Articles | Volume 15, issue 18
https://doi.org/10.5194/bg-15-5575-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-5575-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Greenhouse gas emissions from boreal inland waters unchanged after forest harvesting
Marcus Klaus
CORRESPONDING AUTHOR
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Erik Geibrink
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Anders Jonsson
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Ann-Kristin Bergström
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
David Bastviken
Department of Thematic Studies – Environmental Change,
Linköping University, 58183, Linköping, Sweden
Hjalmar Laudon
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, 90183, Umeå, Sweden
Jonatan Klaminder
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Jan Karlsson
Department of Ecology and Environmental Science, Umeå University,
90187, Umeå, Sweden
Related authors
Giovanni Forzieri, Matteo Pecchi, Marco Girardello, Achille Mauri, Marcus Klaus, Christo Nikolov, Marius Rüetschi, Barry Gardiner, Julián Tomaštík, David Small, Constantin Nistor, Donatas Jonikavicius, Jonathan Spinoni, Luc Feyen, Francesca Giannetti, Rinaldo Comino, Alessandro Wolynski, Francesco Pirotti, Fabio Maistrelli, Ionut Savulescu, Stéphanie Wurpillot-Lucas, Stefan Karlsson, Karolina Zieba-Kulawik, Paulina Strejczek-Jazwinska, Martin Mokroš, Stefan Franz, Lukas Krejci, Ionel Haidu, Mats Nilsson, Piotr Wezyk, Filippo Catani, Yi-Ying Chen, Sebastiaan Luyssaert, Gherardo Chirici, Alessandro Cescatti, and Pieter S. A. Beck
Earth Syst. Sci. Data, 12, 257–276, https://doi.org/10.5194/essd-12-257-2020, https://doi.org/10.5194/essd-12-257-2020, 2020
Short summary
Short summary
Strong winds may uproot and break trees and represent a risk for forests. Despite the importance of this natural disturbance and possible intensification in view of climate change, spatial information about wind-related impacts is currently missing on a pan-European scale. We present a new database of wind disturbances in European forests comprised of more than 80 000 records over the period 2000–2018. Our database is a unique spatial source for the study of forest disturbances at large scales.
Martin Berggren, Marcus Klaus, Balathandayuthabani Panneer Selvam, Lena Ström, Hjalmar Laudon, Mats Jansson, and Jan Karlsson
Biogeosciences, 15, 457–470, https://doi.org/10.5194/bg-15-457-2018, https://doi.org/10.5194/bg-15-457-2018, 2018
Short summary
Short summary
The quality of dissolved organic carbon (DOC), especially its color, is a defining feature of freshwater ecosystems. We found that colored DOC fractions are surprisingly resistant to natural degradation during water transit through many brown-water lakes. This is explained by the dominance of microbial processes that appear to selectively remove noncolored DOC. However, in lakes where sunlight degradation plays a relatively larger role, significant DOC bleaching occurs.
Tejshree Tiwari and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-337, https://doi.org/10.5194/hess-2024-337, 2024
Preprint under review for HESS
Short summary
Short summary
A 40-year hydro-climatic time series from the Krycklan catchment revealed warmer winters associated with higher baseflow and lower summer baseflow. Climate index models suggest that while warmer winters enhance baseflow, they reduce water reserves necessary for summer baseflow. This was supported by an increasing winter precipitation isotope signal in winter baseflow, contrasted with a decreasing isotope signal in summer baseflow.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Shirin Karimi, Eliza Maher Hasselquist, Järvi Järveoja, Virginia Mosquera, and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-158, https://doi.org/10.5194/hess-2024-158, 2024
Revised manuscript under review for HESS
Short summary
Short summary
There is an increasing interest in rewetting drained peatlands to regain their important ecosystem functions. However, as peatland rewetting is a relatively new strategy, the scientific foundation for this approach is not solid. Therefore, we investigated the impact of rewetting on flood mitigation using high-resolution hydrological field observations. Our results showed that peatland rewetting has significantly reduced peak flow, runoff coefficient, and mitigated flashy hydrograph responses.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Anna Lupon, Stefan Willem Ploum, Jason Andrew Leach, Lenka Kuglerová, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 27, 613–625, https://doi.org/10.5194/hess-27-613-2023, https://doi.org/10.5194/hess-27-613-2023, 2023
Short summary
Short summary
Discrete riparian inflow points (DRIPs) transport dissolved organic carbon (DOC) from large areas to discrete sections of streams, yet the mechanisms by which DRIPs affect stream DOC concentration, cycling, and export are still unknown. Here, we tested four models that account for different hydrologic and biological representations to show that DRIPs generally reduce DOC exports by either diluting stream DOC (snowmelt period) or promoting aquatic metabolism (summer).
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Elin Jutebring Sterte, Fredrik Lidman, Emma Lindborg, Ylva Sjöberg, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 25, 2133–2158, https://doi.org/10.5194/hess-25-2133-2021, https://doi.org/10.5194/hess-25-2133-2021, 2021
Short summary
Short summary
A numerical model was used to estimate annual and seasonal mean travel times across 14 long-term nested monitored catchments in the boreal region. The estimated travel times and young water fractions were consistent with observed variations of base cation concentration and stable water isotopes, δ18O. Soil type was the most important factor regulating the variation in mean travel times among sub-catchments, while the areal coverage of mires increased the young water fraction.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
David Bastviken, Jonatan Nygren, Jonathan Schenk, Roser Parellada Massana, and Nguyen Thanh Duc
Biogeosciences, 17, 3659–3667, https://doi.org/10.5194/bg-17-3659-2020, https://doi.org/10.5194/bg-17-3659-2020, 2020
Short summary
Short summary
This study presents a low-cost way to measure methane emissions applicable in nature and society. This facilitates widespread and affordable methane measurements, which are greatly needed for verifying that greenhouse gas mitigation is effective and for improved quantification of fluxes and how they are regulated. The paper also describes an open-source do-it-yourself methane–carbon dioxide–humidity–temperature logger, to increase the distributed capacity to measure greenhouse gases.
Nguyen Thanh Duc, Samuel Silverstein, Martin Wik, Patrick Crill, David Bastviken, and Ruth K. Varner
Hydrol. Earth Syst. Sci., 24, 3417–3430, https://doi.org/10.5194/hess-24-3417-2020, https://doi.org/10.5194/hess-24-3417-2020, 2020
Short summary
Short summary
Under rapid ongoing climate change, accurate quantification of natural greenhouse gas emissions in aquatic environments such as lakes and ponds is needed to understand regulation and feedbacks. Building on the rapid development in wireless communication, sensors, and computation technology, we present a low-cost, open-source, automated and remotely accessed and controlled device for carbon dioxide and methane fluxes from open-water environments along with tests showing their potential.
Nataliia Kozii, Kersti Haahti, Pantana Tor-ngern, Jinshu Chi, Eliza Maher Hasselquist, Hjalmar Laudon, Samuli Launiainen, Ram Oren, Matthias Peichl, Jörgen Wallerman, and Niles J. Hasselquist
Hydrol. Earth Syst. Sci., 24, 2999–3014, https://doi.org/10.5194/hess-24-2999-2020, https://doi.org/10.5194/hess-24-2999-2020, 2020
Short summary
Short summary
The hydrologic cycle is one of the greatest natural processes on Earth and strongly influences both regional and global climate as well as ecosystem functioning. Results from this study clearly show the central role trees play in regulating the water cycle of boreal catchments, implying that forest management impacts on stand structure as well as climate change effects on tree growth are likely to have large cascading effects on the way water moves through boreal forested landscapes.
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary
Short summary
Near-stream areas, or riparian zones, are important for the health of streams and rivers. If these areas are disturbed by forestry or other anthropogenic activity, the water quality and all life in streams may be at risk. We examined which riparian areas are particularly sensitive. We found that only a few wet areas bring most of the rainwater from the landscape to the stream, and they have a unique water quality. In order to maintain healthy streams and rivers, these areas should be protected.
Giovanni Forzieri, Matteo Pecchi, Marco Girardello, Achille Mauri, Marcus Klaus, Christo Nikolov, Marius Rüetschi, Barry Gardiner, Julián Tomaštík, David Small, Constantin Nistor, Donatas Jonikavicius, Jonathan Spinoni, Luc Feyen, Francesca Giannetti, Rinaldo Comino, Alessandro Wolynski, Francesco Pirotti, Fabio Maistrelli, Ionut Savulescu, Stéphanie Wurpillot-Lucas, Stefan Karlsson, Karolina Zieba-Kulawik, Paulina Strejczek-Jazwinska, Martin Mokroš, Stefan Franz, Lukas Krejci, Ionel Haidu, Mats Nilsson, Piotr Wezyk, Filippo Catani, Yi-Ying Chen, Sebastiaan Luyssaert, Gherardo Chirici, Alessandro Cescatti, and Pieter S. A. Beck
Earth Syst. Sci. Data, 12, 257–276, https://doi.org/10.5194/essd-12-257-2020, https://doi.org/10.5194/essd-12-257-2020, 2020
Short summary
Short summary
Strong winds may uproot and break trees and represent a risk for forests. Despite the importance of this natural disturbance and possible intensification in view of climate change, spatial information about wind-related impacts is currently missing on a pan-European scale. We present a new database of wind disturbances in European forests comprised of more than 80 000 records over the period 2000–2018. Our database is a unique spatial source for the study of forest disturbances at large scales.
