Articles | Volume 15, issue 18
https://doi.org/10.5194/bg-15-5575-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-5575-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Greenhouse gas emissions from boreal inland waters unchanged after forest harvesting
Marcus Klaus
CORRESPONDING AUTHOR
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Erik Geibrink
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Anders Jonsson
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Ann-Kristin Bergström
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
David Bastviken
Department of Thematic Studies – Environmental Change,
Linköping University, 58183, Linköping, Sweden
Hjalmar Laudon
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, 90183, Umeå, Sweden
Jonatan Klaminder
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Jan Karlsson
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Related authors
No articles found.
John Marshall, Jose Gutierrez-Lopez, Daniel Metcalfe, Nataliia Kozii, and Hjalmar Laudon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3328, https://doi.org/10.5194/egusphere-2025-3328, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The "two water-worlds hypothesis" has attracted significant public attention because it is an accessible way to describe the partitioning of water sources within catchments. This manuscript adds a new degree of complexity to that idea by recognizing that co-occurring tree species, which root at different depths, also use different water sources. So it leads to at least three water worlds.
Cong Jiang, Doerthe Tetzlaff, Songjun Wu, Christian Birkel, Hjalmar Laudon, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2533, https://doi.org/10.5194/egusphere-2025-2533, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a modelling approach supported by stable water isotopes to explore how forest management – such as conifer, broadleaf, and mixed tree–crop systems – affects water distribution and drought resilience in a drought-sensitive region of Germany. By representing forest type, density, and rooting depth, the model helps quantify and show how land use choices affect water availability and supports better land and water management decisions.
Shirin Karimi, Virginia Mosquera, Eliza Maher Hasselquist, Järvi Järveoja, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 29, 2599–2614, https://doi.org/10.5194/hess-29-2599-2025, https://doi.org/10.5194/hess-29-2599-2025, 2025
Short summary
Short summary
There is an increasing interest in rewetting drained peatlands to regain their important ecosystem functions. However, as peatland rewetting is a relatively new strategy, the scientific foundation for this approach is not solid. Therefore, we investigated the impact of rewetting on flood mitigation using high-resolution hydrological field observations. Our results showed that peatland rewetting significantly reduced peak flow and runoff coefficient and mitigated flashy hydrograph responses.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Manon Maisonnier, Maoyuan Feng, David Bastviken, Sandra Arndt, Ronny Lauerwald, Aidin Jabbari, Goulven Gildas Laruelle, Murray D. MacKay, Zeli Tan, Wim Thiery, and Pierre Regnier
EGUsphere, https://doi.org/10.5194/egusphere-2025-1306, https://doi.org/10.5194/egusphere-2025-1306, 2025
Short summary
Short summary
A new process-based modelling framework, FLaMe v1.0 (Fluxes of Lake Methane version 1.0), is developed to simulate methane (CH4) emissions from lakes at large scales. FLaMe couples the dynamics of organic carbon, oxygen and methane in lakes and rests on an innovative, computationally efficient lake clustering approach for the simulation of CH4 emissions across a large number of lakes. The model evaluation suggests that FLaMe captures the sub-annual and spatial variability of CH4 emissions well.
Tejshree Tiwari and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-337, https://doi.org/10.5194/hess-2024-337, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
A 40-year hydro-climatic time series from the Krycklan catchment revealed warmer winters associated with higher baseflow and lower summer baseflow. Climate index models suggest that while warmer winters enhance baseflow, they reduce water reserves necessary for summer baseflow. This was supported by an increasing winter precipitation isotope signal in winter baseflow, contrasted with a decreasing isotope signal in summer baseflow.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Anna Lupon, Stefan Willem Ploum, Jason Andrew Leach, Lenka Kuglerová, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 27, 613–625, https://doi.org/10.5194/hess-27-613-2023, https://doi.org/10.5194/hess-27-613-2023, 2023
Short summary
Short summary
Discrete riparian inflow points (DRIPs) transport dissolved organic carbon (DOC) from large areas to discrete sections of streams, yet the mechanisms by which DRIPs affect stream DOC concentration, cycling, and export are still unknown. Here, we tested four models that account for different hydrologic and biological representations to show that DRIPs generally reduce DOC exports by either diluting stream DOC (snowmelt period) or promoting aquatic metabolism (summer).
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Elin Jutebring Sterte, Fredrik Lidman, Emma Lindborg, Ylva Sjöberg, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 25, 2133–2158, https://doi.org/10.5194/hess-25-2133-2021, https://doi.org/10.5194/hess-25-2133-2021, 2021
Short summary
Short summary
A numerical model was used to estimate annual and seasonal mean travel times across 14 long-term nested monitored catchments in the boreal region. The estimated travel times and young water fractions were consistent with observed variations of base cation concentration and stable water isotopes, δ18O. Soil type was the most important factor regulating the variation in mean travel times among sub-catchments, while the areal coverage of mires increased the young water fraction.
