Articles | Volume 15, issue 6
https://doi.org/10.5194/bg-15-1863-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-1863-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste
Georgina Robinson
CORRESPONDING AUTHOR
School of Natural and Environmental Sciences, Newcastle University,
Newcastle, NE1 7RU, UK
Department of Ichthyology and Fisheries Science, Rhodes University,
Grahamstown 6140, South Africa
current address: The Scottish Association for Marine Science, Scottish
Marine Institute, Oban, PA37 1QA, UK
Thomas MacTavish
Department of Marine Science, University of Otago, Dunedin 9016, New
Zealand
Candida Savage
Department of Marine Science, University of Otago, Dunedin 9016, New
Zealand
Department of Biological Sciences and Marine Research Institute,
University of Cape Town, Rondebosch 7700, Cape Town, South Africa
Gary S. Caldwell
School of Natural and Environmental Sciences, Newcastle University,
Newcastle, NE1 7RU, UK
Clifford L. W. Jones
Department of Ichthyology and Fisheries Science, Rhodes University,
Grahamstown 6140, South Africa
Trevor Probyn
Marine and Coastal Management, Private Bag X2, Rogge Bay 8012, Cape
Town, South Africa
Bradley D. Eyre
Centre for Coastal Biogeochemistry, School of Environment, Science and
Engineering, Southern Cross University, Lismore, NSW 2480, Australia
Selina M. Stead
School of Natural and Environmental Sciences, Newcastle University,
Newcastle, NE1 7RU, UK
Related authors
No articles found.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Cited articles
Almgren, T., Dryssen, D., and Fonselius, S.: Determination of alkalinity and total carbonate, in: Methods of seawater analysis, 2nd Edn., edited by: Grasshoff, K., Ehrhardt, M., and Kremling, K., Verlag Chemie, Weinheim, West Germany, 99–123, 1983.
Aßhauer, K. P., Wemheuer, B., Daniel, R., and Meinicke, P.: Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data, Bioinformatics, 31, 2882–2884, https://doi.org/10.1093/bioinformatics/btv287, 2015.
Avnimelech, Y.: Carbon/nitrogen ratio as a control element in aquaculture systems, Aquaculture, 176, 227–235, https://doi.org/10.1016/s0044-8486(99)00085-x, 1999.
Baker, B. J., Lazar, C. S., Teske, A. P., and Dick, G. J.: Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria, Microbiome, 3, 1–12, https://doi.org/10.1186/s40168-015-0077-6, 2015.
Battaglene, S. C., Seymour, J. E., and Ramofafia, C.: Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra, Aquaculture, 178, 293–322, https://doi.org/10.1016/S0044-8486(99)00130-1, 1999.
Bendscheider, K. and Robinson, R. J.: A new spectrophotometric method for the determination of nitrite in sea water, J. Mar. Res., 11, 87–96, 1952.
Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H., Hansen, J. L. S., Markager, S., and Riemann, L.: Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries, ISME J., 9, 273–285, https://doi.org/10.1038/ismej.2014.119, 2015.
Blackburn, T. H.: Nitrogen cycle in marine sediments, Ophelia, 26, 65–76, https://doi.org/10.1080/00785326.1986.10421979, 1986.
Burford, M. A. and Longmore, A. R.: High ammonium production from sediments in hypereutrophic shrimp ponds, Mar. Ecol.-Prog. Ser., 224, 187–195, 2001.
Capone, D. G.: The marine nitrogen cycle, in: Microbial Ecology of the Oceans, 1st Edn., edited by: Kirchman, D. L., Wiley-Liss, 455–493, 2000.
Castine, S. A.: Nitrogen removal and reuse in land-based intensive aquaculture, PhD thesis, James Cook University, 173 pp., 2013.
Castine, S. A., Erler, D. V., Trott, L. A., Paul, N. A., de Nys, R., and Eyre, B. D.: Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production, PLoS ONE, 7, e4281, https://doi.org/10.1371/journal.pone.0042810, 2012.
Cook, P. L. M., Veuger, B., Boer, S., and Middelburg, J. J.: Effect of nutrient availability on carbon and nitrogen incorporation and flows through benthic algae and bacteria in near-shore sandy sediment, Aquat. Microb. Ecol., 49, 165–180, https://doi.org/10.3354/ame01142, 2007.