Aaron Smith, Doerthe Tetzlaff, Hjalmar Laudon, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019, https://doi.org/10.5194/hess-23-3319-2019, 2019
Short summary
Short summary
We adapted and used a spatially distributed eco-hydrological model, EcH2O-iso, to temporally evaluate the influence of soil freeze–thaw dynamics on evaporation and transpiration fluxes in a northern Swedish catchment. We used multi-criterion calibration over multiple years and found an early-season influence of soil frost on transpiration water ages. This work provides a framework for quantifying the current and future interactions of soil water, evaporation, and transpiration.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Alistair Grinham, Simon Albert, Nathaniel Deering, Matthew Dunbabin, David Bastviken, Bradford Sherman, Catherine E. Lovelock, and Christopher D. Evans
Hydrol. Earth Syst. Sci., 22, 5281–5298, https://doi.org/10.5194/hess-22-5281-2018, https://doi.org/10.5194/hess-22-5281-2018, 2018
Short summary
Short summary
Artificial water bodies are a major source of methane and an important contributor to flooded land greenhouse gas emissions. Past studies focussed on large water supply or hydropower reservoirs with small artificial water bodies (ponds) almost completely ignored. This regional study demonstrated ponds accounted for one-third of flooded land surface area and emitted over 1.6 million t CO2 eq. yr−1 (10 % of land use sector emissions). Ponds should be included in regional GHG inventories.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Magnus Gålfalk, Martin Karlson, Patrick Crill, Philippe Bousquet, and David Bastviken
Biogeosciences, 15, 1549–1557, https://doi.org/10.5194/bg-15-1549-2018, https://doi.org/10.5194/bg-15-1549-2018, 2018
Short summary
Short summary
We describe a quick in situ method for mapping ground surface cover, calculating areas of each surface type in a 10 x 10 m plot for each measurement. The method is robust, weather-independent, easily carried out, and uses wide-field imaging with a standard remote-controlled camera mounted on a very long extendible monopod from a height of 3–4.5 m. The method enables collection of detailed field reference data, critical in many remote sensing applications, such as wetland mapping.
Martin Berggren, Marcus Klaus, Balathandayuthabani Panneer Selvam, Lena Ström, Hjalmar Laudon, Mats Jansson, and Jan Karlsson
Biogeosciences, 15, 457–470, https://doi.org/10.5194/bg-15-457-2018, https://doi.org/10.5194/bg-15-457-2018, 2018
Short summary
Short summary
The quality of dissolved organic carbon (DOC), especially its color, is a defining feature of freshwater ecosystems. We found that colored DOC fractions are surprisingly resistant to natural degradation during water transit through many brown-water lakes. This is explained by the dominance of microbial processes that appear to selectively remove noncolored DOC. However, in lakes where sunlight degradation plays a relatively larger role, significant DOC bleaching occurs.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Kukka-Maaria Erkkilä, Anne Ojala, David Bastviken, Tobias Biermann, Jouni J. Heiskanen, Anders Lindroth, Olli Peltola, Miitta Rantakari, Timo Vesala, and Ivan Mammarella
Biogeosciences, 15, 429–445, https://doi.org/10.5194/bg-15-429-2018, https://doi.org/10.5194/bg-15-429-2018, 2018
Short summary
Short summary
Global estimates of freshwater greenhouse gas emissions are usually based on simple gas transfer models that underestimate the emissions. Thus, comparison of different gas transfer models is required for evaluating the uncertainties. This study compares three commonly used methods for estimating greenhouse gas emissions over lakes. We conclude that simple gas transfer models underestimate the emissions and more recent models should be used for global freshwater greenhouse gas emission estimates.
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Thibaud Thonat, Marielle Saunois, Philippe Bousquet, Isabelle Pison, Zeli Tan, Qianlai Zhuang, Patrick M. Crill, Brett F. Thornton, David Bastviken, Ed J. Dlugokencky, Nikita Zimov, Tuomas Laurila, Juha Hatakka, Ove Hermansen, and Doug E. J. Worthy
Atmos. Chem. Phys., 17, 8371–8394, https://doi.org/10.5194/acp-17-8371-2017, https://doi.org/10.5194/acp-17-8371-2017, 2017
Short summary
Short summary
Atmospheric methane simulations in the Arctic have been made for 2012 and compared to continuous observations at six measurement sites. All methane sources significantly affect the measurements at all stations, at least at the synoptic scale, except for biomass burning. An appropriate modelling framework combined with continuous observations of atmospheric methane enables us to gain knowledge on regional methane sources, including those which are usually poorly represented, such as freshwater.
Fredrik Lidman, Åsa Boily, Hjalmar Laudon, and Stephan J. Köhler
Biogeosciences, 14, 3001–3014, https://doi.org/10.5194/bg-14-3001-2017, https://doi.org/10.5194/bg-14-3001-2017, 2017
Short summary
Short summary
The riparian zone is the narrow strip of land that lines a watercourse. This is the last soil that the groundwater is in contact with before it enters the stream and it therefore has a high impact on the water quality. In this paper we show that many elements occur in elevated concentrations in the peat-like riparian zone of boreal headwaters and that this also leads to elevated concentrations in the streams. Hence, understanding riparian soils is crucial for a sustainable management of streams.
Ana R. A. Soares, Ann-Kristin Bergström, Ryan A. Sponseller, Joanna M. Moberg, Reiner Giesler, Emma S. Kritzberg, Mats Jansson, and Martin Berggren
Biogeosciences, 14, 1527–1539, https://doi.org/10.5194/bg-14-1527-2017, https://doi.org/10.5194/bg-14-1527-2017, 2017
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Tobias Lindborg, Johan Rydberg, Mats Tröjbom, Sten Berglund, Emma Johansson, Anders Löfgren, Peter Saetre, Sara Nordén, Gustav Sohlenius, Eva Andersson, Johannes Petrone, Micke Borgiel, Ulrik Kautsky, and Hjalmar Laudon
Earth Syst. Sci. Data, 8, 439–459, https://doi.org/10.5194/essd-8-439-2016, https://doi.org/10.5194/essd-8-439-2016, 2016
Short summary
Short summary
This paper presents a biogeochemical and ecological data set from the Kangerlussuaq region, western Greenland. The data set is used to conceptualize and model terrestrial and limnic ecosystems as well as the land–lake linkage. Both biotic and abiotic data is presented and will be used for biogeochemical mass-balance and transport calculations. The data set constitutes an important source in order to understand and describe accumulation and flow of matter within periglacial landscapes.
Michael Gonsior, Juliana Valle, Philippe Schmitt-Kopplin, Norbert Hertkorn, David Bastviken, Jenna Luek, Mourad Harir, Wanderley Bastos, and Alex Enrich-Prast
Biogeosciences, 13, 4279–4290, https://doi.org/10.5194/bg-13-4279-2016, https://doi.org/10.5194/bg-13-4279-2016, 2016
Short summary
Short summary
We present in this study a highly diverse and complex chemodiversity of dissolved organic matter (DOM) in the Amazon Basin analyzed by modern ultrahigh-resolution mass spectrometry and optical property analyses. DOM within the Rio Madeira (white water), Rio Negro (black water) and Rio Tapajós (clear water) area showed a large overlap of thousands of molecular formulae, but also unique signatures were apparent for each region, with significant correlations to colored DOM.
Stephen Oni, Martyn Futter, Jose Ledesma, Claudia Teutschbein, Jim Buttle, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 20, 2811–2825, https://doi.org/10.5194/hess-20-2811-2016, https://doi.org/10.5194/hess-20-2811-2016, 2016
Short summary
Short summary
This paper presents an important framework to improve hydrologic projections in cold regions. Hydrologic modelling/projections are often based on model calibration to long-term data. Here we used dry and wet years as a proxy to quantify uncertainty in projecting hydrologic extremes. We showed that projections based on long-term data could underestimate runoff by up to 35% in boreal regions. We believe the hydrologic modelling community will benefit from new insights derived from this study.