Cited articles
Andréassian, V.: Waters and forests: From historical controversy to
scientific debate, J. Hydrol., 291, 1–27, https://doi.org/10.1016/j.jhydrol.2003.12.015,
2004.
Ask, J., Karlsson, J., and Jansson, M.: Net ecosystem production in
clear-water and brown-water lakes, Global Biogeochem. Cy., 26, 1–7,
https://doi.org/10.1029/2010GB003951, 2012.
Bastviken, D.: Methane, in: Encyclopedia of Inland Waters, edited by: Likens,
G. E., Elsevier, Oxford, 2009.
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from
lakes: Dependence of lake characteristics, two regional assessments, and a
global estimate, Global Biogeochem. Cy., 18, 1–12, https://doi.org/10.1029/2004GB002238,
2004.
Bastviken, D., Cole, J. J., Pace, M. L., and Van de-Bogert, M. C.: Fates of
methane from different lake habitats: Connecting whole-lake budgets and
CH4 emissions, J. Geophys. Res.-Biogeo., 113, 1–13,
https://doi.org/10.1029/2007JG000608, 2008.
Bastviken, D., Santoro, A. L., Marotta, H., Pinho, L. Q., Calheiros, D. F.,
Crill, P., and Enrich-Prast, A.: Methane emissions from pantanal, South
America, during the low water season: Toward more comprehensive sampling,
Environ. Sci. Technol., 44, 5450–5455, https://doi.org/10.1021/es1005048, 2010.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
https://doi.org/10.1038/ngeo618, 2009.
Bergström, A. K. and Jansson, M.: Atmospheric nitrogen deposition has
caused nitrogen enrichment and eutrophication of lakes in the northern
hemisphere, Glob. Change Biol., 12, 635–643,
https://doi.org/10.1111/j.1365-2486.2006.01129.x, 2006.
Bertolo, A. and Magnan, P.: Logging-induced variations in dissolved organic
carbon affect yellow perch (Perca flavescens) recruitment in
Canadian Shield lakes, Can. J. Fish. Aquat. Sci., 64, 181–186,
https://doi.org/10.1139/f07-004, 2007.
Bishop, K., Seibert, J., Nyberg, L., and Rodhe, A.: Water storage in a till
catchment. II: Implications of transmissivity feedback for flow paths and
turnover times, Hydrol. Process., 25, 3950–3959, https://doi.org/10.1002/hyp.8355, 2011.
Blackburn, M., Ledesma, J. L. J., Näsholm, T., Laudon, H., and
Sponseller, R. A.: Evaluating hillslope and riparian contributions to
dissolved nitrogen (N) export from a boreal forest catchment, J. Geophys.
Res.-Biogeo., 122, 324–339, https://doi.org/10.1002/2016JG003535, 2017.
Bogard, M. J. and del Giorgio, P. A.: The role of metabolism in modulating
CO2 fluxes in boreal lakes, Global Biogeochem. Cy., 30, 1509–1525,
https://doi.org/10.1002/2016GB005463, 2016.
Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y.
T., Merante, A., and Derry, A. M.: Oxic water column methanogenesis as a
major component of aquatic CH4 fluxes, Nat. Commun., 5, 5350,
https://doi.org/10.1038/ncomms6350, 2014.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Net primary production and net
ecosystem production of a boreal black spruce wildfire chronosequence, Glob.
Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004.
Bradford, M. A., Ineson, P., Wookey, P. A., and Lappin-scott, H. M.: Soil CH
4 oxidation?: response to forest clearcutting and thinning, Soil Biol.
Biochem., 32, 1035–1038, 2000.
Buttle, J. M. and Metcalfe, R. A.: Boreal forest disturbance and streamflow
response, northeastern Ontario, Can. J. Fish. Aquat. Sci., 57, 5–18,
https://doi.org/10.1139/cjfas-57-S2-5, 2000.
Clapcott, J. E. and Barmuta, L. A.: Forest clearance increases metabolism and
organic matter processes in small headwater streams, J. N. Am. Benthol. Soc.,
29, 546–561, https://doi.org/10.1899/09-040.1, 2010.
Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a
low-wind oligotrophic lake measured by the addition of SF6, Limnol.
Oceanogr., 43, 647–656, https://doi.org/10.4319/lo.1998.43.4.0647, 1998.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Crusius, J. and Wanninkhof, R.: Gas transfer velocities measured at low wind
speed over a lake, Limnol. Oceanogr., 48, 1010–1017, 2003.