Crab, R., Defoirdt, T., Bossier, P., and Verstraete, W.: Biofloc technology in aquaculture: beneficial effects and future challenges, Aquaculture, 356–357, 351–356, https://doi.org/10.1016/j.aquaculture.2012.04.046, 2012.
Decleyre, H., Heylen, K., Van Colen, C., and Willems, A.: Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers, Front. Microbiol., 6, 1124, https://doi.org/10.3389/fmicb.2015.01124, 2015.
Dodds, W. K., Marti, E., Tank, J. L., Pontius, J., Hamilton, S. K., Grimm, N. B., Bowden, W. B., McDowell, W. H., Peterson, B. J., Valett, H. M., Webster, J. R., and Gregory, S.: Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams, Oecologia, 140, 458–467, https://doi.org/10.1007/s00442-004-1599-y, 2004.
Ebeling, J. M., Timmons, M. B., and Bisogni, J. J.: Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems, Aquaculture, 257, 346–358, https://doi.org/10.1016/j.aquaculture.2006.03.019, 2006.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R.: UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, 27, 2194–2200, https://doi.org/10.1093/bioinformatics/btr381, 2011.
Edmond, J. M.: High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration, Deep Sea Research and Oceanographic Abstracts, 17, 737–750, https://doi.org/10.1016/0011-7471(70)90038-0, 1970.
Enrich-Prast, A., Figueiredo, V., De Esteves, F. A., and Nielsen, L. P.: Controls of sediment nitrogen dynamics in tropical coastal lagoons, PLoS ONE, 11, e0155586, https://doi.org/10.1371/journal.pone.0155586, 2016.
Erler, D. V., Trott, L. A., Alongi, D. M., and Eyre, B. D.: Denitrification, anammox and nitrate reduction in sediments of the southern Great Barrier Reef lagoon, Mar. Ecol.-Prog. Ser., 478, 57–70, 2013.
Eyre, B. D. and Ferguson, A. J. P.: Benthic metabolism and nitrogen cycling in a sub-tropical east Australian estuary (Brunswick) – temporal variability and controlling factors, Limnol. Oceanogr., 50, 81–96, 2005.
Eyre, B. D. and Ferguson, A. J. P.: Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems, Hydrobiologia, 629, 137–146, https://doi.org/10.1007/s10750-009-9765-1, 2009.
Eyre, B. D., Rysgaard, S., Dalsgaard, T., and Christensen, P. B.: Comparison of isotope pairing and N2 : Ar methods for measuring sediment denitrification- assumption, modifications, and implications, Estuaries, 25, 1077–1087, https://doi.org/10.1007/BF02692205, 2002.
Eyre, B. D., Ferguson, A. J., Webb, A., Maher, D., and Oakes, J. M.: Metabolism of different benthic habitats and their contribution to the carbon budget of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia), Biogeochemistry, 102, 87–110, 2011.
Eyre, B. D., Maher, D. T., and Squire, P.: Quantity and quality of organic matter (detritus) drives N2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries, Global Biogeochem. Cy., 27, 1083–1095, https://doi.org/10.1002/2013GB004631, 2013a.
Eyre, B. D., Santos, I. R., and Maher, D. T.: Seasonal, daily and diel N2 effluxes in permeable carbonate sediments, Biogeosciences, 10, 2601–2615, https://doi.org/10.5194/bg-10-2601-2013, 2013b.
Eyre, B. D., Oakes, J. M., and Middelburg, J.: Fate of microphytobenthos nitrogen in subtropical subtidal sediments: a 15N pulse-chase study, Limnol. Oceanogr., 61, 2108–2121, 2016.
Fenchel, T., King, G. M., and Blackburn, T. H.: Bacterial Biogeochemistry. The Ecophysiology of Mineral Cycling, 3rd Edn., Academic Press, 307 pp., San Diego, 2012.
Ferguson, A. J. P. and Eyre, B. D.: Seasonal discrepancies in denitrification measured by isotope pairing and N2 : Ar techniques, Mar. Ecol.-Prog. Ser., 350, 19–27, https://doi.org/10.3354/meps07152, 2007.
Ferguson, A. J. P., Eyre, B. D., and Gay, M.: Benthic nutrient fluxes in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia, Aquat. Microb. Ecol., 37, 219–235, 2004.