J. Schelker, R. Sponseller, E. Ring, L. Högbom, S. Löfgren, and H. Laudon
Biogeosciences, 13, 1–12, https://doi.org/10.5194/bg-13-1-2016, https://doi.org/10.5194/bg-13-1-2016, 2016
Short summary
Short summary
The scientific question that is addressed in this study is how forest disturbance affects organic and inorganic nitrogen export from a boreal landscape. The key findings are that the mobilization of inorganic nitrogen from the terrestrial environment to streams increased strongly as a response to harvesting, but the stream network removed a major fraction of this load before it reached the outlet, while organic nitrogen was not removed and transported downstream.
A. Lorke, P. Bodmer, C. Noss, Z. Alshboul, M. Koschorreck, C. Somlai-Haase, D. Bastviken, S. Flury, D. F. McGinnis, A. Maeck, D. Müller, and K. Premke
Biogeosciences, 12, 7013–7024, https://doi.org/10.5194/bg-12-7013-2015, https://doi.org/10.5194/bg-12-7013-2015, 2015
Short summary
Short summary
Flux chambers represent a potentially powerful methodological approach for measuring greenhouse gas emissions from running waters. Here we compare the use of anchored and freely drifting chambers on various streams and provide novel guidance on how to apply flux chambers in these systems. The study clearly shows that drifting chambers have a very small impact on the water turbulence under the chamber, while anchored chambers enhance turbulence under the chambers and thus elevate fluxes.
M. Haei and H. Laudon
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-15763-2015, https://doi.org/10.5194/bgd-12-15763-2015, 2015
Revised manuscript not accepted
D. Bastviken, I. Sundgren, S. Natchimuthu, H. Reyier, and M. Gålfalk
Biogeosciences, 12, 3849–3859, https://doi.org/10.5194/bg-12-3849-2015, https://doi.org/10.5194/bg-12-3849-2015, 2015
Short summary
Short summary
Measurements of concentrations and fluxes of carbon dioxide (CO2) are fundamental to our understanding of carbon cycling and greenhouse gas balances. We are currently limited by the high cost of such measurements, making it difficult to properly investigate variability in space and time. This study presents measurement approaches that are very resource efficient in terms of equipment cost and measurement labor time, opening new opportunities to advance our knowledge of CO2 across landscapes.
F. I. Leith, K. J. Dinsmore, M. B. Wallin, M. F. Billett, K. V. Heal, H. Laudon, M. G. Öquist, and K. Bishop
Biogeosciences, 12, 1881–1892, https://doi.org/10.5194/bg-12-1881-2015, https://doi.org/10.5194/bg-12-1881-2015, 2015
Short summary
Short summary
Carbon dioxide transport between the terrestrial and aquatic systems was dominated by export from the near-stream riparian zone. Over the year, riparian export was highest during autumn storms and the spring snowmelt event. This resulted in high downstream export during these periods with vertical evasion from the stream surface accounting for 60% of the total stream water export, highlighting the importance of evasion to carbon export via the aquatic conduit.
E. Podgrajsek, E. Sahlée, D. Bastviken, J. Holst, A. Lindroth, L. Tranvik, and A. Rutgersson
Biogeosciences, 11, 4225–4233, https://doi.org/10.5194/bg-11-4225-2014, https://doi.org/10.5194/bg-11-4225-2014, 2014
H. Zarei, A. M. Akhondali, H. Mohammadzadeh, F. Radmanesh, and H. Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-3787-2014, https://doi.org/10.5194/hessd-11-3787-2014, 2014
Manuscript not accepted for further review
A. M. Ågren, I. Buffam, D. M. Cooper, T. Tiwari, C. D. Evans, and H. Laudon
Biogeosciences, 11, 1199–1213, https://doi.org/10.5194/bg-11-1199-2014, https://doi.org/10.5194/bg-11-1199-2014, 2014
M. Gonsior, P. Schmitt-Kopplin, and D. Bastviken
Biogeosciences, 10, 6945–6956, https://doi.org/10.5194/bg-10-6945-2013, https://doi.org/10.5194/bg-10-6945-2013, 2013
E. Bosson, T. Lindborg, S. Berglund, L.-G. Gustafsson, J.-O. Selroos, H. Laudon, L. L. Claesson, and G. Destouni
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9271-2013, https://doi.org/10.5194/hessd-10-9271-2013, 2013
Revised manuscript not accepted
J. L. J. Ledesma, T. Grabs, M. N. Futter, K. H. Bishop, H. Laudon, and S. J. Köhler
Biogeosciences, 10, 3849–3868, https://doi.org/10.5194/bg-10-3849-2013, https://doi.org/10.5194/bg-10-3849-2013, 2013
S. K. Oni, M. N. Futter, K. Bishop, S. J. Köhler, M. Ottosson-Löfvenius, and H. Laudon
Biogeosciences, 10, 2315–2330, https://doi.org/10.5194/bg-10-2315-2013, https://doi.org/10.5194/bg-10-2315-2013, 2013
Related subject area
Biogeochemistry: Greenhouse Gases
Air temperature and precipitation constraining the modelled wetland methane emissions in a boreal region in northern Europe
Ensemble estimates of global wetland methane emissions over 2000–2020
Seasonal carbon fluxes from vegetation and soil in a Mediterranean non-tidal salt marsh
Explainable machine learning for modeling of net ecosystem exchange in boreal forests
Dynamics of CO2 and CH4 fluxes in Red Sea mangrove soils
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Technical note: A low-cost, automatic soil–plant–atmosphere enclosure system to investigate CO2 and evapotranspiration flux dynamics
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake
Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in northern Norway inferred from laboratory incubations
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Interannual and seasonal variability of the air–sea CO2 exchange at Utö in the coastal region of the Baltic Sea
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Seasonal and inter-annual variability of carbon fluxes in southern Africa seen by GOSAT
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Eddy covariance fluxes of CO2, CH4 and N2O on a drained peatland forest after clearcutting
Spatiotemporal variability of CO2, N2O and CH4 fluxes from a semi-deciduous tropical forest soil in the Congo basin
Eddy Covariance Evaluation of Ecosystem Fluxes at a Temperate Saltmarsh in Victoria, Australia Shows Large CO2 Uptake
Using eddy covariance observations to determine the carbon sequestration characteristics of subalpine forests in the Qinghai–Tibet Plateau
Isotopomer labeling and oxygen dependence of hybrid nitrous oxide production
The emission of CO from tropical rainforest soils
Interferences caused by the microbial methane cycle during the assessment of abandoned oil and gas wells
Carbon sequestration in different urban vegetation types in Southern Finland
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Proglacial methane emissions driven by meltwater and groundwater flushing in a high Arctic glacial catchment
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices
Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data
Enhanced Southern Ocean CO2 outgassing as a result of stronger and poleward shifted southern hemispheric westerlies
Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond
Optical and radar Earth observation data for upscaling methane emissions linked to permafrost degradation in sub-Arctic peatlands in northern Sweden
Herbivore–shrub interactions influence ecosystem respiration and biogenic volatile organic compound composition in the subarctic
Methane emissions due to reservoir flushing: a significant emission pathway?
Carbon dioxide and methane fluxes from mounds of African fungus-growing termites
Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea
Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands
Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary
Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions
Simulated methane emissions from Arctic ponds are highly sensitive to warming
Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale
Relationships between greenhouse gas production and landscape position during short-term permafrost thaw under anaerobic conditions in the Lena Delta
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Müller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul A. Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
Biogeosciences, 22, 323–340, https://doi.org/10.5194/bg-22-323-2025, https://doi.org/10.5194/bg-22-323-2025, 2025
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in northern Europe using ecosystem models, atmospheric inversions, and upscaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions, and upscaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Lorena Carrasco-Barea, Dolors Verdaguer, Maria Gispert, Xavier D. Quintana, Hélène Bourhis, and Laura Llorens
Biogeosciences, 22, 289–304, https://doi.org/10.5194/bg-22-289-2025, https://doi.org/10.5194/bg-22-289-2025, 2025
Short summary
Short summary
Carbon dioxide fluxes have been measured seasonally in four plant species in a Mediterranean non-tidal salt marsh, highlighting the high carbon removal potential that these species have. Carbon dioxide and methane emissions from soil showed high variability among the habitats studied, and they were generally higher than those observed in tidal salt marshes. Our results are important for making more accurate predictions regarding carbon emissions from these ecosystems.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
Biogeosciences, 22, 257–288, https://doi.org/10.5194/bg-22-257-2025, https://doi.org/10.5194/bg-22-257-2025, 2025
Short summary
Short summary
Machine learning (ML) models are gaining popularity in biogeosciences. They are applied as gap-filling methods and used to upscale carbon fluxes to larger areas. Here we use explainable artificial intelligence (XAI) methods to elucidate the performance of machine learning models for carbon dioxide fluxes in boreal forests. We show that statistically equal models treat input variables differently. XAI methods can help scientists make informed decisions when applying ML models in their research.