Dawson, J. J. C. and Smith, P.: Carbon losses from soil and its consequences
for land-use management, Sci. Total Environ., 382, 165–190,
https://doi.org/10.1016/j.scitotenv.2007.03.023, 2007.
Deininger, A., Jonsson, A., Karlsson, J., and Bergström, A.-K.: Low
response of humic lake food web to forest clear cutting, Ecol. Appl.,
2018.
Denfeld, B. A., Wallin, M. B., Sahlée, E., Sobek, S., Kokic, J., Chmiel,
H. E., and Weyhenmeyer, G. A.: Temporal and spatial carbon dioxide
concentration patterns in a small boreal lake in relation to ice cover
dynamics, Boreal Environ. Res., 20, 679–692, 2015.
Deutzmann, J. S., Stief, P., Brandes, J., and Schink, B.: Anaerobic methane
oxidation coupled to denitrification is the dominant methane sink in a deep
lake, P. Natl. Acad. Sci. USA, 111, 18273–18278,
https://doi.org/10.1073/pnas.1411617111, 2014.
Dinsmore, K. J., Billet, M. F., and Moore, T. R.: Transfer of carbon dioxide
and methane through the soil-water-atmosphere system at Mer Bleue peatland,
Canada, Hydrol. Process., 23, 330–341, https://doi.org/10.1002/hyp.7158, 2009.
Dinsmore, K. J., Wallin, M. B., Johnson, M. S., Billett, M. F., Bishop, K.,
Pumpanen, J., and Ojala, A.: Contrasting CO2 concentration discharge
dynamics in headwater streams: A multi-catchment comparison, J. Geophys.
Res.-Biogeo., 118, 445–461, https://doi.org/10.1002/jgrg.20047, 2013.
Diochon, A., Kellman, L., and Beltrami, H.: Looking deeper: An investigation
of soil carbon losses following harvesting from a managed northeastern red
spruce (Picea rubens Sarg.) forest chronosequence, Forest Ecol.
Manag., 257, 413–420, https://doi.org/10.1016/j.foreco.2008.09.015, 2009.
Duc, N. T., Crill, P., and Bastviken, D.: Implications of temperature and
sediment characteristics on methane formation and oxidation in lake
sediments, Biogeochemistry, 100, 185–196, https://doi.org/10.1007/s10533-010-9415-8,
2010.
France, R., Steedman, R., Lehmann, R., and Peters, R.: Landscape modification
of DOC concentration in boreal lakes: implications for UV-B sensitivity,
Water, Air Soil Pollut., 122, 153–162, 2000.
Futter, M. N., Ring, E., Högbom, L., Entenmann, S., and Bishop, K. H.:
Consequences of nitrate leaching following stem-only harvesting of Swedish
forests are dependent on spatial scale, Environ. Pollut., 158, 3552–3559,
https://doi.org/10.1016/j.envpol.2010.08.016, 2010.
Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S.,
Houghton, R. A., Jenkins, J. C., Kohlmaier, G. H., Kurz, W., Liu, S.,
Nabuurs, G., Nilsson, S., and Shvidenko, A. Z.: Forest Carbon Sinks in the
Northern Hemisphere, Ecol. Appl., 12, 891–899,
https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2, 2002.
Heiskanen, J. J., Mammarella, I., Haapanala, S., Pumpanen, J., Vesala, T.,
Macintyre, S., and Ojala, A.: Effects of cooling and internal wave motions on
gas transfer coefficients in a boreal lake, Tellus B, 66, 1–16,
https://doi.org/10.3402/tellusb.v66.22827, 2014.
Hotchkiss, E. R., Hall Jr., R. O., Sponseller, R. A., Butman, D., Klaminder,
J., Laudon, H., Rosvall, M., and Karlsson, J.: Sources of and processes
controlling CO2 emissions change with the size of streams and rivers,
Nat. Geosci., 8, 696–699, https://doi.org/10.1038/ngeo2507, 2015.
Houser, J. N., Bade, D. L., Cole, J. J., and Pace, M. L.: The dual influences
of dissolved organic carbon on hypolimnetic metabolism: Organic substrate and
photosynthetic reduction, Biogeochemistry, 64, 247–269,
https://doi.org/10.1023/A:1024933931691, 2003.
Huotari, J., Ojala, A., Peltomaa, E., Pumpanen, J., Hari, P., and Vesala, T.:
Temporal variations in surface water CO2 concentration in a boreal
humic lake based on high-frequency measurements, Boreal Environ. Res., 14,
48–60, 2009.