Fernandes, S. O., Bonin, P. C., Michotey, V. D., Garcia, N., and LokaBharathi, P. A.: Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium, Scientific Reports, 2, 419, https://doi.org/10.1038/srep00419, 2012.
Fulweiler, R. W., Brown, S. M., Nixon, S. W., and Jenkins, B. D.: Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments, Mar. Ecol.-Prog. Ser., 482, 57-68, 2013.
Gardner, W. S., McCarthy, M. J., An, S., Sobolev, D., Sell, K. S., and Brock, D.: Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries, Limnol. Oceanogr., 51, 558–568, https://doi.org/10.4319/lo.2006.51.1_part_2.0558, 2006.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4, 243–289, https://doi.org/10.1080/17451000801888726, 2008.
Glud, R. N., Eyre, B. D., and Patten, N.: Biogeochemical responses to mass coral spawning at the Great Barrier Reef: Effects on respiration and primary production, Limnol. Oceanogr., 53, 1014–1024, 2008.
Gongol, C. and Savage, C.: Spatial variation in rates of benthic denitrification and environmental controls in four New Zealand estuaries, Mar. Ecol.-Prog. Ser., 556, 59–77, 2016.
Grasshoff, K.: The automated determination of ammonia, in: Methods of Seawater Analysis, edited by: Grasshoff, K., Verlag Chemie, Weinheim, 276–278, 1976.
Grasshoff, K., Ehrhardt, M., and Kremling, K.: Methods of seawater analysis, 3rd Edn., Wiley-VCH, 600 pp, Weinheim, 1999.
Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T., LaRoche, J., D'Hondt, S., and Kuypers, M. M.: Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre, ISME J., 6, 1238–1249, https://doi.org/10.1038/ismej.2011.182, 2012.
Hamlin, H. J., Michaels, J. T., Beaulaton, C. M., Graham, W. F., Dutt, W., Steinbach, P., Losordo, T. M., Schrader, K. K., and Main, K. L.: Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture, Aquacult. Eng., 38, 79–92, https://doi.org/10.1016/j.aquaeng.2007.11.003, 2008.
Hardison, A. K., Algar, C. K., Giblin, A. E., and Rich, J. J.: Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production, Geochim. Cosmochim. Ac., 164, 146–160, https://doi.org/10.1016/j.gca.2015.04.049, 2015.
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D.: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform, Appl. Environ. Microb., 79, 5112–5120, https://doi.org/10.1128/aem.01043-13, 2013.
MacTavish, T., Stenton-Dozey, J., Vopel, K., and Savage, C.: Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments, PLoS ONE, 7, e50031, https://doi.org/10.1371/journal.pone.0050031, 2012.
Marie, D., Brussaard, C. P. D., Thyrhaug, R., Bratbak, G., and Vaulot, D.: Enumeration of marine viruses in culture and natural samples by flow cytometry, Appl. Environ. Microb., 65, 45–52, 1999.
McMurdie, P. J. and Holmes, S.: phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data, PLoS One, 8, e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Newell, S. E., McCarthy, M. J., Gardner, W. S., and Fulweiler, R. W.: Sediment nitrogen fixation: a call for re-evaluating coastal N budgets, Estuar. Coast., 39, 1626–1638, https://doi.org/10.1007/s12237-016-0116-y, 2016a.
Newell, S. E., Pritchard, K. R., Foster, S. Q., and Fulweiler, R. W.: Molecular evidence for sediment nitrogen fixation in a temperate New England estuary, PeerJ, 4, e1615, https://doi.org/10.7717/peerj.1615, 2016b.
Oakes, J. M., Eyre, B. D., and Ross, D. J.: Short-Term Enhancement and Long-Term Suppression of Denitrification in Estuarine Sediments Receiving Primary- and Secondary-Treated Paper and Pulp Mill Discharge, Environ. Sci. Technol., 45, 3400–3406, https://doi.org/10.1021/es103636d, 2011.
Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.: vegan: Community Ecology Package, R package version 2.3-4, available at: http://cran.r-project.org/package=vegan (last access: 25 June 2016), 2016.
Reimers, C. E., Alleau, Y., Bauer, J. E., Delaney, J., Girguis, P. R., Schrader, P. S., and Stecher, H. A.: Redox effects on the microbial degradation of refractory organic matter in marine sediments, Geochim. Cosmochim. Ac., 121, 582–598, 2013.