Jessica Breavington, Alexandra Steckbauer, Chuancheng Fu, Mongi Ennasri, and Carlos M. Duarte
Biogeosciences, 22, 117–134, https://doi.org/10.5194/bg-22-117-2025, https://doi.org/10.5194/bg-22-117-2025, 2025
Short summary
Short summary
Mangrove carbon storage in the Red Sea is lower than average due to challenging growth conditions. We collected mangrove soil cores over multiple seasons to measure greenhouse gas (GHG) flux of carbon dioxide and methane. GHG emissions are a small offset to mangrove carbon storage overall but punctuated by periods of high emission. This variation is linked to environmental and soil properties, which were also measured. The findings aid understanding of GHG dynamics in arid mangrove ecosystems.
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024, https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere. Our study describes N2O distribution and its drivers in one such system in Macquarie Harbour, Tasmania. Water samples were collected seasonally in 2022 and 2023. Results show the system removes atmospheric N2O when river flow is high, whereas the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Wael Al Hamwi, Maren Dubbert, Jörg Schaller, Matthias Lück, Marten Schmidt, and Mathias Hoffmann
Biogeosciences, 21, 5639–5651, https://doi.org/10.5194/bg-21-5639-2024, https://doi.org/10.5194/bg-21-5639-2024, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil–plant enclosure system to monitor CO2 and evapotranspiration fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, where multiple chambers connect to a single gas analyzer via a low-cost multiplexer. This system provides precise, accurate measurements and high temporal resolution, enabling comprehensive monitoring of plant–soil responses to various treatments and conditions.
Zhao-Jun Yong, Wei-Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin
Biogeosciences, 21, 5247–5260, https://doi.org/10.5194/bg-21-5247-2024, https://doi.org/10.5194/bg-21-5247-2024, 2024
Short summary
Short summary
We measured CO2 and CH4 fluxes from mangrove stems and soils of Avicennia marina and Kandelia obovata during tidal cycles. Both stem types served as CO2 and CH4 sources, emitting less CH4 than soils, with no difference in CO2 flux. While A. marina stems showed increased CO2 fluxes from low to high tides, they acted as a CH4 sink before flooding and as a source after ebbing. However, K. obovata stems showed no flux pattern. This study highlights the need to consider tidal influence and species.
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024, https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the eddy covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate-change-induced droughts.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024, https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Eva-Marie Metz, Sanam Noreen Vardag, Sourish Basu, Martin Jung, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1955, https://doi.org/10.5194/egusphere-2024-1955, 2024
Short summary
Short summary
We estimate CO2 fluxes in semi-arid southern Africa from 2009 to 2018 based on satellite CO2 measurements and atmospheric inverse modelling. By selecting process-based vegetation models, which agree with the satellite CO2 fluxes, we find that soil respiration mainly drives the seasonality, whereas photosynthesis substantially influences the interannual variability. Our study emphasizes the need of better representing the response of semi-arid ecosystems to soil rewetting in vegetation models.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martinez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
EGUsphere, https://doi.org/10.5194/egusphere-2024-1994, https://doi.org/10.5194/egusphere-2024-1994, 2024
Short summary
Short summary
The emissions of greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clearcut peatland forest site. The measurements covered the whole year of 2022 which was the second growing season after the clearcut. The site was a strong GHG source and the highest emissions came from CO2 followed by N2O and CH4. A statistical model that included information on different surfaces in the site was developed to unravel surface-type specific GHG fluxes.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
EGUsphere, https://doi.org/10.5194/egusphere-2024-2346, https://doi.org/10.5194/egusphere-2024-2346, 2024
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gasses (GHG) since 1750 is attributed to human activity, however natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source for CO2 and N2O and a minor sink for CH4.
Ruth Reef, Edoardo Daly, Tivanka Anandappa, Eboni-Jane Vienna-Hallam, Harriet Robertson, Matthew Peck, and Adrien Guyot
EGUsphere, https://doi.org/10.5194/egusphere-2024-2182, https://doi.org/10.5194/egusphere-2024-2182, 2024
Short summary
Short summary
Studies show that saltmarshes excel at capturing carbon from the atmosphere. In this study, we measured CO2 flux in an Australian temperate saltmarsh on French Island. The temperate saltmarsh exhibited strong seasonality. During the warmer growing season, the saltmarsh absorbed on average 10.5 grams of CO2 from the atmosphere per m2 daily. Even in winter, when plants were dormant, it continued to be a CO2 sink, albeit smaller. Cool temperatures and high cloud cover inhibit carbon sequestration.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Sebastian F. A. Jordan, Stefan Schloemer, Martin Krüger, Tanja Heffner, Marcus A. Horn, and Martin Blumenberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1461, https://doi.org/10.5194/egusphere-2024-1461, 2024
Short summary
Short summary
In a multilayered approach, we studied eight cut and buried abandoned oil wells in a peat rich area of Northern Germany for methane flux, soil gas composition, and isotopic signatures of soil methane and carbon dioxide. The detected methane emissions were of biogenic, peat origin and were not associated with the abandoned wells. Additional microbial analysis and methane oxidation rate measurements demonstrated a high methane-emission mitigation potential in the studied peat-soils.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-1453, https://doi.org/10.5194/egusphere-2024-1453, 2024
Short summary
Short summary
Cities seek carbon neutrality and are interested in the sinks of urban vegetation. Measurements are difficult to do which leads to the need for modeling carbon cycle. In this study, we examined the performance of models in estimating carbon sequestration rates in lawns, park trees, and urban forests in Helsinki, Finland. We found that models simulated seasonal and annual variations well. Trees had larger carbon sequestration rates compared with lawns and irrigation often increased carbon sink.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Gabrielle Emma Kleber, Leonard Magerl, Alexandra V. Turchyn, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1273, https://doi.org/10.5194/egusphere-2024-1273, 2024
Short summary
Short summary
Our research on Svalbard has uncovered that melting glaciers can release large amounts of methane, a potent greenhouse gas. By studying a glacier over two summers, we found that its river was highly concentrated in methane. This suggests that as the Arctic warms and glaciers melt, they could be a significant source of methane emissions. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as similar processes may occur across the Arctic.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024, https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Short summary
Determination of dissolved greenhouse gas (GHG) in freshwater allows us to estimate GHG fluxes. Mercuric chloride (HgCl2) is used to preserve water samples prior to GHG analysis despite its environmental and health impacts and interferences with water chemistry in freshwater. Here, we tested the effects of HgCl2, two substitutes and storage time on GHG in water from two boreal lakes. Preservation with HgCl2 caused overestimation of CO2 concentration with consequences for GHG flux estimation.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024, https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024, https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Short summary
Landscapes are often assumed to be homogeneous when using eddy covariance fluxes, which can lead to biases when calculating carbon budgets. In this study we report eddy covariance carbon fluxes from heterogeneous tundra. We used the footprints of each flux observation to unmix the fluxes coming from components of the landscape. We identified and quantified hot spots of carbon emissions in the landscape. Accurately scaling with landscape heterogeneity yielded half as much regional carbon uptake.
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024, https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Short summary
We studied urban lawns and meadows in the Helsinki metropolitan area, Finland. We found that meadows are more resistant to drought events but that they do not increase carbon sequestration compared with lawns. Moreover, the transformation from lawns to meadows did not demonstrate any negative climate effects in terms of greenhouse gas emissions. Even though social and economic aspects also steer urban development, these results can guide planning to consider carbon-smart options.
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Short summary
We established an oil palm management experiment in a large-scale oil palm plantation in Jambi, Indonesia. We recorded oil palm fruit yield and measured soil CO2, N2O, and CH4 fluxes. After 4 years of treatment, compared with conventional fertilization with herbicide weeding, reduced fertilization with mechanical weeding did not reduce yield and soil greenhouse gas emissions, which highlights the legacy effects of over a decade of conventional management prior to the start of the experiment.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Petr Znachor, Jiří Nedoma, Vojtech Kolar, and Anna Matoušů
Biogeosciences, 20, 4273–4288, https://doi.org/10.5194/bg-20-4273-2023, https://doi.org/10.5194/bg-20-4273-2023, 2023
Short summary
Short summary
We conducted intensive spatial sampling of the hypertrophic fishpond to better understand the spatial dynamics of methane fluxes and environmental heterogeneity in fishponds. The diffusive fluxes of methane accounted for only a minor fraction of the total fluxes and both varied pronouncedly within the pond and over the studied summer season. This could be explained only by the water depth. Wind substantially affected temperature, oxygen and chlorophyll a distribution in the pond.