Huttunen, J. T.: Nitrous oxide flux to the atmosphere from the littoral zone
of a boreal lake, J. Geophys. Res., 108, 4421, https://doi.org/10.1029/2002JD002989,
2003.
Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar,
T., Silvola, J., and Martikainen, P. J.: Fluxes of methane, carbon dioxide
and nitrous oxide in boreal lakes and potential anthropogenic effects on the
aquatic greenhouse gas emissions, Chemosphere, 52, 609–621,
https://doi.org/10.1016/S0045-6535(03)00243-1, 2003.
Ide, J., Finér, L., Laurén, A., Piirainen, S., and Launiainen, S.:
Effects of clear-cutting on annual and seasonal runoff from a boreal forest
catchment in eastern Finland, Forest Ecol. Manag., 304, 482–491,
https://doi.org/10.1016/j.foreco.2013.05.051, 2013.
IGBP Terrestrial Carbon Working Group: The terrestrial carbon cycle?:
implications for the Kyoto Protocol, Science, 1393, 1–3, 1998.
Jähne, B. J., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W.,
and Libner, P.: On the Parameters Influencing Air-Water Gas Exchange, J.
Geophys. Res., 92, 1937–1949, https://doi.org/10.1029/JC092iC02p01937, 1987.
Jones, J. B. and Mulholland, P. J.: Methane Input and Evasion in a Hardwood
Forest Streams: Effects of Subsurface Flow from Shallow and Deep Pathways,
Limnol. Oceanogr., 43, 1243–1250, 1998.
Kaipainen, T., Liski, J., Pussinen, A., and Karjalainen, T.: Managing carbon
sinks by changing rotation length in European forests, Environ. Sci. Policy,
7, 205–219, https://doi.org/10.1016/j.envsci.2004.03.001, 2004.
Kalff, J.: Limnology: Inland Water Ecosystems, Prentice Hall, Upper Saddle River, N.J.,
2002.
Karlsson, J., Giesler, R., Persson, J., and Lundin, E.: High emission of
carbon dioxide and methane during ice thaw in high latitude lakes, Geophys.
Res. Lett., 40, 1123–1127, https://doi.org/10.1002/grl.50152, 2013.
Kiffney, P. M., Richardson, J. S., and Bull, J. P.: Responses of periphyton
and insects to experimental manipulation of riparian buffer width along
forest streams, J. Appl. Ecol., 40, 1060–1076, 2003.
Kowalski, S., Sartore, M., Burlett, R., Berbigier, P., and Loustau, D.: The
annual carbon budget of a French pine forest (Pinus pinaster) following
harvest, Glob. Change Biol., 9, 1051–1065,
https://doi.org/10.1046/j.1365-2486.2003.00627.x, 2003.
Kreutzweiser, D. P., Hazlett, P. W., and Gunn, J. M.: Logging impacts on the
biogeochemistry of boreal forest soils and nutrient export to aquatic
systems: A review, Environ. Rev., 16, 157–179, 2008.
Kulmala, L., Aaltonen, H., Berninger, F., Kieloaho, A., Levula, J., Bäck,
J., Hari, P., Kolari, P., Korhonen, J. F. J., Kulmala, M., Nikinmaa, E.,
Pihlatie, M., Vesala, T., and Pumpanen, J.: Changes in biogeochemistry and
carbon fluxes in a boreal forest after the clear-cutting and partial burning
of slash, Agr. Forest Meteorol., 188, 33–44,
https://doi.org/10.1016/j.agrformet.2013.12.003, 2014.
Lamontagne, S., Carignan, R., D'Arcy, P., Prairie, Y. T., and Paré, D.:
Element export in runoff from eastern Canadian Boreal Shield drainage basins
following forest harvesting and wildfires, Can. J. Fish. Aquat. Sci., 57,
118–128, https://doi.org/10.1139/f00-108, 2000.
Lapierre, J.-F., Guillemette, F., Berggren, M., and del Giorgio, P. A.:
Increases in terrestrially derived carbon stimulate organic carbon processing
and CO2 emissions in boreal aquatic ecosystems, Nat. Commun., 4,
2972, https://doi.org/10.1038/ncomms3972, 2013.
Laudon, H., Hedtjärn, J., Schelker, J., Bishop, K., Sørensen, R., and
Agren, A.: Response of dissolved organic carbon following forest harvesting
in a boreal forest, Ambio, 38, 381–386, https://doi.org/10.1579/0044-7447-38.7.381,
2009.
