014.00052, 2014.
Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E., and Papadopol, P.: Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003, J. Appl. Meteorol. Clim., 48, 725–741, https://doi.org/10.1175/2008jamc1979.1, 2009.
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., and Birdsey, R. A.: National-Scale Biomass Estimators for United States Tree Species, Forest Sci., 49, 12–35, 2003.
Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther, P. R., Waterman, L. S., and Chin, J. F. S.: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii, Tellus, 28, 538–551, https://doi.org/10.1111/j.2153-3490.1976.tb00701.x, 1976.
Kirdyanov, A., Hughes, M., Vaganov, E., Schweingruber, F., and Silkin, P.: The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic, Trees-Struct. Funct., 17, 61–69, https://doi.org/10.1007/s00468-002-0209-z, 2003.
Lemieux, J.: Phénologie de l'épinette noire dans le haut boréal: un patron de la croissance intra-annuelle primaire et secondaire en relation avec la température de l'air journalière, Master of Biology, Université du Québec à Montréal, Montreal, 90 pp., 2010.
Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 18, 339–355, https://doi.org/10.1111/j.1365-3040.1995.tb00370.x, 1995.
Li, G., Harrison, S. P., Prentice, I. C., and Falster, D.: Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth, Biogeosciences, 11, 6711–6724, https://doi.org/10.5194/bg-11-6711-2014, 2014.
Li, G., Harrison, S. P., and Prentice, I. C.: A model analysis of climate and CO2 controls on tree growth and carbon allocation in a semi-arid woodland, Ecol. Model., 342, 175–185, https://doi.org/10.1016/j.ecolmodel.2016.10.005, 2016.
Mäkelä, A., Berninger, F., and Hari, P.: Optimal control of gas exchange during drought: Theoretical analysis, Ann. Bot.-London, 77, 461–467, https://doi.org/10.1006/anbo.1996.0056, 1996.
Mäkelä, A., Hari, P., Berninger, F., Hänninen, H., and Nikinmaa, E.: Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature, Tree Physiol., 24, 369–376, https://doi.org/10.1093/treephys/24.4.369, 2004.
Mamet, S. D. and Kershaw, G. P.: Radial-Growth Response of Forest-Tundra Trees to Climate in the Western Hudson Bay Lowlands, Arctic, 64, 446–458, 2011.
Man, R. and Lu, P.: Effects of thermal model and base temperature on estimates of thermal time to bud break in white spruce seedlings, Can. J. Forest Res., 40, 1815–1820, https://doi.org/10.1139/X10-129, 2010.
Maseyk, K. S., Lin, T., Rotenberg, E., Grünzweig, J. M., Schwartz, A., and Yakir, D.: Physiology-phenology interactions in a productive semi-arid pine forest, New Phytol., 178, 603–616, https://doi.org/10.1111/j.1469-8137.2008.02391.x, 2008.
Misson, L.: MAIDEN: a model for analyzing ecosystem processes in dendroecology, Can. J. Forest Res., 34, 874–887, https://doi.org/10.1139/x03-252, 2004.
Misson, L., Rathgeber, C., and Guiot, J.: Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model, Can. J. Forest Res., 34, 888–898, https://doi.org/10.1139/x03-253, 2004.
Moorcroft, P. R.: How close are we to a predictive science of the biosphere?, Trends Ecol. Evol., 21, 400–407, https://doi.org/10.1016/j.tree.2006.04.009, 2006.
Nicault, A., Boucher, E., Tapsoba, D., Arseneault, D., Berninger, F., Bégin, C., DesGranges, J. L., Guiot, J., Marion, J., Wicha, S., and Bégin, Y.: Spatial analysis of the black spruce (Picea mariana [MILL] B.S.P.) radial growth response to climate in northern Québec, Canada, Can. J. Forest Res., 45, 343–352, https://doi.org/10.1139/cjfr-2014-0080, 2014.
Nitschke, C. R. and Innes, J. L.: A tree and climate assessment tool for modelling ecosystem response to climate change, Ecol. Model., 210, 263–277, https://doi.org/10.1016/j.ecolmodel.2007.07.026, 2008.
Ols, C., Hofgaard, A., Bergeron, Y., and Drobyshev, I.: Previous season climate controls the occurrence of black spruce growth anomalies in boreal forests of Eastern Canada, Can. J. Forest Res., 46, 696–705, https://doi.org/10.1139/cjfr-2015-0404, 2016.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007.
Rayment, M. B., Loustau, D., and Jarvis, P. J.: Photosynthesis and respiration of black spruce at three organizational scales: shoot, branch and canopy, Tree Physiol., 22, 219–229, https://doi.org/10.1093/treephys/22.4.219, 2002.
Robert, C.: Méthodes de Monte Carlo par chaînes de Markov, Statistique mathématique et Probabilité, edited by: Deheuvels, P., Economica, Paris, 1996.
Rocha, A. V., Goulden, M. L., Dunn, A. L., and Wofsy, S. C.: On linking interannual tree ring variability with observations of whole-forest CO2 flux, Glob. Change Biol., 12, 1378–1389, https://doi.org/10.1111/j.1365-2486.2006.01179.x, 2006.
Rossi, S. and Bousquet, J.: The bud break process and its variation among local populations of boreal black spruce, Front. Plant Sci., 5, 574, https://doi.org/10.3389/fpls.2014.00574, 2014.
Rossi, S., Anfodillo, T., Čufar, K., Cuny, H. E., Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., Huang, J.-G., Jyske, T., Kašpar, J., King, G., Krause, C., Liang, E., Mäkinen, H., Morin, H., Nöjd, P., Oberhuber, W., Prislan, P., Rathgeber, C. B. K., Saracino, A., Swidrak, I., and Treml, V.: Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere, Glob. Change Biol., 22, 3804–3813, https://doi.org/10.1111/gcb.13317, 2016.
Salminen, H. and Jalkanen, R.: Modelling the effect of temperature on height increment of Scots pine at high latitudes, Silva Fenn., 39, 497–508, https://doi.org/10.14214/sf.362, 2005.
Schiestl-Aalto, P., Kulmala, L., Mäkinen, H., Nikinmaa, E., and Mäkelä, A.: CASSIA – a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine, New Phytol., 206, 647–659, https://doi.org/10.1111/nph.13275, 2015.
Ťupek, B., Mäkipää, R., Heikkinen, J., Peltoniemi, M., Ukonmaanaho, L., Hokkanen, T., Nöjd, P., Nevalainen, S., Lindgren, M., and Lehtonen, A.: Foliar turnover rates in Finland–comparing estimates from needle-cohort and litterfall-biomass methods, Boreal Environ. Res., 20, 283–304, 2015.
Vaganov, E. A., Hughes, M. K., and Shashkin, A. V.: Growth Dynamics of Conifer Tree Rings, Ecological Studies, Springer, Berlin and Heidelberg, 354 pp., 2006.
Zweifel, R., Haeni, M., Buchmann, N., and Eugster, W.: Are trees able to grow in periods of stem shrinkage?, New Phytol., 211, 839–849, https://doi.org/10.1111/nph.13995, 2016.
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon...
Altmetrics
Final-revised paper
Preprint