Sofie Sjögersten, Martha Ledger, Matthias Siewert, Betsabé de la Barreda-Bautista, Andrew Sowter, David Gee, Giles Foody, and Doreen S. Boyd
Biogeosciences, 20, 4221–4239, https://doi.org/10.5194/bg-20-4221-2023, https://doi.org/10.5194/bg-20-4221-2023, 2023
Short summary
Short summary
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is difficult given the large and remote areas impacted. We show that UAV data together with satellite data can be used to extrapolate emissions across the wider landscape as well as detect areas at risk of higher emissions. A transition of currently degrading areas to fen type vegetation can increase emission by several orders of magnitude, highlighting the importance of quantifying areas at risk.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Ole Lessmann, Jorge Encinas Fernández, Karla Martínez-Cruz, and Frank Peeters
Biogeosciences, 20, 4057–4068, https://doi.org/10.5194/bg-20-4057-2023, https://doi.org/10.5194/bg-20-4057-2023, 2023
Short summary
Short summary
Based on a large dataset of seasonally resolved methane (CH4) pore water concentrations in a reservoir's sediment, we assess the significance of CH4 emissions due to reservoir flushing. In the studied reservoir, CH4 emissions caused by one flushing operation can represent 7 %–14 % of the annual CH4 emissions and depend on the timing of the flushing operation. In reservoirs with high sediment loadings, regular flushing may substantially contribute to the overall CH4 emissions.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Tim René de Groot, Anne Margriet Mol, Katherine Mesdag, Pierre Ramond, Rachel Ndhlovu, Julia Catherine Engelmann, Thomas Röckmann, and Helge Niemann
Biogeosciences, 20, 3857–3872, https://doi.org/10.5194/bg-20-3857-2023, https://doi.org/10.5194/bg-20-3857-2023, 2023
Short summary
Short summary
This study investigates methane dynamics in the Wadden Sea. Our measurements revealed distinct variations triggered by seasonality and tidal forcing. The methane budget was higher in warmer seasons but surprisingly high in colder seasons. Methane dynamics were amplified during low tides, flushing the majority of methane into the North Sea or releasing it to the atmosphere. Methanotrophic activity was also elevated during low tide but mitigated only a small fraction of the methane efflux.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Julian Koch, Lars Elsgaard, Mogens H. Greve, Steen Gyldenkærne, Cecilie Hermansen, Gregor Levin, Shubiao Wu, and Simon Stisen
Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, https://doi.org/10.5194/bg-20-2387-2023, 2023
Short summary
Short summary
Utilizing peatlands for agriculture leads to large emissions of greenhouse gases worldwide. The emissions are triggered by lowering the water table, which is a necessary step in order to make peatlands arable. Many countries aim at reducing their emissions by restoring peatlands, which can be achieved by stopping agricultural activities and thereby raising the water table. We estimate a total emission of 2.6 Mt CO2-eq for organic-rich peatlands in Denmark and a potential reduction of 77 %.
Mélissa Laurent, Matthias Fuchs, Tanja Herbst, Alexandra Runge, Susanne Liebner, and Claire C. Treat
Biogeosciences, 20, 2049–2064, https://doi.org/10.5194/bg-20-2049-2023, https://doi.org/10.5194/bg-20-2049-2023, 2023
Short summary
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
Cited articles
Andréassian, V.: Waters and forests: From historical controversy to
scientific debate, J. Hydrol., 291, 1–27, https://doi.org/10.1016/j.jhydrol.2003.12.015,
2004.
Ask, J., Karlsson, J., and Jansson, M.: Net ecosystem production in
clear-water and brown-water lakes, Global Biogeochem. Cy., 26, 1–7,
https://doi.org/10.1029/2010GB003951, 2012.
Bastviken, D.: Methane, in: Encyclopedia of Inland Waters, edited by: Likens,
G. E., Elsevier, Oxford, 2009.
Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from
lakes: Dependence of lake characteristics, two regional assessments, and a
global estimate, Global Biogeochem. Cy., 18, 1–12, https://doi.org/10.1029/2004GB002238,
2004.
Bastviken, D., Cole, J. J., Pace, M. L., and Van de-Bogert, M. C.: Fates of
methane from different lake habitats: Connecting whole-lake budgets and
CH4 emissions, J. Geophys. Res.-Biogeo., 113, 1–13,
https://doi.org/10.1029/2007JG000608, 2008.
Bastviken, D., Santoro, A. L., Marotta, H., Pinho, L. Q., Calheiros, D. F.,
Crill, P., and Enrich-Prast, A.: Methane emissions from pantanal, South
America, during the low water season: Toward more comprehensive sampling,
Environ. Sci. Technol., 44, 5450–5455, https://doi.org/10.1021/es1005048, 2010.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
https://doi.org/10.1038/ngeo618, 2009.
Bergström, A. K. and Jansson, M.: Atmospheric nitrogen deposition has
caused nitrogen enrichment and eutrophication of lakes in the northern
hemisphere, Glob. Change Biol., 12, 635–643,
https://doi.org/10.1111/j.1365-2486.2006.01129.x, 2006.
Bertolo, A. and Magnan, P.: Logging-induced variations in dissolved organic
carbon affect yellow perch (Perca flavescens) recruitment in
Canadian Shield lakes, Can. J. Fish. Aquat. Sci., 64, 181–186,
https://doi.org/10.1139/f07-004, 2007.
Bishop, K., Seibert, J., Nyberg, L., and Rodhe, A.: Water storage in a till
catchment. II: Implications of transmissivity feedback for flow paths and
turnover times, Hydrol. Process., 25, 3950–3959, https://doi.org/10.1002/hyp.8355, 2011.
Blackburn, M., Ledesma, J. L. J., Näsholm, T., Laudon, H., and
Sponseller, R. A.: Evaluating hillslope and riparian contributions to
dissolved nitrogen (N) export from a boreal forest catchment, J. Geophys.
Res.-Biogeo., 122, 324–339, https://doi.org/10.1002/2016JG003535, 2017.
Bogard, M. J. and del Giorgio, P. A.: The role of metabolism in modulating
CO2 fluxes in boreal lakes, Global Biogeochem. Cy., 30, 1509–1525,
https://doi.org/10.1002/2016GB005463, 2016.
Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y.
T., Merante, A., and Derry, A. M.: Oxic water column methanogenesis as a
major component of aquatic CH4 fluxes, Nat. Commun., 5, 5350,
https://doi.org/10.1038/ncomms6350, 2014.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Net primary production and net
ecosystem production of a boreal black spruce wildfire chronosequence, Glob.
Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004.
Bradford, M. A., Ineson, P., Wookey, P. A., and Lappin-scott, H. M.: Soil CH
4 oxidation?: response to forest clearcutting and thinning, Soil Biol.
Biochem., 32, 1035–1038, 2000.
Buttle, J. M. and Metcalfe, R. A.: Boreal forest disturbance and streamflow
response, northeastern Ontario, Can. J. Fish. Aquat. Sci., 57, 5–18,
https://doi.org/10.1139/cjfas-57-S2-5, 2000.
Clapcott, J. E. and Barmuta, L. A.: Forest clearance increases metabolism and
organic matter processes in small headwater streams, J. N. Am. Benthol. Soc.,
29, 546–561, https://doi.org/10.1899/09-040.1, 2010.
Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a
low-wind oligotrophic lake measured by the addition of SF6, Limnol.
Oceanogr., 43, 647–656, https://doi.org/10.4319/lo.1998.43.4.0647, 1998.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Crusius, J. and Wanninkhof, R.: Gas transfer velocities measured at low wind
speed over a lake, Limnol. Oceanogr., 48, 1010–1017, 2003.
Dawson, J. J. C. and Smith, P.: Carbon losses from soil and its consequences
for land-use management, Sci. Total Environ., 382, 165–190,
https://doi.org/10.1016/j.scitotenv.2007.03.023, 2007.
Deininger, A., Jonsson, A., Karlsson, J., and Bergström, A.-K.: Low
response of humic lake food web to forest clear cutting, Ecol. Appl.,
2018.
Denfeld, B. A., Wallin, M. B., Sahlée, E., Sobek, S., Kokic, J., Chmiel,
H. E., and Weyhenmeyer, G. A.: Temporal and spatial carbon dioxide
concentration patterns in a small boreal lake in relation to ice cover
dynamics, Boreal Environ. Res., 20, 679–692, 2015.
Deutzmann, J. S., Stief, P., Brandes, J., and Schink, B.: Anaerobic methane
oxidation coupled to denitrification is the dominant methane sink in a deep
lake, P. Natl. Acad. Sci. USA, 111, 18273–18278,
https://doi.org/10.1073/pnas.1411617111, 2014.