Leith, F. I., Dinsmore, K. J., Wallin, M. B., Billett, M. F., Heal, K. V.,
Laudon, H., Öquist, M. G., and Bishop, K.: Carbon dioxide transport
across the hillslope-riparian-stream continuum in a boreal headwater
catchment, Biogeosciences, 12, 1881–1892,
https://doi.org/10.5194/bg-12-1881-2015, 2015.
Liikanen, A., Ratilainen, E., Saarnio, S., Alm, J., Martikainen, P. J., and
Silvola, J.: Greenhouse gas dynamics in boreal, littoral sediments under
raised CO2 and nitrogen supply, Freshwater Biol., 48, 500–511, 2003.
Liski, J., Pussinen, A., Pingoud, K., Mäkipää, R., and
Karjalainen, T.: Which rotation length is favourable to carbon
sequestration?, Can. J. Fish. Aquat. Sci., 31, 2004–2013, 2001.
Maberly, S. C., Barker, P. A., Stott, A. W., Ville, D., and Mitzi, M.:
Catchment productivity controls CO2 emissions from lakes, Nat. Clim.
Change, 3, 391–394, https://doi.org/10.1038/nclimate1748, 2013.
Mäkiranta, P., Laiho, R., Penttilä, T., and Minkkinen, K.: The impact
of logging residue on soil GHG fluxes in a drained peatland forest, Soil
Biol. Biochem., 48, 1–9, https://doi.org/10.1016/j.soilbio.2012.01.005, 2012.
Marchand, D., Prairie, Y. T., and del Giorgio, P. A.: Linking forest fires to
lake metabolism and carbon dioxide emissions in the boreal region of Northern
Québec, Glob. Change Biol., 15, 2861–2873,
https://doi.org/10.1111/j.1365-2486.2009.01979.x, 2009.
Martin, C. W., Hornbeck, J. W., Likens, G. E., and Buso, D. C.: Impacts of
intensive harvesting on hydrology and nutrient dynamics of northern hardwood
forests, Can. J. Fish. Aquat. Sci., 57, 19–29, https://doi.org/10.1139/cjfas-57-S2-19,
2000.
McCrackin, M. L. and Elser, J. J.: Atmospheric nitrogen deposition influences
denitrification and nitrous oxide production in lakes, Ecology, 91, 528–539,
2010.
Mengis, M., Gächter, R., and Wehrli, B.: Sources and sinks of nitrous
oxide (N2O) in deep lakes, Biogeochemistry, 38, 281–301, 1997.
Myneni, R. B., Dong, J., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E.,
Liski, J., Zhou, L., Alexeyev, V., and Hughes, M. K.: A large carbon sink in
the woody biomass of Northern forests, P. Natl. Acad. Sci. USA, 98,
14784–14789, https://doi.org/10.1073/pnas.261555198, 2001.
Natchimuthu, S., Wallin, M. B., Klemedtsson, L., and Bastviken, D.:
Spatio-temporal patterns of stream methane and carbon dioxide emissions in a
hemiboreal catchment in Southwest Sweden, Sci. Rep., 7, 1–12,
https://doi.org/10.1038/srep39729, 2017.
Nieminen, M.: Export of dissolved organic carbon, nitrogen and phosphorus
following clear-cutting of three Norway spruce forests growing on drained
peatlands in southern Finland, Silva Fenn., 38, 123–132, 2004.
Öquist, M. G., Wallin, M., Seibert, J., Bishop, K., and Laudon, H.:
Dissolved Inorganic Carbon Export Across the Soil/Stream Interface and Its
Fate in a Boreal Headwater Stream, Environ. Sci. Technol., 43, 7364–7369,
2009.
Öquist, M. G., Bishop, K., Grelle, A., Klemedtsson, L., Köhler, S.
J., Laudon, H., Lindroth, A., Ottosson Löfvenius, M., Wallin, M. B., and
Nilsson, M. B.: The Full Annual Carbon Balance of Boreal Forests Is Highly
Sensitive to Precipitation, Environ. Sci. Tech. Let., 1, 315–319,
https://doi.org/10.1021/ez500169j, 2014.
Osenberg, C. W. and Schmitt, R. J.: Detecting ecological Impacts caused by
human activities, in: Detecting Ecological Impacts – Concepts and
Applications in Coastal Habitats, edited by: Schmitt, R. and Osenberg, C. W.,
Academic Press, San Diego, 3–16, 1996.
Ouellet, A., Lalonde, K., Plouhinec, J. B., Soumis, N., Lucotte, M., and
Gélinas, Y.: Assessing carbon dynamics in natural and perturbed boreal
aquatic systems, J. Geophys. Res.-Biogeo., 117, 1–13,
https://doi.org/10.1029/2012JG001943, 2012.