Robinson, G.: Shifting paradigms and closing the nitrogen loop, Aquacult. Env. Interac., in review, 2018.
Robinson, G., Caldwell, G. S., Jones, C. L. W., Slater, M. J., and Stead, S. M.: Redox stratification drives enhanced growth in a deposit-feeding invertebrate: implications for aquaculture bioremediation, Aquacult. Env. Interac., 8, 1–13, https://doi.org/10.3354/aei00158, 2015.
Robinson, G., Caldwell, G. S., Wade, M. J., Free, A., Jones, C. L. W., and Stead, S. M.: Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes, Scientific Reports, 6, 38850, https://doi.org/10.1038/srep38850, 2016.
Robinson, G., Caldwell, G. S., Jones, C. L. W., and Stead, S. M.: The effect of resource quality on the growth of Holothuria scabra during aquaculture waste bioremediation, Aquaculture, in review, 2018.
Roy, D., Hassan, K., and Boopathy, R.: Effect of carbon to nitrogen (C : N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor, J. Ind. Microbiol. Biot., 37, 1105–1110, https://doi.org/10.1007/s10295-010-0869-4, 2010.
Schneider, O., Sereti, V., Eding, E. H., and Verreth, J. A. J.: Molasses as C source for heterotrophic bacteria production on solid fish waste, Aquaculture, 261, 1239–1248, https://doi.org/10.1016/j.aquaculture.2006.08.053, 2006.
Seitzinger, S. P.: Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance, Limnol. Oceanogr., 33, 702–724, 1988.
Snoeyink, V. L. and Jenkins, D.: Water Chemistry, John Wiley & Sons, 220 pp., New York, 1980.
Song, B., Lisa, J. A., and Tobias, C. R.: Linking DNRA community structure and activity in a shallow lagoonal estuarine system, Front. Microbiol., 5, 460, https://doi.org/10.3389/fmicb.2014.00460, 2014.
Thamdrup, B. and Dalsgaard, T.: Nitrogen cycling in sediments, in: Microbial Ecology of the Oceans, John Wiley & Sons, Inc., 527–568, 2008.
Underwood, G. J. C., Paterson, D. A., and Parkes, R. J.: The measurement of microbial carbohydrate exopolymers from intertidal sediments, Limnol. Oceanogr., 40, 1243–1253, 1995.
Veuger, B., Eyre, B. D., Maher, D., and Middelburg, J. J.: Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical intertidal sediment: an in situ 15N-labeling study, Limnol. Oceanogr., 52, 1930–1942, 2007.
Welsh, D. T., Bourgués, S., de Wit, R., and Herbert, R. A.: Seasonal variations in nitrogen-fixation (acetylene reduction) and sulphate-reduction rates in the rhizosphere of Zostera noltii: nitrogen fixation by sulphate-reducing bacteria, Mar. Biol., 125, 619–628, https://doi.org/10.1007/bf00349243, 1996.
Welsh, D. T., Bourguès, S., De Wit, R., and Auby, I.: Effect of plant photosynthesis, carbon sources and ammonium availability on nitrogen fixation rates in the rhizosphere of Zostera noltii, Aquat. Microb. Ecol., 12, 285–290, 1997.
Xu, Y., Zhou, P., and Tian, X.: Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov, Int. J. Syst. Bacteriol., 49, 261–266, https://doi.org/10.1099/00207713-49-1-261, 1999.
Zehr, J. P. and Paerl, H. W.: Molecular ecological aspects of nitrogen fixation in the marine environment, in: Microbial Ecology of the Oceans, 2nd Edn., edited by: Kirchman, D. L., Wiley-Liss, Inc., Hoboken, NJ, USA, 481–525, https://doi.org/10.1002/9780470281840.ch13, 2008.
Short summary
This study examined the effect of adding carbon to a sediment-based effluent treatment system to treat nitrogen-rich aquaculture waste. The research was conducted in incubation chambers to measure the exchange of gases and nutrients across the sediment–water interface and examine changes in the sediment microbial community. Adding carbon increased the amount of nitrogen retained in the treatment system, thereby reducing the levels of nitrogen needing to be discharged to the environment.
This study examined the effect of adding carbon to a sediment-based effluent treatment system to...
Altmetrics
Final-revised paper
Preprint