Dinsmore, K. J., Billet, M. F., and Moore, T. R.: Transfer of carbon dioxide
and methane through the soil-water-atmosphere system at Mer Bleue peatland,
Canada, Hydrol. Process., 23, 330–341, https://doi.org/10.1002/hyp.7158, 2009.
Dinsmore, K. J., Wallin, M. B., Johnson, M. S., Billett, M. F., Bishop, K.,
Pumpanen, J., and Ojala, A.: Contrasting CO2 concentration discharge
dynamics in headwater streams: A multi-catchment comparison, J. Geophys.
Res.-Biogeo., 118, 445–461, https://doi.org/10.1002/jgrg.20047, 2013.
Diochon, A., Kellman, L., and Beltrami, H.: Looking deeper: An investigation
of soil carbon losses following harvesting from a managed northeastern red
spruce (Picea rubens Sarg.) forest chronosequence, Forest Ecol.
Manag., 257, 413–420, https://doi.org/10.1016/j.foreco.2008.09.015, 2009.
Duc, N. T., Crill, P., and Bastviken, D.: Implications of temperature and
sediment characteristics on methane formation and oxidation in lake
sediments, Biogeochemistry, 100, 185–196, https://doi.org/10.1007/s10533-010-9415-8,
2010.
France, R., Steedman, R., Lehmann, R., and Peters, R.: Landscape modification
of DOC concentration in boreal lakes: implications for UV-B sensitivity,
Water, Air Soil Pollut., 122, 153–162, 2000.
Futter, M. N., Ring, E., Högbom, L., Entenmann, S., and Bishop, K. H.:
Consequences of nitrate leaching following stem-only harvesting of Swedish
forests are dependent on spatial scale, Environ. Pollut., 158, 3552–3559,
https://doi.org/10.1016/j.envpol.2010.08.016, 2010.
Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S.,
Houghton, R. A., Jenkins, J. C., Kohlmaier, G. H., Kurz, W., Liu, S.,
Nabuurs, G., Nilsson, S., and Shvidenko, A. Z.: Forest Carbon Sinks in the
Northern Hemisphere, Ecol. Appl., 12, 891–899,
https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2, 2002.
Heiskanen, J. J., Mammarella, I., Haapanala, S., Pumpanen, J., Vesala, T.,
Macintyre, S., and Ojala, A.: Effects of cooling and internal wave motions on
gas transfer coefficients in a boreal lake, Tellus B, 66, 1–16,
https://doi.org/10.3402/tellusb.v66.22827, 2014.
Hotchkiss, E. R., Hall Jr., R. O., Sponseller, R. A., Butman, D., Klaminder,
J., Laudon, H., Rosvall, M., and Karlsson, J.: Sources of and processes
controlling CO2 emissions change with the size of streams and rivers,
Nat. Geosci., 8, 696–699, https://doi.org/10.1038/ngeo2507, 2015.
Houser, J. N., Bade, D. L., Cole, J. J., and Pace, M. L.: The dual influences
of dissolved organic carbon on hypolimnetic metabolism: Organic substrate and
photosynthetic reduction, Biogeochemistry, 64, 247–269,
https://doi.org/10.1023/A:1024933931691, 2003.
Huotari, J., Ojala, A., Peltomaa, E., Pumpanen, J., Hari, P., and Vesala, T.:
Temporal variations in surface water CO2 concentration in a boreal
humic lake based on high-frequency measurements, Boreal Environ. Res., 14,
48–60, 2009.
Huttunen, J. T.: Nitrous oxide flux to the atmosphere from the littoral zone
of a boreal lake, J. Geophys. Res., 108, 4421, https://doi.org/10.1029/2002JD002989,
2003.
Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar,
T., Silvola, J., and Martikainen, P. J.: Fluxes of methane, carbon dioxide
and nitrous oxide in boreal lakes and potential anthropogenic effects on the
aquatic greenhouse gas emissions, Chemosphere, 52, 609–621,
https://doi.org/10.1016/S0045-6535(03)00243-1, 2003.
Ide, J., Finér, L., Laurén, A., Piirainen, S., and Launiainen, S.:
Effects of clear-cutting on annual and seasonal runoff from a boreal forest
catchment in eastern Finland, Forest Ecol. Manag., 304, 482–491,
https://doi.org/10.1016/j.foreco.2013.05.051, 2013.
IGBP Terrestrial Carbon Working Group: The terrestrial carbon cycle?:
implications for the Kyoto Protocol, Science, 1393, 1–3, 1998.
Jähne, B. J., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W.,
and Libner, P.: On the Parameters Influencing Air-Water Gas Exchange, J.
Geophys. Res., 92, 1937–1949, https://doi.org/10.1029/JC092iC02p01937, 1987.
Jones, J. B. and Mulholland, P. J.: Methane Input and Evasion in a Hardwood
Forest Streams: Effects of Subsurface Flow from Shallow and Deep Pathways,
Limnol. Oceanogr., 43, 1243–1250, 1998.
Kaipainen, T., Liski, J., Pussinen, A., and Karjalainen, T.: Managing carbon
sinks by changing rotation length in European forests, Environ. Sci. Policy,
7, 205–219, https://doi.org/10.1016/j.envsci.2004.03.001, 2004.
Kalff, J.: Limnology: Inland Water Ecosystems, Prentice Hall, Upper Saddle River, N.J.,
2002.
Karlsson, J., Giesler, R., Persson, J., and Lundin, E.: High emission of
carbon dioxide and methane during ice thaw in high latitude lakes, Geophys.
Res. Lett., 40, 1123–1127, https://doi.org/10.1002/grl.50152, 2013.
Kiffney, P. M., Richardson, J. S., and Bull, J. P.: Responses of periphyton
and insects to experimental manipulation of riparian buffer width along
forest streams, J. Appl. Ecol., 40, 1060–1076, 2003.
Kowalski, S., Sartore, M., Burlett, R., Berbigier, P., and Loustau, D.: The
annual carbon budget of a French pine forest (Pinus pinaster) following
harvest, Glob. Change Biol., 9, 1051–1065,
https://doi.org/10.1046/j.1365-2486.2003.00627.x, 2003.
Kreutzweiser, D. P., Hazlett, P. W., and Gunn, J. M.: Logging impacts on the
biogeochemistry of boreal forest soils and nutrient export to aquatic
systems: A review, Environ. Rev., 16, 157–179, 2008.
Kulmala, L., Aaltonen, H., Berninger, F., Kieloaho, A., Levula, J., Bäck,
J., Hari, P., Kolari, P., Korhonen, J. F. J., Kulmala, M., Nikinmaa, E.,
Pihlatie, M., Vesala, T., and Pumpanen, J.: Changes in biogeochemistry and
carbon fluxes in a boreal forest after the clear-cutting and partial burning
of slash, Agr. Forest Meteorol., 188, 33–44,
https://doi.org/10.1016/j.agrformet.2013.12.003, 2014.
Lamontagne, S., Carignan, R., D'Arcy, P., Prairie, Y. T., and Paré, D.:
Element export in runoff from eastern Canadian Boreal Shield drainage basins
following forest harvesting and wildfires, Can. J. Fish. Aquat. Sci., 57,
118–128, https://doi.org/10.1139/f00-108, 2000.
Lapierre, J.-F., Guillemette, F., Berggren, M., and del Giorgio, P. A.:
Increases in terrestrially derived carbon stimulate organic carbon processing
and CO2 emissions in boreal aquatic ecosystems, Nat. Commun., 4,
2972, https://doi.org/10.1038/ncomms3972, 2013.
Laudon, H., Hedtjärn, J., Schelker, J., Bishop, K., Sørensen, R., and
Agren, A.: Response of dissolved organic carbon following forest harvesting
in a boreal forest, Ambio, 38, 381–386, https://doi.org/10.1579/0044-7447-38.7.381,
2009.
Leith, F. I., Dinsmore, K. J., Wallin, M. B., Billett, M. F., Heal, K. V.,
Laudon, H., Öquist, M. G., and Bishop, K.: Carbon dioxide transport
across the hillslope-riparian-stream continuum in a boreal headwater
catchment, Biogeosciences, 12, 1881–1892,
https://doi.org/10.5194/bg-12-1881-2015, 2015.
Liikanen, A., Ratilainen, E., Saarnio, S., Alm, J., Martikainen, P. J., and
Silvola, J.: Greenhouse gas dynamics in boreal, littoral sediments under
raised CO2 and nitrogen supply, Freshwater Biol., 48, 500–511, 2003.
Liski, J., Pussinen, A., Pingoud, K., Mäkipää, R., and
Karjalainen, T.: Which rotation length is favourable to carbon
sequestration?, Can. J. Fish. Aquat. Sci., 31, 2004–2013, 2001.