Palviainen, M., Finér, L., Kurka, A. M., Mannerkoski, H., Piirainen, S.,
and Starr, M.: Decomposition and nutrient release from logging residues after
clear-cutting of mixed boreal forest, Plant Soil, 263, 53–67,
https://doi.org/10.1023/B:PLSO.0000047718.34805.fb, 2004.
Palviainen, M., Finér, L., Laurén, A., Launiainen, S., Piirainen, S.,
Mattsson, T. and Starr, M.: Nitrogen, phosphorus, carbon, and suspended
solids loads from forest clear-cutting and site preparation: Long-term paired
catchment studies from eastern Finland, Ambio, 43(2), 218–233,
https://doi.org/10.1007/s13280-013-0439-x, 2014.
Palviainen, M., Finér, L., Laurén, A., Mattsson, T., and Högbom,
L.: A method to estimate the impact of clear-cutting on nutrient
concentrations in boreal headwater streams, Ambio, 44, 521–531,
https://doi.org/10.1007/s13280-015-0635-y, 2015.
Peura, S., Nykänen, H., Kankaala, P., Eiler, A., Tiirola, M., and Jones,
R. I.: Enhanced greenhouse gas emissions and changes in plankton communities
following an experimental increase in organic carbon loading to a humic lake,
Biogeochemistry, 118, 177–194, https://doi.org/10.1007/s10533-013-9917-2, 2014.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team: Linear and
Nonlinear Mixed Effects Models. R package version 3.1-121, available at:
http://cran.r-project.org/package=nlme (last access: 14 September 2018), 2015.
R Development Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, available
at: http://www.R-project.org (last access: 14 September 2018), 2015.
Rasilo, T., Ojala, A., Huotari, J., and Pumpanen, J.: Rain Induced Changes in
Carbon Dioxide Concentrations in the Soil–Lake–Brook Continuum of a Boreal
Forested Catchment, Vadose Zone J., 11, 14 pp., https://doi.org/10.2136/vzj2011.0039,
2012.
Rasilo, T., Hutchins, R. H. S., Ruiz-González, C., and Giorgio, P. A.:
Transport and transformation of soil-derived CO2, CH4 and DOC
sustain CO2 supersaturation in small boreal streams, Sci. Total
Environ., 579, 902–912, https://doi.org/10.1016/j.scitotenv.2016.10.187, 2017.
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J.,
Mulholland, P., Laursen, A. E., McDowell, W. H., and Newbold, D.: Scaling the
gas transfer velocity and hydraulic geometry in streams and small rivers,
Limnol. Oceanogr. Fluids Environ., 2, 41–53, https://doi.org/10.1215/21573689-1597669,
2012.
Read, J. S., Hamilton, D. P., Jones, I. D., Muraoka, K., Winslow, L. A.,
Kroiss, R., Wu, C. H., and Gaiser, E.: Derivation of lake mixing and
stratification indices from high-resolution lake buoy data, Environ. Modell.
Softw., 26, 1325–1336, https://doi.org/10.1016/j.envsoft.2011.05.006, 2011.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. a., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A.
J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P.
a., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic
perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6,
597–607, https://doi.org/10.1038/ngeo1830, 2013.
Sadro, S., Melack, J. M., and MacIntyre, S.: Depth-integrated estimates of
ecosystem metabolism in a high-elevation lake (Emerald Lake, Sierra Nevada,
California), Limnol. Oceanogr., 56, 1764–1780,
https://doi.org/10.4319/lo.2011.56.5.1764, 2011.
Schelker, J., Eklöf, K., Bishop, K., and Laudon, H.: Effects of forestry
operations on dissolved organic carbon concentrations and export in boreal
first-order streams, J. Geophys. Res.-Biogeo., 117, 1–12,
https://doi.org/10.1029/2011JG001827, 2012.
Schelker, J., Grabs, T., Bishop, K., and Laudon, H.: Drivers of increased
organic carbon concentrations in stream water following forest disturbance:
Separating effects of changes in flow pathways and soil warming, J. Geophys.
Res.-Biogeo., 118, 1814–1827, https://doi.org/10.1002/2013JG002309, 2013a.
Schelker, J., Kuglerová, L., Eklöf, K., Bishop, K., and Laudon, H.:
Hydrological effects of clear-cutting in a boreal forest – Snowpack
dynamics, snowmelt and streamflow responses, J. Hydrol., 484, 105–114,
https://doi.org/10.1016/j.jhydrol.2013.01.015, 2013b.
Schelker, J., Öhman, K., Löfgren, S., and Laudon, H.: Scaling of
increased dissolved organic carbon inputs by forest clear-cutting – What
arrives downstream?, J. Hydrol., 508, 299–306,
https://doi.org/10.1016/j.jhydrol.2013.09.056, 2014.