Maberly, S. C., Barker, P. A., Stott, A. W., Ville, D., and Mitzi, M.:
Catchment productivity controls CO2 emissions from lakes, Nat. Clim.
Change, 3, 391–394, https://doi.org/10.1038/nclimate1748, 2013.
Mäkiranta, P., Laiho, R., Penttilä, T., and Minkkinen, K.: The impact
of logging residue on soil GHG fluxes in a drained peatland forest, Soil
Biol. Biochem., 48, 1–9, https://doi.org/10.1016/j.soilbio.2012.01.005, 2012.
Marchand, D., Prairie, Y. T., and del Giorgio, P. A.: Linking forest fires to
lake metabolism and carbon dioxide emissions in the boreal region of Northern
Québec, Glob. Change Biol., 15, 2861–2873,
https://doi.org/10.1111/j.1365-2486.2009.01979.x, 2009.
Martin, C. W., Hornbeck, J. W., Likens, G. E., and Buso, D. C.: Impacts of
intensive harvesting on hydrology and nutrient dynamics of northern hardwood
forests, Can. J. Fish. Aquat. Sci., 57, 19–29, https://doi.org/10.1139/cjfas-57-S2-19,
2000.
McCrackin, M. L. and Elser, J. J.: Atmospheric nitrogen deposition influences
denitrification and nitrous oxide production in lakes, Ecology, 91, 528–539,
2010.
Mengis, M., Gächter, R., and Wehrli, B.: Sources and sinks of nitrous
oxide (N2O) in deep lakes, Biogeochemistry, 38, 281–301, 1997.
Myneni, R. B., Dong, J., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E.,
Liski, J., Zhou, L., Alexeyev, V., and Hughes, M. K.: A large carbon sink in
the woody biomass of Northern forests, P. Natl. Acad. Sci. USA, 98,
14784–14789, https://doi.org/10.1073/pnas.261555198, 2001.
Natchimuthu, S., Wallin, M. B., Klemedtsson, L., and Bastviken, D.:
Spatio-temporal patterns of stream methane and carbon dioxide emissions in a
hemiboreal catchment in Southwest Sweden, Sci. Rep., 7, 1–12,
https://doi.org/10.1038/srep39729, 2017.
Nieminen, M.: Export of dissolved organic carbon, nitrogen and phosphorus
following clear-cutting of three Norway spruce forests growing on drained
peatlands in southern Finland, Silva Fenn., 38, 123–132, 2004.
Öquist, M. G., Wallin, M., Seibert, J., Bishop, K., and Laudon, H.:
Dissolved Inorganic Carbon Export Across the Soil/Stream Interface and Its
Fate in a Boreal Headwater Stream, Environ. Sci. Technol., 43, 7364–7369,
2009.
Öquist, M. G., Bishop, K., Grelle, A., Klemedtsson, L., Köhler, S.
J., Laudon, H., Lindroth, A., Ottosson Löfvenius, M., Wallin, M. B., and
Nilsson, M. B.: The Full Annual Carbon Balance of Boreal Forests Is Highly
Sensitive to Precipitation, Environ. Sci. Tech. Let., 1, 315–319,
https://doi.org/10.1021/ez500169j, 2014.
Osenberg, C. W. and Schmitt, R. J.: Detecting ecological Impacts caused by
human activities, in: Detecting Ecological Impacts – Concepts and
Applications in Coastal Habitats, edited by: Schmitt, R. and Osenberg, C. W.,
Academic Press, San Diego, 3–16, 1996.
Ouellet, A., Lalonde, K., Plouhinec, J. B., Soumis, N., Lucotte, M., and
Gélinas, Y.: Assessing carbon dynamics in natural and perturbed boreal
aquatic systems, J. Geophys. Res.-Biogeo., 117, 1–13,
https://doi.org/10.1029/2012JG001943, 2012.
Palviainen, M., Finér, L., Kurka, A. M., Mannerkoski, H., Piirainen, S.,
and Starr, M.: Decomposition and nutrient release from logging residues after
clear-cutting of mixed boreal forest, Plant Soil, 263, 53–67,
https://doi.org/10.1023/B:PLSO.0000047718.34805.fb, 2004.
Palviainen, M., Finér, L., Laurén, A., Launiainen, S., Piirainen, S.,
Mattsson, T. and Starr, M.: Nitrogen, phosphorus, carbon, and suspended
solids loads from forest clear-cutting and site preparation: Long-term paired
catchment studies from eastern Finland, Ambio, 43(2), 218–233,
https://doi.org/10.1007/s13280-013-0439-x, 2014.
Palviainen, M., Finér, L., Laurén, A., Mattsson, T., and Högbom,
L.: A method to estimate the impact of clear-cutting on nutrient
concentrations in boreal headwater streams, Ambio, 44, 521–531,
https://doi.org/10.1007/s13280-015-0635-y, 2015.
Peura, S., Nykänen, H., Kankaala, P., Eiler, A., Tiirola, M., and Jones,
R. I.: Enhanced greenhouse gas emissions and changes in plankton communities
following an experimental increase in organic carbon loading to a humic lake,
Biogeochemistry, 118, 177–194, https://doi.org/10.1007/s10533-013-9917-2, 2014.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team: Linear and
Nonlinear Mixed Effects Models. R package version 3.1-121, available at:
http://cran.r-project.org/package=nlme (last access: 14 September 2018), 2015.
R Development Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, available
at: http://www.R-project.org (last access: 14 September 2018), 2015.
Rasilo, T., Ojala, A., Huotari, J., and Pumpanen, J.: Rain Induced Changes in
Carbon Dioxide Concentrations in the Soil–Lake–Brook Continuum of a Boreal
Forested Catchment, Vadose Zone J., 11, 14 pp., https://doi.org/10.2136/vzj2011.0039,
2012.
Rasilo, T., Hutchins, R. H. S., Ruiz-González, C., and Giorgio, P. A.:
Transport and transformation of soil-derived CO2, CH4 and DOC
sustain CO2 supersaturation in small boreal streams, Sci. Total
Environ., 579, 902–912, https://doi.org/10.1016/j.scitotenv.2016.10.187, 2017.
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J.,
Mulholland, P., Laursen, A. E., McDowell, W. H., and Newbold, D.: Scaling the
gas transfer velocity and hydraulic geometry in streams and small rivers,
Limnol. Oceanogr. Fluids Environ., 2, 41–53, https://doi.org/10.1215/21573689-1597669,
2012.
Read, J. S., Hamilton, D. P., Jones, I. D., Muraoka, K., Winslow, L. A.,
Kroiss, R., Wu, C. H., and Gaiser, E.: Derivation of lake mixing and
stratification indices from high-resolution lake buoy data, Environ. Modell.
Softw., 26, 1325–1336, https://doi.org/10.1016/j.envsoft.2011.05.006, 2011.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. a., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A.
J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P.
a., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic
perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6,
597–607, https://doi.org/10.1038/ngeo1830, 2013.
Sadro, S., Melack, J. M., and MacIntyre, S.: Depth-integrated estimates of
ecosystem metabolism in a high-elevation lake (Emerald Lake, Sierra Nevada,
California), Limnol. Oceanogr., 56, 1764–1780,
https://doi.org/10.4319/lo.2011.56.5.1764, 2011.
Schelker, J., Eklöf, K., Bishop, K., and Laudon, H.: Effects of forestry
operations on dissolved organic carbon concentrations and export in boreal
first-order streams, J. Geophys. Res.-Biogeo., 117, 1–12,
https://doi.org/10.1029/2011JG001827, 2012.
Schelker, J., Grabs, T., Bishop, K., and Laudon, H.: Drivers of increased
organic carbon concentrations in stream water following forest disturbance:
Separating effects of changes in flow pathways and soil warming, J. Geophys.
Res.-Biogeo., 118, 1814–1827, https://doi.org/10.1002/2013JG002309, 2013a.
Schelker, J., Kuglerová, L., Eklöf, K., Bishop, K., and Laudon, H.:
Hydrological effects of clear-cutting in a boreal forest – Snowpack
dynamics, snowmelt and streamflow responses, J. Hydrol., 484, 105–114,
https://doi.org/10.1016/j.jhydrol.2013.01.015, 2013b.
Schelker, J., Öhman, K., Löfgren, S., and Laudon, H.: Scaling of
increased dissolved organic carbon inputs by forest clear-cutting – What
arrives downstream?, J. Hydrol., 508, 299–306,
https://doi.org/10.1016/j.jhydrol.2013.09.056, 2014.
Schelker, J., Sponseller, R., Ring, E., Högbom, L., Löfgren, S., and
Laudon, H.: Nitrogen export from a boreal stream network following forest
harvesting: seasonal nitrate removal and conservative export of organic
forms, Biogeosciences, 13, 1–12, https://doi.org/10.5194/bg-13-1-2016, 2016.
Schindler, D. W.: Whole-Ecosystem Experiments: Replication Versus Realism:
The Need for Ecosystem-Scale Experiments, Ecosystems, 1, 323–334,
https://doi.org/10.1007/s100219900026, 1998.
Segers, R.: Methane production and methane consumption: a review of processes
underlying wetland methane fluxes, Biogeochemistry, 41, 23–51, 1998.
Seitzinger, S. P.: Denitrification in freshwater and coastal marine
ecosystems: Ecological and geochemical significance, Limnol. Oceanogr., 33,
702–724, https://doi.org/10.4319/lo.1988.33.4_part_2.0702, 1988.
Seitzinger, S. P. and Kroeze, C.: Global distribution of nitrous oxide
production and N inputs in freshwater and coastal marine ecosystems, Global
Biogeochem. Cy., 12, 93–113, 1998.
Seitzinger, S. P. and Nixon, S. W.: Eutrophication and the rate of
denitrification and N2O production in coastal marine sediments,
Limnol. Oceanogr., 30, 1332–1339, https://doi.org/10.4319/lo.1985.30.6.1332, 1985.
SFA: Swedish Statistical Yearbook of Forestry. Skogstyrelsen (Swedish
Forestry Agency), 368, available at:
https://www.skogsstyrelsen.se/globalassets/statistik/historisk-statistik/skogsstatistisk-arsbok-2010-2014/skogsstatistisk-arsbok-2014.pdf
(last access: 2 May 2017), 2014.
SLU: SLU Skogskarta – variabler för ålder, höjd och volym
(“Forest map – age, height and volume”), Swedish University of
Agricultural Sciences, available at:
https://www.slu.se/centrumbildningar-och-projekt/riksskogstaxeringen/statistik-om-skog/slu-skogskarta/SkogskartaOnline/ (last
access: 14 September 2016), 2005.
Soued, C., del Giorgio, P. A., and Maranger, R.: Nitrous oxide sinks and
emissions in boreal aquatic networks in Québec, Nat. Geosci., 9,
116–120, https://doi.org/10.1038/NGEO2611, 2016.
Sponseller, R. A., Gundale, M. J., Futter, M., and Ring, E.: Nitrogen
dynamics in managed boreal forests?: Recent advances and future research
directions, Ambio, 45, S175–S187, https://doi.org/10.1007/s13280-015-0755-4, 2016.
Stanley, E. H., Casson, N. J., Christel, S. T., Crawford, J. T., Loken, L.
C., and Oliver, S. K.: The ecology of methane in streams and rivers:
patterns, controls, and global significance, Ecol. Monogr., 86, 146–171,
2016.
Steedman, R. J., Kushneriuk, R. S., and France, R. L.: Littoral water temperature
response to experimental shoreline logging around small boreal forest lakes,
Can. J. Fish. Aquat. Sci., 58, 1638–1647,
https://doi.org/10.1139/cjfas-58-8-1638, 2001.
Stewart-Oaten, A., Murdoch, W. W., and Parker, K. R.: Environmental impact
assessment: “Pseudoreplication” in time?, Ecology, 67, 929–940, 1986.
Striegl, R. G. and Michmerhuizen, C. M.: Hydrologic influence on methane and
carbon dioxide dynamics at two north-central Minnesota lakes, Limnol.
Oceanogr., 43, 1519–1529, https://doi.org/10.4319/lo.1998.43.7.1519, 1998.
Stumm, W. and Morgan, J. J.: Aquatic Chemistry: Chemical Equilibria and Rates
in Natural Waters, 3rd Edn., John Wiley & Sons, New York, 1995.
Swedish National Land Survey: GSD Elevation data, grid 2+, available at:
https://www.lantmateriet.se/en/maps-and-geographic-information/Hojddata/GSD-Hojddata-grid-2/ (last access: 14 September 2018), 2015.
Tanentzap, A. J., Yan, N. D., Keller, B., Girard, R., Heneberry, J., Gunn, J.
M., Hamilton, D. P., and Taylor, P. A.: Cooling lakes while the world warms:
Effects of forest regrowth and increased dissolved organic matter on the
thermal regime of a temperate, urban lake, Limnol. Oceanogr., 53, 404–410,
https://doi.org/10.4319/lo.2008.53.1.0404, 2008.
Tremblay, Y., Rousseau, A. N., Plamondon, A. P., Lévesque, D., and
Prévost, M.: Changes in stream water quality due to logging of the boreal
forest in the Monmorency forest, Québec, Hydrol. Process., 23, 764–776,
https://doi.org/10.1002/hyp.7175, 2009.
Urabe, J., Iwata, T., Yagami, Y., Kato, E., Suzuki, T., Hino, S., and Ban,
S.: Within-lake and watershed determinants of carbon dioxide in surface
water: A comparative analysis of a variety of lakes in the Japanese Islands,
Limnol. Oceanogr., 56, 49–60, https://doi.org/10.4319/lo.2011.56.1.0049, 2011.
Vachon, D. and Prairie, Y. T.: The ecosystem size and shape dependence of gas
transfer velocity versus wind speed relationships in lakes, Can. J. Fish.
Aquat. Sci., 70, 1757–1764, https://doi.org/10.1139/cjfas-2013-0241, 2013.
Vachon, D., Solomon, C. T., and del Giorgio, P. A.: Reconstructing the
seasonal dynamics and relative contribution of the major processes sustaining
CO2 emissions in northern lakes, Limnol. Oceanogr., 62, 706–722,
https://doi.org/10.1002/lno.10454, 2017.
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Pamela, A.,
Schindler, D. W., Schlesinger, W. H., and Tilman, D. G.: Human alteration of
the global nitrogen cycle: sources and consequences, Ecol. Appl., 7,
737–750, 1997.
Wanninkhof, R.: Relationship Between Wind Speed and Gas Exchange Over the
Ocean, J. Geophys. Res., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R. and Knox, M.: Chemical enhancement of CO2 exchange in
natural waters, Limnol. Oceanogr., 41, 689–697,
https://doi.org/10.4319/lo.1996.41.4.0689, 1996.
Wik, M., Thorton, B. F., Bastviken, D., MacIntyre, S., Varner, R. K., and
Crill, P. M.: Energy input is primary controller of methane bubbling in
subarctic lakes, Geophys. Res. Lett., 41, 555–560, https://doi.org/10.1002/2013GL058510,
2014.
Winkler, G., Leclerc, V., Sirois, P., Archambault, P., and Bérubé,
P.: Short-term impact of forest harvesting on water quality and zooplankton
communities in oligotrophic headwater lakes of the eastern Canadian Boreal
shield, Boreal Environ. Res., 14, 323–337, 2009.
Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I.,
Jessica, R., Hanson, P. C., and Read, J. S.: LakeMetabolizer?: an R package
for estimating lake metabolism from free-water oxygen using diverse
statistical models, Inl. Waters, 6, 622–636, https://doi.org/10.1080/IW-6.4.883,
2016.
Xenopoulos, M. A. and Schindler, D. W.: The environmental control of
near-surface thermoclines in boreal lakes, Ecosystems, 4, 699–707,
https://doi.org/10.1007/s10021-001-0038-8, 2001.
Yvon-Durocher, G., Caffrey, J. M., Cescatti, A., Dossena, M., Giorgio, P.
Del, Gasol, J. M., Montoya, J. M., Pumpanen, J., Staehr, P. A., Trimmer, M.,
Woodward, G., and Allen, A. P.: Reconciling the temperature dependence of
respiration across timescales and ecosystem types, Nature, 487, 472–476,
https://doi.org/10.1038/nature11205, 2012.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C.,
St-Pierre, A., Thanh-Duc, N., and del Giorgio, P. A.: Methane fluxes show
consistent temperature dependence across microbial to ecosystem scales,
Nature, 507, 488–491, https://doi.org/10.1038/nature13164, 2014.
Zheng, D., Prince, S., and Hame, T.: Estimating net primary production of
boreal forests in Finland and Sweden from field data and remote sensing, J.
Veg. Sci., 15, 161–170, https://doi.org/10.1658/1100-9233(2004)015[0161:ENPPOB]2.0.CO;2,
2004.
Short summary
Forest management is widely used to mitigate climate change. However, forest greenhouse gas (GHG) budgets neglect to consider that clear-cuts often release carbon and nitrogen into streams and lakes and may affect aquatic GHG emissions. Here, we show that such emissions remain unaffected by experimental boreal forest clear-cutting despite increased groundwater carbon dioxide and methane concentrations, highlighting that riparian zones or in-stream processes may have buffered clear-cut leachates.
Forest management is widely used to mitigate climate change. However, forest greenhouse gas...
Altmetrics
Final-revised paper
Preprint