Schelker, J., Sponseller, R., Ring, E., Högbom, L., Löfgren, S., and
Laudon, H.: Nitrogen export from a boreal stream network following forest
harvesting: seasonal nitrate removal and conservative export of organic
forms, Biogeosciences, 13, 1–12, https://doi.org/10.5194/bg-13-1-2016, 2016.
Schindler, D. W.: Whole-Ecosystem Experiments: Replication Versus Realism:
The Need for Ecosystem-Scale Experiments, Ecosystems, 1, 323–334,
https://doi.org/10.1007/s100219900026, 1998.
Segers, R.: Methane production and methane consumption: a review of processes
underlying wetland methane fluxes, Biogeochemistry, 41, 23–51, 1998.
Seitzinger, S. P.: Denitrification in freshwater and coastal marine
ecosystems: Ecological and geochemical significance, Limnol. Oceanogr., 33,
702–724, https://doi.org/10.4319/lo.1988.33.4_part_2.0702, 1988.
Seitzinger, S. P. and Kroeze, C.: Global distribution of nitrous oxide
production and N inputs in freshwater and coastal marine ecosystems, Global
Biogeochem. Cy., 12, 93–113, 1998.
Seitzinger, S. P. and Nixon, S. W.: Eutrophication and the rate of
denitrification and N2O production in coastal marine sediments,
Limnol. Oceanogr., 30, 1332–1339, https://doi.org/10.4319/lo.1985.30.6.1332, 1985.
SFA: Swedish Statistical Yearbook of Forestry. Skogstyrelsen (Swedish
Forestry Agency), 368, available at:
https://www.skogsstyrelsen.se/globalassets/statistik/historisk-statistik/skogsstatistisk-arsbok-2010-2014/skogsstatistisk-arsbok-2014.pdf
(last access: 2 May 2017), 2014.
SLU: SLU Skogskarta – variabler för ålder, höjd och volym
(“Forest map – age, height and volume”), Swedish University of
Agricultural Sciences, available at:
https://www.slu.se/centrumbildningar-och-projekt/riksskogstaxeringen/statistik-om-skog/slu-skogskarta/SkogskartaOnline/ (last
access: 14 September 2016), 2005.
Soued, C., del Giorgio, P. A., and Maranger, R.: Nitrous oxide sinks and
emissions in boreal aquatic networks in Québec, Nat. Geosci., 9,
116–120, https://doi.org/10.1038/NGEO2611, 2016.
Sponseller, R. A., Gundale, M. J., Futter, M., and Ring, E.: Nitrogen
dynamics in managed boreal forests?: Recent advances and future research
directions, Ambio, 45, S175–S187, https://doi.org/10.1007/s13280-015-0755-4, 2016.
Stanley, E. H., Casson, N. J., Christel, S. T., Crawford, J. T., Loken, L.
C., and Oliver, S. K.: The ecology of methane in streams and rivers:
patterns, controls, and global significance, Ecol. Monogr., 86, 146–171,
2016.
Steedman, R. J., Kushneriuk, R. S., and France, R. L.: Littoral water temperature
response to experimental shoreline logging around small boreal forest lakes,
Can. J. Fish. Aquat. Sci., 58, 1638–1647,
https://doi.org/10.1139/cjfas-58-8-1638, 2001.
Stewart-Oaten, A., Murdoch, W. W., and Parker, K. R.: Environmental impact
assessment: “Pseudoreplication” in time?, Ecology, 67, 929–940, 1986.
Striegl, R. G. and Michmerhuizen, C. M.: Hydrologic influence on methane and
carbon dioxide dynamics at two north-central Minnesota lakes, Limnol.
Oceanogr., 43, 1519–1529, https://doi.org/10.4319/lo.1998.43.7.1519, 1998.
Stumm, W. and Morgan, J. J.: Aquatic Chemistry: Chemical Equilibria and Rates
in Natural Waters, 3rd Edn., John Wiley & Sons, New York, 1995.
Swedish National Land Survey: GSD Elevation data, grid 2+, available at:
https://www.lantmateriet.se/en/maps-and-geographic-information/Hojddata/GSD-Hojddata-grid-2/ (last access: 14 September 2018), 2015.
Tanentzap, A. J., Yan, N. D., Keller, B., Girard, R., Heneberry, J., Gunn, J.
M., Hamilton, D. P., and Taylor, P. A.: Cooling lakes while the world warms:
Effects of forest regrowth and increased dissolved organic matter on the
thermal regime of a temperate, urban lake, Limnol. Oceanogr., 53, 404–410,
https://doi.org/10.4319/lo.2008.53.1.0404, 2008.
Tremblay, Y., Rousseau, A. N., Plamondon, A. P., Lévesque, D., and
Prévost, M.: Changes in stream water quality due to logging of the boreal
forest in the Monmorency forest, Québec, Hydrol. Process., 23, 764–776,
https://doi.org/10.1002/hyp.7175, 2009.
Urabe, J., Iwata, T., Yagami, Y., Kato, E., Suzuki, T., Hino, S., and Ban,
S.: Within-lake and watershed determinants of carbon dioxide in surface
water: A comparative analysis of a variety of lakes in the Japanese Islands,
Limnol. Oceanogr., 56, 49–60, https://doi.org/10.4319/lo.2011.56.1.0049, 2011.
Vachon, D. and Prairie, Y. T.: The ecosystem size and shape dependence of gas
transfer velocity versus wind speed relationships in lakes, Can. J. Fish.
Aquat. Sci., 70, 1757–1764, https://doi.org/10.1139/cjfas-2013-0241, 2013.
Vachon, D., Solomon, C. T., and del Giorgio, P. A.: Reconstructing the
seasonal dynamics and relative contribution of the major processes sustaining
CO2 emissions in northern lakes, Limnol. Oceanogr., 62, 706–722,
https://doi.org/10.1002/lno.10454, 2017.
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Pamela, A.,
Schindler, D. W., Schlesinger, W. H., and Tilman, D. G.: Human alteration of
the global nitrogen cycle: sources and consequences, Ecol. Appl., 7,
737–750, 1997.
Wanninkhof, R.: Relationship Between Wind Speed and Gas Exchange Over the
Ocean, J. Geophys. Res., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R. and Knox, M.: Chemical enhancement of CO2 exchange in
natural waters, Limnol. Oceanogr., 41, 689–697,
https://doi.org/10.4319/lo.1996.41.4.0689, 1996.
Wik, M., Thorton, B. F., Bastviken, D., MacIntyre, S., Varner, R. K., and
Crill, P. M.: Energy input is primary controller of methane bubbling in
subarctic lakes, Geophys. Res. Lett., 41, 555–560, https://doi.org/10.1002/2013GL058510,
2014.
Winkler, G., Leclerc, V., Sirois, P., Archambault, P., and Bérubé,
P.: Short-term impact of forest harvesting on water quality and zooplankton
communities in oligotrophic headwater lakes of the eastern Canadian Boreal
shield, Boreal Environ. Res., 14, 323–337, 2009.
Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I.,
Jessica, R., Hanson, P. C., and Read, J. S.: LakeMetabolizer?: an R package
for estimating lake metabolism from free-water oxygen using diverse
statistical models, Inl. Waters, 6, 622–636, https://doi.org/10.1080/IW-6.4.883,
2016.
Xenopoulos, M. A. and Schindler, D. W.: The environmental control of
near-surface thermoclines in boreal lakes, Ecosystems, 4, 699–707,
https://doi.org/10.1007/s10021-001-0038-8, 2001.
Yvon-Durocher, G., Caffrey, J. M., Cescatti, A., Dossena, M., Giorgio, P.
Del, Gasol, J. M., Montoya, J. M., Pumpanen, J., Staehr, P. A., Trimmer, M.,
Woodward, G., and Allen, A. P.: Reconciling the temperature dependence of
respiration across timescales and ecosystem types, Nature, 487, 472–476,
https://doi.org/10.1038/nature11205, 2012.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C.,
St-Pierre, A., Thanh-Duc, N., and del Giorgio, P. A.: Methane fluxes show
consistent temperature dependence across microbial to ecosystem scales,
Nature, 507, 488–491, https://doi.org/10.1038/nature13164, 2014.
Zheng, D., Prince, S., and Hame, T.: Estimating net primary production of
boreal forests in Finland and Sweden from field data and remote sensing, J.
Veg. Sci., 15, 161–170, https://doi.org/10.1658/1100-9233(2004)015[0161:ENPPOB]2.0.CO;2,
2004.
Short summary
Forest management is widely used to mitigate climate change. However, forest greenhouse gas (GHG) budgets neglect to consider that clear-cuts often release carbon and nitrogen into streams and lakes and may affect aquatic GHG emissions. Here, we show that such emissions remain unaffected by experimental boreal forest clear-cutting despite increased groundwater carbon dioxide and methane concentrations, highlighting that riparian zones or in-stream processes may have buffered clear-cut leachates.
Forest management is widely used to mitigate climate change. However, forest greenhouse gas...
Altmetrics
Final-revised paper
Preprint